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Summary Genomic instability is a driving force for tumorigenesis. p53 and telomerase play central roles in maintaining genomic integrity. The
purpose of this study was to assess the associations among p53 protein overexpression, telomerase activity and genetic instability in lung
cancer. We found that telomerase activity was detectable in 80% of 100 lung tumours, but only 7.7% of 91 paired adjacent normal tissues. p53
protein was overexpressed in 63% of the tumours but only 2% of the normal tissues. p53 was overexpressed in 56 of the 80 (70%) tumour
tissues with telomerase activity but only seven of the 20 (35%) without telomerase activity. p53 protein overexpression carried a 6.7-fold (95%
confidence interval, 1.7–27.7) increased risk for positive telomerase activity after adjustment by age, sex, ethnicity, smoking status and family
history of lung cancer. The mean in vitro bleomycin-induced breaks per cell (a marker of cancer susceptibility) was significantly higher (0.92)
for patients who overexpressed p53 in lung tumour tissue than that for patients with no detectable p53 expression in lung tumour tissue (0.65).
Our data suggest that p53 protein overexpression may be common in individuals genetically susceptible to carcinogen exposure. p53 status
may be related to telomerase expression.
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Genomic instability reflects the propensity and susceptibility of
the genome for acquiring multiple alterations and, in turn, is
believed to be a driving force behind multistep carcinogenesis.
Hsu et al (1983) have hypothesized that constitutional genetic
instability is not an all-or-none phenomenon but instead exists in
varying degrees in the general population, with one extreme end
of the spectrum being the chromosome instability syndromes.
Genetic instability can be unmasked by mutagen challenge in
vitro. The mutagen sensitivity assay, which quantifies in vitro
bleomycin-induced chromatid breaks in short-term cultured
lymphocytes, was developed as a measure of constitutional
genetic instability (the net result of DNA repair capability and
initial genetic instability) (Hsu et al, 1989). This notion was
supported by the evidence that mutagen sensitivity is an indepen-
dent cancer risk predictor (Spitz et al, 1989, 1994; Strom et al
1995; Wu et al, 1995, 1995, 1996) and is not modulated by age,
gender, smoking status, or tumour burden (Wu et al, 1995).

p53 is believed to play a central role in maintaining genomic
stability (Marx, 1994). Mutation of p53 is one of the most frequent
genetic alterations in solid tumours (Hollstein et al, 1991).
Telomerase activity and immortalization have also been impli-
cated in tumorigenesis. Telomeres are the TTAGGG repeats at the
physical ends of eukaryotic chromosomes. The function of telom-
eres is to prevent chromosomes from degrading and fusing with
each other. Each cell division shortens the telomeres. Telomerase
is an enzyme that can add telomeric sequences to the ends of chro-
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mosome to compensate for the losses that occur with each round
of DNA replication (Harley and Villeponteau, 1995). Telomerase
activity is present in germline cells, but somatic cells do not have
telomerase activity and stop dividing when their telomeres have
been shortened to a critical length. Telomerase expression may be
related to immortalization (Kim et al, 1994). Human cancer cells,
in post-mortality stage I (M1) and pre-mortality stage II (M2) are
mortal cells without telomerase activity. Cancer cells that pass M2
are immortal cells with telomerase activity (Wright et al, 1989;
Shay et al, 1991). It has been proposed that one of the main func-
tions of p53 may be to detect telomere erosion and subsequently
signal growth control pathways (Wynford-Thomas et al, 1995).

As stated above, p53 and telomerase activity associated with
genomic integrity and p53 may play a role in tumorigenesis
through telomere erosion detection. Furthermore, a significant
correlation between p53 oncoprotein overexpression and mutagen
sensitivity in head and neck cancer patients with multiple malig-
nancies has been reported (Gallo et al, 1995). We hypothesized
that p53 protein overexpression and the presence of telomerase
activity would be more common in individuals with genetic
susceptibility to carcinogenic exposure than in those individuals
without genetic susceptibility and p53 protein overexpression
might be correlated with the presence of telomerase activity in
lung tumorigenesis. The purpose of this study was to assess this
hypothesis in paired lung tumour tissue and peripheral blood
lymphocytes (PBLs).



