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Summary Vitamin A and its biologically active derivatives, retinal and retinoic acid (RA), together with a large repertoire of synthetic
analogues are collectively referred to as retinoids. Naturally occurring retinoids regulate the growth and differentiation of a wide variety of cell
types and play a crucial role in the physiology of vision and as morphogenic agents during embryonic development. Retinoids and their
analogues have been evaluated as chemoprevention agents, and also in the management of acute promyelocytic leukaemia. Retinoids exert
most of their effects by binding to specific receptors and modulating gene expression. The development of new active retinoids and the
identification of two distinct families of retinoid receptors has led to an increased understanding of the cellular effects of activation of these
receptors. In this article we review the use of retinoids in chemoprevention strategies, discuss the cellular consequences of activated retinoid
receptors, and speculate on how our increasing understanding of retinoid-induced signalling pathways may contribute to future therapeutic
strategies in the management of malignant disease.
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Chemoprevention

Many cancers develop as a result of exposure to carcinogens and
cancer-promoting agents in a multistep process including both
initiation and promotion. Attempts to delay, reverse or block
cancer development by intervening in this process form the basis
of cancer chemoprevention strategies. An increased susceptibility
to chemical carcinogens and a higher incidence of cancer have
been observed in experimental animals with vitamin A deficiency
(Moon et al, 1994). This, and the observation that individuals with
a lower dietary intake of vitamin A are at a higher risk of devel-
oping cancer (Hong and Itri, 1994), gave rise to the notion that
physiological levels of retinoids may, in some way, protect the
individual against the development of premalignant and malignant
disease. Furthermore, the efficacy of pharmacological doses of
retinoids as chemopreventive agents has been demonstrated in
experimental models of carcinogenesis for numerous animal
tumours (reviewed in Lotan, 1996).

Preclinical data
Retinoids can inhibit the transformation of cultured mouse embryo
cells in vitro by either 3-methylcholanthrene (Bertram, 1983) or
γ-rays. Retinoids can also inhibit the ability of malignant cells to
form colonies in semisolid medium, an anchorage-independent
property that is a characteristic of transformed cells (Lotan, 1995).
Moreover, all- retinoic acid (ATRA) can inhibit immortaliza-
tion of human epidermal keratinocytes during or after transfection
with HPV16 (Creek et al, 1994). In addition, the synthetic retinoid
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-(4-hydroxyphenyl)retinamide (4HPR) can inhibit prolactin-
induced DNA synthesis and end-bud proliferation in mouse
mammary gland in whole organ culture (Moon et al, 1994), and
retinoids can also modulate normal rat mammary epithelial cell
proliferation, morphogenesis and functional differentiation (Lee
et al, 1995).

The use of retinoids to suppress tumour development has been
evaluated in several animal models of carcinogenesis including
models of skin, breast, oral cavity, lung, hepatic, gastrointestinal,
prostatic and bladder cancers (reviewed in Lotan, 1996). Many of
these studies have shown that retinoids possess antipromotion
activities. However, long-term retinoid treatment was required to
suppress carcinogenesis since the effects of the retinoids were
reversible when stopped. Furthermore, some retinoids were found
to be active in certain animal models of carcinogenesis and not in
others, that is retinoids exhibit some degree of tissue selectivity.
Moreover, certain retinoids may be active inhibitors of carcino-
genesis in certain tissues but can act as enhancers of carcino-
genesis in the same tissue in another strain of mice, or in another
carcinogenesis model. For example, dietary addition of ATRA had
no effect on tumour initiation in the two-stage mouse skin carcino-
genesis model, but acted as an antipromoter by inhibiting progres-
sion of papilloma to carcinoma (De Luca et al, 1994). However,
retinoids were either ineffective in preventing, or enhanced, papil-
loma formation when an alternate mouse skin carcinogenesis
model was used (De Luca et al, 1994). Indeed, vitamin A defi-
ciency was more effective than excess retinoid in inhibiting skin
carcinogenesis using an alternative strain of mice (Lotan, 1996).
Similarly, both suppression and enhancement by retinoids have
been reported in different models of liver carcinogenesis (Moon
et al, 1994). Indeed, 4HPR suppressed carcinogenesis in two
strains of mice and enhanced carcinogenesis in two other strains
(Moon et al, 1994). Inconsistent results were also obtained in
models of lung, oesophageal and pancreatic carcinogenesis (Moon
et al, 1994). Studies using rat mammary models have confirmed
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the importance of tissue distribution and metabolism of retinoids.
Retinoids that accumulated in the mammary gland and the
surrounding fat pad were more effective inhibitors of carcino-
genesis than those that failed to concentrate in the target tissue.
Again, retinoids were ineffective as inhibitors of initiation in these
rat mammary models but, interestingly, administration of retinoid
in early phases of carcinogenesis resulted in sustained inhibition of
carcinogenesis even after stopping retinoid treatment, whereas a
delay in retinoid administration until later in the carcinogenic
process required continuous retinoid administration to maintain an
inhibition of carcinogenesis. In contrast, pre-treatment of rats with
retinoids for 2 months prior to initiation resulted in an increased
incidence of carcinomas unless retinoid administration was
continued through to the promotion step (reviewed in Moon et al,
1994; Lotan, 1996). Consequently, understanding the timing of
administration in addition to tissue distribution and metabolism is
crucial if retinoids are to be effectively used as chemopreventive
agents.

