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Summary Glial cell line-derived neurotrophic factor (GDNF) plays a key role in the control of vertebrate neuron survival and differentiation in
both the central and peripheral nervous systems. GDNF preferentially binds to GFRα-1 which then interacts with the receptor tyrosine kinase
RET. We investigated a panel of 36 independent cases of mainly advanced sporadic brain tumours for the presence of mutations in GDNF
and GFRα-1. No mutations were found in the coding region of GDNF. We identified six previously described GFRα-1 polymorphisms, two of
which lead to an amino acid change. In 15 of 36 brain tumours, all polymorphic variants appeared to be homozygous. Of these 15 tumours,
one also had a rare, apparently homozygous, sequence variant at codon 361. Because of the rarity of the combination of homozygous
sequence variants, analysis for hemizygous deletion was pursued in the 15 samples and loss of heterozygosity was found in 11 tumours. Our
data suggest that intragenic point mutations of GDNF or GFRα-1 are not a common aetiologic event in brain tumours. However, either
deletion of GFRα-1 and/or nearby genes may contribute to the pathogenesis of these tumours.
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Several receptor molecules, and their growth factor ligands, are
expressed in the embryonic brain and are thought to play central
roles in the development and differentiation of the nervous system
(Weiner, 1995). In addition, altered function, or loss of function, of
either receptor or ligand may lead to the development of malignan-
cies of the nervous system (Weiner, 1995). Oncogenes (e.g. the
gene encoding the epidermal growth factor receptor, ) as
well as tumour suppressor genes (e.g. , ) are known to be
involved in the development of brain tumours (Bogler et al, 1995;
von Deimling et al, 1995; Wang et al, 1997; Duerr et al, 1998;
Peters et al, 1998). Members of one broad class of growth factor
receptors, the receptor tyrosine kinases (RTKs), have been shown
to be involved in proliferation and differentiation during central
nervous system (CNS) development (Weiner, 1995). The 
proto-oncogene encodes a RTK expressed in neural and neuro-
endocrine tissues (Takahashi and Cooper, 1987). To date, three
related ligands for RET have been identified: glial cell line derived
neurotrophic factor (GDNF), neurturin (NTN) and persephin
(Durbec et al, 1996; Jing et al, 1996; Kotzbauer et al, 1996;
Treanor et al, 1996; Trupp et al, 1996; Vega et al, 1996; Sanicola et
al, 1997; Milbrandt et al, 1998). The receptor complex for GDNF,
NTN and persephin comprises one of at least four membrane-
bound adaptor molecules and RET (Jing et al, 1997; Thompson et
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al, 1998). GDNF preferentially binds GFRα-1 (DNF amily
eceptor alpha one, also known as GDNFR-α, RETL1 and TrnR1)
with high affinity before this complex can interact with RET to
effect downstream signalling (Jing et al, 1996; Treanor et al, 1996;
Trupp et al, 1996; Vega et al, 1996; Davies et al, 1997; Sanicola
et al, 1997). Similarly, NTN binds a membrane-bound adaptor
GFRα-2 (related to GFRα-1 and also known as GDNFR-β,
NTNR-α, RETL2 and TrnR2) with subsequent binding of RET
(Baloh et al, 1997; Buj-Bello et al, 1997; Klein et al, 1997;
Sanicola et al, 1997). GDNF can bind GFRα-2 as well, but with
lower affinity, just as NTN can also bind GFRα-1 (Jing et al, 1997;
Sanicola et al, 1997). A third co-receptor belonging to the same
family, GFRα-3, has been identified, although formal binding
studies have yet to be reported (Jing et al, 1997; Naveilhan et al,
1998; Worby et al, 1998). Recently, a fourth co-receptor, GFRα-4,
was isolated that seems to be more closely related to GFRα-1 and
GFRα-2 than to GFRα-3 (Thompson et al, 1998). Together with
RET, GFRα-4 forms a functional receptor complex for persephin
(Enokido et al, 1998).