Samples and subjects

We collected 100 fresh lung tumour tissues at thoracotomy and 91
paired adjacent normal tissues from patients with non-small cell
lung cancer who underwent surgical treatment at M. D. Anderson
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Table 1 Host characteristics, telomerase activity and p53 expression in lung
tumour tissuea

Total Adenocarcinoma Squamous Othersb

carcinoma

Sex
Male 59 (59.0) 27 (50.0) 23 (67.6) 9 (75.0)
Female 41 (41.0) 27 (50.0) 11 (32.4) 3 (25.0)

Ethnicity
Non-Hispanic white 88 (88.0) 49 (90.7) 28 (82.3) 11 (91.7)
Hispanic 7 (7.0) 3 (5.6) 4 (11.8) 0 (0.0)
Black 4 (4.0) 2 (3.7) 2 (5.9) 0 (0.0)
Asian 1 (1.0) 0 (0.0) 0 (0.0) 1 (8.3)

Mean age
Years (s.d.) 63.8 (11.3) 62.9 (11.1) 65.9 (8.6) 60.1 (17.7)

Smoking status
Never 10 (11.6) 7 (14.9) 1 (3.3) 2 (22.2)
Ever 76 (88.4) 40 (85.1) 29 (96.7) 7 (77.8)

Tumour stage
I 39 (41.5) 20 (37.0) 19 (59.4) 0 (0.0)
II 12 (12.8) 7 (13.0) 4 (12.5) 1 (12.5)
III 33 (35.1) 20 (37.0) 8 (25.0) 5 (62.5)
IV 10 (10.6) 7 (13.0) 1 (3.1) 2 (25.0)

Family history of cancer
Positive 52 (58.4) 28 (56.0) 17 (56.7) 7 (77.8)
Negative 37 (41.6) 22 (44.0) 13 (43.3) 2 (22.2)

p53 overexpression
Positive 63 (63.0) 36 (66.7) 19 (55.9) 8 (66.7)
Negative 37 (37.0) 18 (33.3) 15 (44.1) 4 (33.3)

Telomerase activity
Positive 80 (80.0) 43 (79.6) 27 (79.4) 10 (83.3)
Negative 20 (20.0) 11 (20.4) 7 (20.6) 2 (16.7)

aNumber (%) except as indicated. bIncludes larger cell carcinoma, non-
differentiated non-small-cell carcinoma, bronchioalveolar carcinoma, and
tumours of unknown histologic type.
Cancer Center from 1993 to 1997. The patients were 59 men, 41
women, 88 whites, seven Mexican Americans, four African
Americans, and one Asian. Their ages ranged from 20 to 80 years,
with a mean age of 63.8 years. The specimens were stored imme-
diately after excision at –80°C until they were subjected to the
telomeric repeat amplification protocol (TRAP) and Western blot-
ting assays. The clinical and epidemiological data were derived
from chart review. Ten-millilitre paired PBLs samples were
obtained from a subset ( = 44) of these patients.

Protein extraction

Fifty to 150 mg of frozen tissue was washed in a lysis buffer three
times and then homogenized in 100 µl of precooled lysis buffer.
After 30 min of incubation on ice, the lysate was centrifuged at
14 000 rpm for 20 min at 4°C, and the resulting supernatant was
rapidly frozen at –80°C. The concentration of protein in each
extract was measured using the bovine serum albumin (BSA)
protein assay kit.

Measurement of telomerase activity

Telomerase activity was measured by the highly sensitive poly-
merase chain reaction (PCR)-based TRAP method with an internal
telomerase assay standard (Piatyszek et al, 1995). The assay was
performed in a 50-µl reaction mixture containing 6 µg of protein
extract, 50 µM dNTP, 0.1 µg of the deoxyoligonucleotide primer TS
(5′-AATCCGTCGAGCAGAGTT-3′), 1 µg of T4 gene 32 protein,
5 ag of internal telomerase assay standard (a 150-bp cDNA frag-
ment), 24 Ci mmol–1 [α-32P]-dCTP, and 2 U of polymerase in a
0.5-ml tube that contained 0.1 µg of the deoxyoligonucleotide CX
(5′-CCCTTACCCTTACCCTTACCCTAA-3′) sequestered at the
bottom by a wax barrier. After 30 min of incubation at room temper-
ature, which allowed telomerase-mediated extension of the TS
primer, the reaction mixture was heated at 90°C for 90 s to
inactivate the telomerase and then at 94°C for 35 s to denature the
DNA. The reaction mixture was then subjected to 30 PCR cycles of
94°C for 30 s, 50°C for 30 s and 72°C for 45 s, and a final extension
step of 72°C for 60 s. The PCR product was subjected to
electrophoresis in a 10% acrylamide gel, which was then auto-
radiographed.