Clinical data
Many clinical trials of retinoids as chemoprevention agents are in
progress or have been completed. Most of these trials focus on
individuals at an increased risk of developing cancer, such as
patients with pre-malignant lesions or patients who have been
successfully treated for an early-stage carcinoma and have a high
risk of developing a second primary cancer. The use of retinoids in
patients with cutaneous actinic keratoses results in a significant
decrease in the incidence of squamous cell carcinomas of the skin
(Moon et al, 1997), and this is also observed in renal transplant
patients with this pre-malignant condition (Bavinck et al, 1995;
Rook et al, 1995). Similarly, topical ATRA can lead to a clinical
and histological improvement in patients with the dysplastic
nervous syndrome (Edwards and Jaffe, 1990; Halpern et al, 1994).
Oral pre-malignant lesions such as leukoplakia or erythroplakia
are frequently extensive or multiple and consequently are not
amenable to surgery. Therefore, patients with these lesions are
ideal candidates for chemoprevention studies. In an original
placebo-controlled randomized study, 13- retinoic acid was
evaluated (Hong et al, 1986). Although there was a significant
clinical response in the treatment arm (67%) compared to the
placebo arm (10%), the treatment was unacceptably toxic and half
of the responding patients had relapsed within 3 months of stop-
ping the retinoid (Hong et al, 1986). Subsequently, patients
received this dose for only a 3-month induction period, and were
then randomized to either low-dose retinoid or β-carotene for
9 months (Lippman et al, 1993, 1995). This study demonstrated
the feasibility of using low-dose 13- retinoid acid in main-
taining initial responses, whilst underlining the inability of
β-carotene to do so. Furthermore, topical 4HPR also shows
promising activity in the management of pre-malignant oral
lesions (Chiesa et al, 1993; Costa et al, 1994). Cancer of the
cervix, which develops in a multistep fashion through progressive
intra-epithelial neoplasia (CINI–III) is another logical candidate
for a chemoprevention approach. Topical application of ATRA-
induced regression in 43% of patients with moderate dysplasia
(CIN II) in comparison to a spontaneous regression in 27% of
patients treated with placebo, but had no effect on more severe
dysplasia (Meyskens et al, 1994). Moreover, -(4-ethoxy-
carbophenyl) retinamide decreased the incidence and increased
survival in a population at high risk of oesophageal cancer (Han,
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1993), but retinoids have had consistently no effect on reversal of
bronchial metaplasia (Lee et al, 1994).