Mice lacking RET or GDNF have been shown to have defects in
the enteric nervous system and components of the peripheral
nervous system (Schuchardt et al, 1994; Moore et al, 1996; Pichel et
al, 1996; Sanchez et al, 1996). GDNF, like NTN, was initially
isolated due to its ability to sustain the survival of embryonic
dopaminergic neurons in vitro (Lin et al, 1993). In vivo studies
subsequently demonstrated that GDNF was a target-derived trophic
factor for dopaminergic neurons (Stromberg et al, 1993; Hudson et
al, 1995; Tomac et al, 1995). In several animal models of Parkinson’s
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Table 1 WHO histologic classification of the 36 brain tumours

WHO grade n

Glioblastoma multiforme IV 18
Glioblastoma multiforme (recurrence) IV 3
Oligoastrocytoma anaplastic III 1
Astrocytoma anaplastic (recurrence) III 1
Ependymoma 1
Ependymoma anaplastic (recurrence) III 1
Malignant peripheral nerve sheath tumour (MPNST) 1
Meningioma atypical 2
Meningioma anaplastic III 1
Medulloblastoma IV 2
Medulloblastoma (recurrence) IV 2
Haemangiopericytoma 1
Primitive neuroectodermal tumour (PNET, recurrence) IV 2
disease, a disease in which dopaminergic neurons degenerate, treat-
ment with GDNF has a protective effect (Lindsay, 1995; Moore et al,
1996). GDNF is, therefore, thought to play a key role in the control
of vertebrate neuron survival and differentiation in both the central
and peripheral nervous systems (Pichel et al, 1996).

Taking these data together,  and α appear to repre-
sent good targets for mutations which may play a pathogenetic role
in the development of brain tumours. Additionally, the localization
of α to 10q26 (Gorodinsky et al, 1997; Eng et al, 1998), a
region known to be somatically deleted at high frequency in
malignant human brain tumours (Fults and Pedone, 1993), further
supports its candidacy as a brain tumour gene.



Patient samples

A panel of 36 sporadic brain tumours of various histologies and
WHO grades (Table 1), from 36 unrelated German patients, was
analysed. Tumour DNA was extracted from fresh frozen tissue and
corresponding germline DNA from peripheral blood leucocytes,
using standard protocols (Sambrook et al, 1989).

Mutation analyses

Polymerase chain reaction (PCR) conditions and primers to
amplify  have been described (Dahia et al, 1997; Marsh
et al, 1997). PCR of α was carried out using 1 µM each of
forward and reverse primer pairs (see below) in 1 × PCR buffer
(Perkin-Elmer Corp.), 200 µM dNTP, 2.5 U  polymerase
(Perkin-Elmer Corp.), TaqStartTM Antibodies (Clontech, San
Francisco, CA, USA), and 100–200 ng of DNA template in a final
volume of 50 µl. Reactions were subjected to 40 cycles of 94°C
for 1 min, 58–62°C for 1 min and 72°C for 1 min followed by 10
min at 72°C. The PCR amplicons were then fractionated on 1%
low melting point agarose (Bio-Rad Lab., Hercules, CA, USA)
and visualized with UV transillumination after ethidium bromide
staining. Before sequencing, these products were column purified
(Wizard PCR Prep, Promega, Madison, WI, USA). Semi-auto-
mated sequencing was performed using either the forward or
reverse primer and the ABI dye terminator cycle sequencing ready
reaction kit as previously described (Liaw et al, 1997).

GFRa-1 primers

Primers used to amplify α for sequencing are:

Exon 1: RA-1F (5′-GTCGGACCTGAACCCCTAAAA-3′) (f)
RA-1R (5′-CCAAAAAGAAACTTCTTCCTTCC-3′)(r)

Exon 2: RAF22 (5′-GCAGACTTGCTCCTGTCGGC-3′) (f)
RAF7 (5′-CGCACGCTAAGGCAGTGCGT-3′) (f)
HRAR2N (5′-GGCTCTGGTACATGCTCCAGT-3′) (r)
HRAR2 (5′-CTGGTACATGCTCCAGTA-3′) (r)