Extracts from tissues not containing telomerase did not extend the
TS primer. A sample was classified as telomerase-positive if it had
an RNAase-sensitive 6-bp DNA ladder. An internal control was
used to identify false negative samples that contained  poly-
merase inhibitors. Some such samples gave false negative results
with the standard 6 µg of protein extract per assay but positive
results when diluted tenfold to 100-fold. Therefore, the telomerase
activities of samples yielding negative results and no internal control
signals were estimated by serial dilution of the sample. An RNAase-
treated sample and lysis buffer were used as a negative control.

Measurement of p53 expression

Aliquots of extract containing 40 µg of protein were used for
measuring p53 levels. The extracted protein was analysed on a
sodium dodecyl sulphate (SDS)-polyacrylamide gel as described
previously (Zhang et al, 1995). After transfer to an Immobilon
membrane, the protein was incubated overnight with antibody
against p53 (Ab-6; Oncogene Science, Inc., Uniondale, NY, USA).
The levels of protein were analysed using the enhanced chemi-
luminescence system (Amersham Corp., Arlington Heights, IL,
USA) according to the manufacturer’s instructions.
British Journal of Cancer (1999) 80(3/4), 453–457
Mutagen sensitivity assay

Genetic instability was measured by the mutagen sensitivity assay,
which has been described in detail previously (Hsu et al, 1989).
Briefly, 1 ml of peripheral blood was added to 9 ml of RPMI-1640
supplemented with 20% fetal bovine serum, 2 mM L-glutamine,
50 U ml–1 penicillin, 100 µg ml–1 streptomycin and 1.3% phyto-
haemagglutinin. After 67 h of incubation, the cultures were treated
with bleomycin (0.03 U ml–1) for 5 h. At 72 h, the cells were
treated with colcemid (0.04 µg ml–1) to arrest the cells in mitosis.
Harvesting, fixation, slide preparation and staining were carried
out in a standard way. Fifty metaphases per sample from the coded
slides were read to count the number of chromatid breaks.
Mutagen sensitivity was expressed as the average number of
breaks per cell. We recorded only frank chromatid breaks or
exchanges, and disregarded chromatid gaps or attenuated regions.

Statistical analysis

Positive telomerase activity was defined as the presence of an
RNAase sensitive 6-bp DNA ladder. p53 protein overexpression
was defined as the presence of a band under the exposure condi-
tion we used. Mutagen sensitivity was expressed as the number of
induced chromatid breaks per cell from scoring 50 metaphases.
Kendall’s Tau-b correlation coefficient was used to characterize
© Cancer Research Campaign 1999
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Figure 1 (A) Measurement of telomerase activity. Lane A, a positive control with 6-bp ladder signals; lane B, a negative control with lysis buffer; lanes C–E,
serial dilution (6 µg, 0.6 µg, 0.06 µg) of extract from one subject (all dilutions are positive); lane F, negative signal with the weak internal control signal
suggesting the presents of polymerase inhibitor; lanes G–H, tenfold and 100-fold dilutions of sample in lane F; lane I, a case with positive telomerase activity;
lane J, sample in lane I pretreated with RNAase, which abolished telomerase activity and provided a control for the specificity of the assay; lane K, sample with
one band that may reflect telomerase activity or a primer dimer; lane L, sample in lane K treated with RNAase, which did not abolish the band indicating that the
sample was telomerase negative. (B) Various levels of telomerase activity in tumour tissues and adjacent normal tissues. Tumour samples from cases A, B, C,
D, E, F and G and normal tissue of case B showed positive 6-bp ladder signals. The normal samples of cases A, C, D and E were negative. (C) Various levels
of p53 protein expression in tumour tissues and adjacent normal tissues. Tumour samples from cases I and J showed p53 overexpression. Cases H and K
showed no detectable p53 protein expression. Normal tissue from cases H, I, J and K showed no detectable p53 protein expression

r1 r1 r1 r1 r1 

r, 
the correlation between p53 overexpression and telomerase
activity. Student’s -test was used to measure the association
between mutagen sensitivity and p53 overexpression or telom-
erase activity. The odds ratio (OR) (Woolf, 1955) was also used as
a measure of the strength of association between telomerase
activity and p53 overexpression. Logistic regression was
conducted to estimate risks, which were adjusted for multiple
factors by using STATA statistical software and SAS.