An unexpected observation from the adjuvant studies of 13-
retinoic acid in early stage head and neck cancers was the reduc-
tion in incidence of second primary tumours, although there was
no reduction in the rate of recurrence or metastases from the
original primary (Hong et al, 1990; Benner et al, 1994). In
contrast, etretinate was ineffective in preventing second primary
tumours of the oral cavity and oropharynx (Bolla et al, 1994).
Similarly, retinyl palmitate can reduce the incidence of second
primary tumours in comparison to observation after resection
of stage I non-small cell lung cancer (Pastorino et al, 1993).
Moreover, initial studies evaluating 13- retinoic acid in the
prevention of recurrent early-stage bladder cancer had to be termi-
nated due to toxicity and a lack of positive results (Prout and
Barton, 1992), but etretinate in contrast can increase the time to
recurrence in patients with superficial papillary bladder cancers
with a reduction in the number of annual transurethral resections
(Studer et al, 1995). Based on the preclinical data, a randomized
study comparing 4HPR with observation alone has been initiated
in women with node-negative breast cancer, and accrual to this
study has been completed (Costa et al, 1995). The end-point is the
incidence of contralateral primary carcinoma, and clearly if 4HPR
can reduce this risk (estimated at 0.8% per year within 10 years of
primary treatment), then it would be appropriate to evaluate this
agent as a chemoprevention strategy in women at high risk of
developing breast cancer on the basis of family history.

However, the most prominent example of the role of retinoids as
differentiating agents in current oncology practice is the remark-
able activity of all- retinoic acid in patients with acute
promyelocytic leukaemia (APL). Numerous phase II studies have
confirmed that ATRA induces complete remission in the vast
majority of patients, with rapid resolution of the characteristic,
life-threatening coagulopathy (Huang et al, 1988; Castaigne et al,
1990; Chen et al, 1991; Warrell et al, 1991; Fenaux et al, 1992;
Ohno et al, 1993; Frankel et al, 1994; Kanamaru et al, 1995). The
duration of complete remission with ATRA alone is usually brief
and post-remission chemotherapy is required to diminish the like-
lihood of relapse. A randomized study has confirmed that ATRA
as induction or maintenance treatment improves disease-free and
overall survival as compared with chemotherapy alone, and should
be included in the treatment of APL (Tallman et al, 1997). This
therapeutic approach has also contributed to our understanding of
retinoid-induced signalling pathways and in particular the role of
the retinoic acid receptors.

The retinoid receptors

Retinoids exert most of their effects by binding to specific recep-
tors and modulating gene expression. The nuclear retinoid recep-
tors are members of the steroid/thyroid hormone superfamily of
receptors (Evans, 1988) with which they share common structural
and functional properties. The diversity of retinoid-induced
signalling pathways is mediated by at least six retinoid receptors
which fall into two subfamilies: retinoic acid receptors (RARs),
α, β and γ, and the retinoid X receptors (RXRs), α, β and γ
(Chambon, 1995). In common with other members of the steroid
hormone receptor superfamily, these two subfamilies of receptors
contain a DNA-binding domain and a ligand-binding domain
united by a short hinge region that may also serve as a nuclear
© Cancer Research Campaign 1999
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translocation signal (reviewed in Giguere, 1994). The DNA-
binding domain contains two ‘zinc fingers’ involved in recognition
of specific DNA sequences and in activation of target genes
(Evans, 1988; Freedman, 1992). The RARs bind ATRA with high
affinity (Giguere et al, 1987; Petkovich et al, 1987), whereas the
stereoisomer 9- retinoic acid is a bifunctional ligand which can
bind to and activate both RARs and RXRs (Mangelsdorf et al,
1992; Allenby et al, 1993). Despite these similarities, the RXRs
belong to a subgroup of nuclear receptors distinct from the RARs
(Laudet et al, 1992) suggesting that these two groups of retinoid
receptors have distinct roles in retinoid signalling.

In keeping with the models by which steroid hormone receptors
bind DNA as dimers, the hormone response elements of the target
genes for retinoid receptors are direct repeats separated by 1 or 5
nucleotides. The RARs and RXRs bind the half-site consensus
sequence PuGGTCA, as can several of the other ligand-activated
nuclear receptors, and consequently enabling cross-talk among the
gene networks controlled by various ligands. Both negative and
positive effects on transcription can occur in the absence of ligand
and these bimodal transcriptional properties of retinoid receptors
are mediated, in part, by the ability of these receptors to associate
with various co-activators and co-repressors such as SMRT and N-
CoR (Chen and Evans, 1995; Kurokawa et al, 1995; Horwitz et al,
1996). Transcriptional regulation by receptors would therefore
seem to be controlled by selective recruitment of co-activators and
co-repressors in response to hormone, and in turn, control of
activity of a target promoter. It may be that the role of ligand
binding is to cause a conformational change in the receptor, and as
a result of this a co-repressor protein is dissociated from the
receptor and a co-activator binds to the receptor thereby initiating
transcription (reviewed in Perlmann and Evans, 1997). However,
although in vitro-binding experiments suggest that DNA-binding
is not usually ligand-dependent, in vivo footprinting suggest that
RAR–RXR heterodimers bind to a specific RARE in the RARβ
gene promoter in a ligand-dependent manner (Dey et al, 1994;
Chen et al, 1996). Nevertheless it is not certain that ligand-binding
is necessary for steroid hormone receptors to bind DNA (Perlmann
and Evans, 1997).