Exon 3: RA-3F (5′-CAGCAAAAACCTGCTTGAAATA-3′) (f)
RAI-3F (5′-CAGCAAAAACCTGCTTGAAA-3′) (f)
RA-3R (5′-TGCCTCTTCATTATCATCATCCT-3′) (r)
RAI-3R (5′-TTCAAGCACACAAAGGCATC-3′) (r)

Exon 4: RAI-4F (5′-TGTGACCATGCCTGTCTTTC-3′) (f)
RAI-4R (5′-TCATTAATCACCAGCTGCCA-3′) (r)

Exon 5: RAI-5F (5′-CCCCACCCTTTTTCCTATTG-3′) (f)
RAI-5R (5′-CAGGCATGTCCTCAAGGATT-3′) (r)
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Exon 6: GRI-1128-1F (5′-CTCAAGATAAATTGCCGA-
GAAAAT-3′) (f)
RAI-6F (5′-GGCCATGGAAAAGTATCATCA-3′) (f)
GRI-1261-1R (5′-TACAGGCACAAGGTACAA-
GAGGTA-3′) (r)
RAI-6R (5′-CTGGAGCTCGGAGAAGAAAA-3′) (r)

Exon 7: RAI-7F (5′-CGTTTGCTGCTTGACTTTGA-3′) (f)
RAI-7R (5′-GGAATCTGGACGCAGTTCTC-3′) (r)

Exon 8: RAI-8F (5′-TTTTTCTTGTCCCTCTCCAG-3′) (f)
RAR13 (5′-TCTATAAATGCACGAAGCCT-3′) (r)

Exon 9: GRI-1549-IF (5′-GCAGTGATGATAATGAAAC-
CATTC-3′) (f)
GRA20R (5′-TTTTTCATGTCCATATTG-
TATTTTT-3′) (r)

Deletion analysis

DNA samples derived from brain tumours which were apparently
homozygous for all α polymorphisms underwent further
analysis to determine if this represented hemizygous whole gene
deletion. Corresponding germline DNA was examined for the
presence of heterozygosity at the intragenic polymorphic sites that
were apparently homozygous either by direct sequencing or differ-
ential restriction enzyme digestion. If the germline DNA was
heterozygous for any one sequence variant, that tumour was
defined as having loss of heterozygosity (LOH) of that marker,
representing hemizygous gene deletion. If all intragenic polymor-
phisms were also homozygously present in the germline DNA, the
result was not informative. In those cases, we performed a semi-
quantitative duplex PCR using the tumour-derived DNA and
primers for exon 2 of α (RAF7, HRAR2) and those for the
housekeeping gene beta-glucuronidase (GUSB) (Ivanchuk et al,
1997). The relative amount of the α fragments versus that
of  were determined by visual inspection and densitometric
scanning using ImageQuant software (Molecular Dynamics,
Sunnyvale, CA, USA).



We analysed  and α for DNA sequence variants in a
panel of 36 mainly high-grade human brain tumours by direct
sequencing. No mutations were found in the coding region of
. Analysing α, we detected six distinct single
nucleotide polymorphisms (Table 2) that have been previously
© Cancer Research Campaign 1999
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Table 2 GFRα-1 germline frequencies of sequence variants in patients with
brain tumours, HSCR disease and control DNA (Myers et al., 1999)