Characteristics of the lung cancer patients are given in Table 1.
Cigarette smoking information was available for 86 patients. Ten
© Cancer Research Campaign 1999
patients (11.6%) had never smoked. Family cancer history infor-
mation was available for 89 patients, of whom 52 (58.4%) had
family history of cancer (23 with lung cancer). Tumour stage
information was missing for six patients.

p53 protein overexpression was detected in 63 of 100 lung
tumour samples (63%), but was undetectable in 89 of the 91 adja-
cent normal tissues (98%). p53 overexpression was detected in
both early- and late-stage tumours: 24 of 39 stage I tumours
(61.5%), seven of 12 stage II tumours (58.3%), 18 of 33 stage II
tumours (54.6%), and ten of ten stage IV tumours (100%) had
detectable p53 protein (Table 2).

By the highly sensitive TRAP assay with an internal control, 80
of 100 lung tumour samples showed telomerase activity (Table 1)
British Journal of Cancer (1999) 80(3/4), 453–457
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Table 2 Molecular markers by characteristics of the lung cancer patients

Tumour
p53 Telomerase activity

stages Positive Negative P-value Positive Negative P-value

1 24 (60) 16 (40) 29 (74.4) 10 (25.6)
2 7 (58.3) 5 (41.7) 12 (100.0) 0 (0.0)
3 18 (54.6) 15 (45.4) 25 (75.8) 8 (24.2)
4 10 (100.0) 0 (0.0) 0.070 9 (90.0) 1 (10.0) 0.193

Table 3 Level of p53 expression, telomerase activity and constitutional genetic instability

Bleomycin-induced mutagen sensitivity

n Mean s.d. P
breaks/cell

p53 overexpression
Positive 25 0.92 0.49 0.046
Negative 19 0.65 0.34

Telomerase activity
Positive 36 0.83 0.46 0.391
Negative 8 0.68 0.41
to varying degrees. Of the 91 normal specimens, only seven
(7.7%) were positive. We also observed that the level of telom-
erase activity varied dramatically in different individuals (Figure 1
A,B). There were no significant differences in telomerase activity
in terms of patients’ tumour stage (Table 2).

p53 overexpression was detected in 56 of 80 lung tumour tissue
samples (70%) with positive telomerase activity, but only seven
out of 20 without telomerase activity (35%) ( < 0.01). In
Kendall’s correlation test, p53 overexpression was significantly
correlated with telomerase activity ( < 0.005) with a Kendall’s
Tau-b of 0.290. By univariate analysis, p53 overexpression yielded
an OR of 4.3 (95% confidence interval, 1.5–12.2) for telomerase
activity. After adjustment by age, sex, ethnicity, smoking status
and family history of lung cancer, the OR by p53 overexpression
for telomerase activity was 6.7 (95% confidence interval,
1.7–27.7). Figure 1C shows the different levels of p53 protein
expression in various samples.

In a subset of the patients, we also measured mutagen sensitivity
based on quantification of bleomycin-induced breaks in short-term
cultured lymphocytes as a marker of constitutional genetic insta-
bility. We found that p53 protein overexpression in tumour tissues
was associated with significantly more breaks per cell in lympho-
cytes (Table 3). The mean breaks per cell was 0.92 for patients with
overexpressed p53 in lung tumour tissues, compared with 0.65 for
patients with no detectable p53 expression in lung tumour tissues
( < 0.05). The mean breaks per cell for patients with positive
telomerase activity in lung tumour tissues was higher than that of
patients with undetectable telomerase activity in lung tumour tissues
(0.83 vs 0.68). However, the difference was not statistically signifi-
cant.



In the study reported here, p53 overexpression was commonly
elevated in the lung tumour tissues studied, but was rarely
detectable in adjacent normal tissues. p53 protein overexpression
was present both in early- and late-stage tumours, which is
British Journal of Cancer (1999) 80(3/4), 453–457
consistent with the report that p53 protein accumulation is an early
event in carcinogenesis and persists during metastatic progression
(Fontanini et al, 1994).