The complexity of retinoid signalling mechanisms is increased
by the diversity of the dimer complexes that can occur. Both RARs
and RXRs can bind response elements as homodimers, albeit at
high protein concentrations (Mangelsdorf et al, 1991; Yang et al,
1991; Mader et al, 1993), although heterodimerization of RARs
and RXRs enables high affinity binding of RARs to response
elements (Kliewer et al, 1992; Zhang et al, 1992). A large number
of different RXR–RAR heterodimer complexes can be formed by
combinatorial pairing of the RAR and RXR receptor, with each
heterodimer complex having cell and promoter-specific acitivity
(Nagpal et al, 1992), and consequently may control distinct gene
networks. Retinoid signalling can also be regulated by positive and
negative feedback mechanisms. The retinoid binding proteins
CRBP-I and CRABP-II, which are involved in retinoid metabo-
lism, may also be involved in retinoid signalling autoregulation
(Smith et al, 1991; Durand et al, 1992). However, knockout
mice deficient in both CRAB-I and CRABP-II proteins have no
adverse phenotype, so the significance of these proteins is unclear
(De Bruijn et al, 1994; Gorry et al, 1994). In addition, RXRs also
serve as promiscuous partners in a multitude of other hormonal
response systems, including vitamin D signalling pathways
(Kliewer et al, 1992). However, much of the complexity of these
signalling networks has yet to be elucidated.
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Cellular consequences of retinoid stimulation

At the cellular level, activation of the retinoid receptors can inhibit
cell proliferation, induce differentiation and induce apoptosis in
mesenchymal, neuroectodermal, haematopoietic and epithelial
cells during normal development as well as in normal and trans-
formed cells in tissue culture. However, the specific receptor which
mediates these effects varies with each cell line. Furthermore, the
induction of apoptosis is related to cell growth and differentiation in
various ways, depending on the cell type. For example, retinoids
initially induce the human myeloid leukaemia HL-60 cells to differ-
entiate into neutrophils that subsequently undergo apoptosis
(Martin et al, 1990). Using receptor-selective ligands and sub-lines
with different retinoid responsiveness, it appears that ligand-
induced activation of RARs alone is sufficient to induce differenti-
ation, but activation of RXRs is essential for induction of apoptosis,
although the necessary dimerization complexes are unknown
(Nagy et al, 1995). In contrast, retinoids can induce differentiation
and apoptosis concurrently as in F9 embryonal carcinoma cells
(Atencia et al, 1994), or can induce apoptosis by a process that is
independent of differentiation as in neuroblastoma cells (Piacentini
et al, 1992). Apoptosis can be induced in small cell lung cancer
cells by 4HPR (Kalemkerian et al, 1995), in melanoma cells by the
synthetic retinoid CD437 (Schadendorf et al, 1996), and in ovarian
and breast cancer cells by 4HPR (Sheikh et al, 1995; Supino et al,
1996). Moreover, retinoids can also suppress growth and squamous
differentiation in head and neck squamous cell cancer lines (Lotan,
1994), and also induce apoptosis in these cell lines (Oridate et al,
1996). Furthermore, tumour regression on treatment with retinoids
has been demonstrated for in vivo xenograft models of experi-
mental tumours including lip squamous cell carcinoma (Gottardis
et al, 1996) and melanoma (Schadendorf et al, 1996). Anti-
proliferative response appears to be mediated through the RARγ in
melanoma and teratocarcinoma cell lines (Moasser et al, 1994;
Schadendorf et al, 1994), although no correlation was noted with
any receptor in ovarian cancer cell lines (Harant et al, 1993).
Several groups have observed that differentiating agents such as
butyrate and DMSO can induce p21 and terminal differentiation in
a p53-independent manner, although p21 induction by differenti-
ating agents can occur in the presence of wild-type p53 (reviewed
in Liebermann et al, 1995). However, uncoupling of p21 induction
from growth arrest can occur in the presence of deregulated c-
(Selvakumaran et al, 1994). Retinoids are also able to induce
p21 and, consequently, growth arrest and differentiation (Shao
et al, 1995; Liu et al, 1996) but the mechanism of induction of
apoptosis remains unclear. Putative mechanisms include a role for
activation of the AP-1 complex, for which activation of the retinoid
receptors is not necessary (Schadendorf et al, 1996), possible
suppression of bcl-2 expression and/or induction of transforming
growth factor β (TGF-β) (Roberts and Sporn, 1992), induction of
insulin-like growth factor-binding protein 3 (Gucev et al, 1996) and
activation of downstream effectors of p53 in a p53-independent
manner (Shao et al, 1995). The receptor dimerization patterns asso-
ciated with these cellular events are also unknown.