Amino acid 
Nucleotide

Frequency

change Brain tumours HSCR Control

N/A –106 G 0.93 0.96 ND
A 0.07 0.04 ND

N/A –78 T 0.67 0.69 0.68
C 0.33 0.31 0.32

Y85N 253 T 0.96 0.98 0.96
A 0.04 0.02 0.04

N179N 537 T 0.54 0.60 0.59
C 0.46 0.40 0.41

N/A IVS5+21 G 0.85 0.92 0.82
A 0.15 0.08 0.18

T361A 1081 A 0.91 0.93 0.88
G 0.09 0.07 0.12

N/A IVS8+28 T 0.97 ND ND
A 0.03 ND ND

N/A = not applicable, ND = not done.
found in the normal population (Myers et al, 1998). Two of these
were in the 5′ untranslated region 106 bp (–106G>A) and 78 bp
(–78T>C) upstream of the translational start site. One silent base-
pair substitution at codon 179 (c.537T>C) and a non-coding
sequence polymorphism within intron 5 (IVS5+21G>A) were also
observed. The remaining two polymorphisms were in exon 2 and
exon 7 and resulted in amino acid substitutions (Y85N, 253T>A;
T361A, 1081A>G). For codon 85, both the amino acids tyrosine
and asparagine are neutral and polar. However, tyrosine is an
aromatic, polar residue while the polymorphic asparagine is small
and non-aromatic. Similarly, the substitution of threonine (neutral
and polar) with alanine (neutral and hydrophobic) at codon 361
could also change the structure of GFRα-1. In those cases
harbouring rare and/or apparently homozygous polymorphisms
that lead to amino acid substitutions, it is conceivable that the
stearic structure, and presumably, function, of GFRα-1 could be
subtly altered such that the other co-receptors of RET (e.g. GFRα-
2 or GFRα-3) may bind preferentially to GDNF and RET, thus
leading to altered activation and/or specificity. We, therefore,
examined the frequency of each of the α single nucleotide
polymorphisms in this series of patients with brain tumours and
found them to be no different from those in normal controls or in
non-cancer patients (Myers et al, 1999).

In addition to the six previously described single nucleotide
polymorphisms, we also detected a homozygous non-coding
sequence variant within intron 8, 28 basepairs downstream of the
exon 8–intron 8 boundary (IVS8+28T>A) in the brain tumours of
two unrelated patients (one glioblastoma multiforme, one
anaplastic oligoastrocytoma). Interestingly, these two samples,
together with 13 others, appeared to be homozygous at all six poly-
morphic sites. Further, the glioblastoma multiforme with the IVS8
sequence variant was apparently homozygous for the rare poly-
morphism at codon 361 (Table 2). Subsequent analyses of these 15
samples revealed somatic hemizygous deletion of α in 11 of
these 15 tumours (73% of 15; 31% of total), including both
tumours with the intronic sequence variant.

In the present study, we did not find any obvious disease-associ-
ated somatic  or α intragenic mutations in DNA from
© Cancer Research Campaign 1999
human brain tumours from 36 individuals. We found seven single
nucleotide polymorphisms within the genomic sequence of α
 in this series, six of which have been previously noted (Myers et
al, 1999). Of interest, we identified a novel intronic sequence
variant in IVS8 in two patients. Our results indicate that intragenic
mutations of  and α are not common aetiologic events
in brain tumorigenesis. However, we did find that 31% of the 36
brain tumours had hemizygous α deletion. This datum may
support either of two postulates. First, it might well be possible that
hemizygous deletion of α is aetiologic in the pathogenesis of
brain tumours. Second, the deletion of α might be merely
coincidental, an innocent bystander when large segments of chro-
mosome 10q become deleted (Dalrymple et al, 1995; Simon et al,
1995; Albarosa et al, 1996). Putative tumour suppressor genes like
 or  have been mapped in this region (Li et al, 1997;
Mollenhauer et al, 1997; Steck et al, 1997; Duerr et al, 1999).

While it is obvious that ‘high penetrance’ mutations of 
and α are not associated with brain tumorigenesis, it is
becoming more and more evident that development of a cancer can
result from an interplay of either a few ‘high penetrance’ muta-
tions in key genes or from several, or many, sequence variants of
unknown significance (Storey et al, 1998). In this respect,
variant–variant interactions and/or variant–environment inter-
actions may all be involved in predisposing to many common
tumours. It is, therefore, intriguing that a few of these sequence
variants in α involve amino acids (Y85N, T361A) that are
highly conserved among species (rat, chicken and human)
[Genbank accession #U90541, #U59486, #U97144]. Further
informatics-based and functional studies need to be performed to
investigate whether these ‘polymorphic’ amino acid changes and
seemingly neutral sequence variants have any impact on the
function of this receptor.
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