Similarly, we found that telomerase activity was detected in the
majority (80%) of primary lung tumour tissues but in only 7% of
adjacent non-cancerous tissues. Telomerase activity was measured
by a PCR-based TRAP assay with an internal control, which
increased the assay’s sensitivity and specificity significantly.
Telomerase activity in normal tissue could be due to the presence of a
few telomerase-positive tumour cells. That the levels of telomerase
activity varied dramatically in different tumour tissues may reflect
the ratio of mortal to immortal cells in each tumour. Shay’s group
have suggested that telomerase activity may be a lung cancer malig-
nancy indicator (Hiyama et al, 1995). However, we did not find a
significant association between telomerase activity and tumour stage.

We found that there was a significant association between telom-
erase activity and aberrant p53 protein overexpression. Kruk and
Bohr (1996) suggested that telomerase expression was compro-
mised in cells expressing mutated p53. Lung carcinoma cells and
other types of tumour cells expressing wild-type p53 have longer
telomeres than cells lacking  or with mutated  mutations
(Kruk and Bohr, 1996). Hiyama et al (1995) also found a signifi-
cant association between alterations in telomeric repeat length and
loss of  heterozygosity in lung cancer. Wynford-Thomas and
colleagues (Wynford-Thomas et al, 1995) further suggested that
wild-type p53 may form part of a system that detects either the loss
of telomeres directly or the structural consequences of telomere
erosion (or both), and subsequently signals growth arrest in G

1.
Only cells that lack p53 activity (e.g. by mutation) will be able to
pass this barrier. Subsequently,  mutant clones will acquire a
wide range of DNA lesions as a consequence of having lost the
‘guardian of the genome’ checkpoint function of p53, and of having
the destabilizing effect of further telomere erosion. Ultimately,
those cells will also need to re-express telomerase.

Bleomycin sensitivity has been used as a measure of constitu-
tional genetic instability and one of the cancer susceptibility markers
(Hsu et al, 1989; Spitz et al, 1989, 1994; Strom et al, 1995; Wu et al,
© Cancer Research Campaign 1999
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1995 1995 1996). We found that p53 aberrant expression was
more common in bleomycin-sensitive individuals than in non-sensi-
tive individuals, which was consistent with the findings of Gallo et
al 1995). In normal cells, p53 levels are extremely low owing to the
very short half-life of the protein. Accumulation of p53 protein
within neoplastic cells correlates well with the presence of mis-
sense mutations, which is a reflection of the increased stability of the
mutated p53 protein compared with its wild-type counterpart (Iggo
et al, 1990). Furthermore, p53 is a target of benzo[]pyrene, which is
a major constituent of carcinogens in cigarette smoking (Denissenko
et al, 1996). A significant association between p53 protein over-
expression and tobacco smoking has also been observed (Dosaka-
Akita et al, 1994). Therefore, individuals with increased
susceptibility to carcinogens after exposure to mutagens such as to
tobacco smoke or ionizing radiation are at higher risk for lung
cancer, in which one of the most common genetic events is 
aberrations. Such differences in genetic susceptibility and in 
abnormalities in carcinogen-exposed epithelia might have a major
impact on assessment of lung cancer risk.

We also found the mean breaks per cell for patients with positive
telomerase activity in lung tumour tissues was higher than that of
patients with undetectable telomerase activity in lung tumour
tissues (0.83 vs 0.68), although the difference was not statistically
significant. We speculated that individuals with constitutional
genetic instability may be more prone to mutagen-induced chro-
mosome breakage, which may result in loss of telomeres. The loss
of telomeres may further drive genomic instability, which results
in chromosome abnormalities and unchecked cell growth.

In summary, our data suggest that telomerase activity is a good
tumour marker. In individuals with genetic susceptibility to lung
cancer as measured by our mutagen sensitivity assay, p53 over-
expression was increased. p53 overexpression, but not telomerase
activity, was correlated with bleomycin sensitivity. Excess p53
protein expression was associated with telomerase activation.
Therefore, in individuals genetically susceptible to carcinogen
exposure, p53 protein overexpression may be common. p53 status
may be related to telomerase expression. Telomerase activity may be
a later event than p53 overexpression. However, there are some
limitations in this study, accumulation of p53 protein within
neoplastic cells correlates well with the presence of mis-sense muta-
tions, but we could not detect total deletion, frameshift or non-sense
mutations of the  gene that do not result in p53 accumulation
(Iggo et al, 1990). Data for telomere length were not available for
these tissues. Further study with more extensive characterization of
p53 mutations is warranted to confirm and extend our findings.
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