In addition to the natural retinoids, ATRA, 9- retinoic acid and
13- retinoic acid, several novel retinoid compounds have been
synthesized including 4HPR, CD437 (Schadendorf et al, 1996),
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the RAR-selective ligand ALRT1550 (Shalinksy et al, 1997), and
the RXR-selective ligand LGD1069 (Gottardis et al, 1996;
Miller et al, 1997). The initial reason for developing these new
compounds has been to identify chemoprevention agents with an
acceptable toxicity profile suitable for use in chronic administra-
tion. However, these agents may well differ from the naturally
occurring retinoids in their mechanism of action. Any new poten-
tial chemoprevention agent will need to be evaluated in preclinical
models of carcinogenesis, prior to entering dose-finding studies,
phase II chemoprevention studies and randomized placebo-
controlled phase III studies in patients (a) at high risk of devel-
oping malignant tumours (e.g. breast cancer on the basis of family
history), (b) with pre-malignant conditions such as in situ carci-
noma of the cervix, or (c) at risk of developing a second primary
tumour. However, these agents, particularly those specific for
RAR- or RXR-binding, may also enable us to dissect the retinoid
signalling pathway and enable us to explore these agents in
advanced disease, either (a) in combination with agents acting
cooperatively on other steroid hormone receptors, (b) in combina-
tion with other agents which inhibit intracellular pathways, and
(c) in combination with other conventional cytotoxic agents to
overcome drug resistance.

Cooperative effects with agents acting on other steroid
hormone receptors

Retinoids can inhibit the growth of many human hormone-depen-
dent breast cancer cells (Fontana, 1987; Fontana et al, 1990),
although many ER-negative cell lines are resistant to the effect of
retinoids (Van der Burg et al, 1993). Although RARα can be
expressed in both ER-positive and ER-negative breast cancer cell
lines, expression of RARα may be higher in ER-positive cell lines
and also in human breast cancer samples (Roman et al, 1993).
Oestradiol can induce RARα expression in human breast cancer
cells (Roman et al, 1993), while transfecting ER-negative cells
with RARα leads to retinoid-sensitivity in these cell lines (Sheikh
et al, 1994; Rishi et al, 1996). In addition, retinoids down-regulate
ER RNA and protein expression in hormone-dependent breast
cancer cells (Rubin et al, 1994), as well as inhibiting ER function
(Pratt et al, 1996). Taken together, this suggests that retinoids
could inhibit ER function. Furthermore, retinoids and anti-oestro-
gens appear to target different cell cycle regulatory molecules to
initiate cell cycle arrest (Wilcken et al, 1997). Indeed, retinoids
and tamoxifen appear to have additive effects in the chemopreven-
tion of breast cancer in animal models (Anzano et al, 1994). If
these additive effects could be demonstrated in advanced breast
cancer in clinical trials then this combination could be evaluated in
the adjuvant treatment and for chemoprevention of human breast
cancer. If this additive effect could be demonstrated in the clinic it
would be important to determine whether it is restricted to tumours
expressing RARα and ER.

The biologically active form of vitamin D, 1,25-dihydroxy-
vitamin D3, is another agent that can induce differentiation and
inhibit cellular proliferation with induction of apoptosis. The
actions of this ligand are mediated by the vitamin D receptor
(VDR) which is part of the steroid hormone family of receptors,
again having structural and functional similarities to the retinoid
receptors. The VDR has been found in a variety of cancer cell lines
including prostate cancer (Miller et al, 1992), pancreatic, breast,
colon, thyroid, bladder and cervical carcinoma, osteosarcoma,
melanoma and fibrosarcoma (Reichel et al, 1989). The clinical use
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of vitamin D3 is limited by its calcaemic effect, but a number of
analogues have been synthesized that inhibit cancer cell growth
but with reduced calcaemic activity such as EB1089 and KH1060
(Colston et al, 1992; Shabahang et al, 1994). Cooperative effects
on growth inhibition using a combination of a retinoid with a
vitamin D3 analogue have been observed in several experimental
systems, including lung cancer cells (Higashimoto et al, 1996),
pancreatic cancer cells (Zugmaier et al, 1996) and the HL-60
leukaemic cells (Elstner et al, 1996). However, VDR can bind to
response elements either as a homodimer or as a heterodimer
complex with RXR. Therefore, in addition to the cooperative
effects between retinoids and vitamin D which have been
observed, there is also the possibility that these agents could have
antagonistic activity if their respective receptors compete for RXR
partners to bind their response elements. Consequently, the
cellular events which occur with combination therapy in any
particular cell may be dictated by the relative abundance of VDR,
RARs and RXRs, within that cell, the relative concentration of
ligand (including the relative affinity of the retinoids for RARs or
RXRs) and the resulting rate and pattern of the various possible
heterodimer complexes. Clearly considerable effort will be
required to determine the optimal concentrations and combina-
tions of these drugs to produce optimal inhibition of cell prolifera-
tion in experimental models of any given tumour. Nevertheless,
the results of these preliminary studies are promising, and may
develop therapeutic strategies that will add to the treatment
options available for tumours that express the relevant receptors.

Combination therapy with inhibition of intracellular
signalling pathways

Interferons are a group of multifunctional cytokines with antiviral,
antiproliferative and cellular-differentiating activities. Two classes
of interferons – type I (interferon α/β) and type II (interferon γ) –
acting on different receptors are known. Preclinical data suggest
that a combination of retinoids and interferons has synergistic
antiproliferative and differentiating effects in some haematolog-
ical and solid tumour models (reviewed in Eisenhauer et al, 1994),
although the mechanisms underlying the cross-talk between the
intracellular pathways activated by the retinoids and the inter-
ferons have yet to be defined. On the basis of these preclinical
observations, a combination of 13- retinoic acid and interferon
α-2a has been evaluated in a number of clinical trials in human
solid tumours (reviewed in Eisenhauer et al, 1994). Initial studies
yielded dramatic results, with a 50% response rates in patients
with previously untreated stages IB–IVA cervical cancer and a
68% response rate in patients with advanced squamous cell carci-
noma of the skin. However, these high response rates have not
been reproduced in other squamous cell cancers that have been
evaluated (head and neck, lung, pre-treated cervix), (Rinaldi et al,
1993; Voravud et al, 1993; Arnold et al, 1994; Hallum et al, 1995)
and no benefit was observed in studies of two non-squamous
tumours (lung and melanoma) (Arnold et al, 1993; Dhingra et al,
1993). However, these studies did not always evaluate an optimal
population of previously untreated patients, and the results of the
cervical studies suggest that this is a relevant consideration.

There is evidence to suggest that interferons may modulate the
retinoid-signalling pathways by inducing or increasing RAR or
RXR expression, rendering cells more sensitive to the retinoid
action and even restoring retinoic acid sensitivity in RA-insensi-
tive cell lines (Marth et al, 1986; Widschwendter et al, 1995;
© Cancer Research Campaign 1999
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Fanjul et al, 1996). In addition, retinoids are able to induce and
activate key components of interferon-signalling pathways
including the Stat proteins (Kolla et al, 1996; Gianni et al, 1997)
and interferon-regulatory factor (Matikainen et al, 1996). Further
dissection of the mechanisms for cross-talk between these two
signalling pathways may answer some of the questions raised by
the important observations of early retinoid/interferon combina-
tion studies. Issues include the specific tumour sensitivities to this
combination and the mechanism of acquired resistance in pre-
treated sensitive tumour types (e.g. cervix) as well as the optimal
combination and doses of the analogues to be used in this combi-
nation, and the identification of new targets for inhibiting intra-
cellular signalling. Furthermore, combinations of retinoids and
interferons, and also retinoids and vitamin D, can inhibit angio-
genesisis in preclinical tumour models (Bollag et al, 1994); this
represents an exciting further area for future drug development.

The  family of genes encodes proteins involved in signal
transduction across the cell membrane. Constitutive activation of
 by point mutation is one of the most common genetic aberra-
tions in malignant disease. Oncogenic (constitutively activated)
 reduces the level of RARα in NIH3T3 cells, altering the
responsiveness of these cells to RA (Scita et al, 1996), and
reducing the level of RARα and RARγ in keratinocytes (Darwiche
et al, 1996). Moreover, inhibition of protein kinase C with bryo-
statin in these cells can restore RAR protein levels to near normal
levels (Darwiche et al, 1996). This raises the interesting possibility
of synergistic anti-tumour effect by using retinoids in combination
with protein kinase C inhibitors or inhibitiors of -induced
signalling pathways such as farnesyltransferase inhibitors.

The use of retinoids in combination with cytotoxic
chemotherapy agents

One of the most intriguing possibilities for the use of retinoids in
advanced disease is to enhance the sensitivity of tumours to cyto-
toxic agents and to overcome drug resistance by adjusting the
apoptopic set-point. Among the many mechanisms of chemothera-
peutic drug resistance, a key factor is likely to be the p53 tumour
suppressor gene mutations of which are associated with decreased
sensitivity of Burkitt’s lymphoma cells to treatment with ionizing
radiation and DNA-damaging chemotherapy drugs (Fan et al,
1994). Studies have also suggested that the p53 tumour suppressor
gene is required for efficient induction of cell death by
chemotherapy drugs (Lowe et al, 1993, 1994). Indeed, disruption
of p53-mediated apoptosis, e.g. by mutations of the p53 genes,
contributes both to tumour development and acquisition of drug
resistance (Lowe et al, 1994; Symonds et al, 1994; Tsang et al,
1995). However, in a subsequent study, induction of apoptosis
correlated with chemosensitivity in a number of human tumour
cell lines independent of p53 status or bcl-2 protein levels in
vitro (Wu and El-Deiry, 1996). This is supported by the evidence
that overexpression of WAFI/CIPI increased the susceptibility of
p53 non-functional malignant glioma cells to cisplatin-induced
apoptosis even though overexpression of WAFI/CIPI alone in-
hibited DNA synthesis but did not induce apoptosis (Kondo et al,
1996). Thus the relationship between p53 function and chemo-
sensitivity probably varies according to cell type.

Although the mechanisms of retinoid-induced apoptosis remain
unclear, it is worth noting that the putative mechanism with some
of the novel synthetic retinoids include inhibition of AP-1 activity
independent of receptor activation, and induction of G0/G1 arrest
© Cancer Research Campaign 1999
and apoptosis in a p53-independent manner by activating down-
stream effectors of p53 (Shao et al, 1995). Therefore, by inducing
apoptosis, retinoids may be able to enhance sensitivity of tumours
to cytotoxic agents and overcome cytotoxic drug resistance even
though the precise mechanism of induction of apoptosis by
retinoids is not known. It is encouraging that pre-treatment of
ovarian cancer cell lines with ATRA potentiates the cytotoxicity of
these cells to cisplatin (Caliaro et al, 1997). Synergy between these
two agents was observed only in cells sensitive to ATRA, regard-
less of their relative sensitivity to cisplatin. Indeed, in a variant cell
line resistant to cisplatin but sensitive to ATRA, the IC50 for
cisplatin was reduced with combination therapy in the clonogenic
assay. ATRA can also increase the sensitivity of a murine embry-
onal carcinoma cell line to cisplatin (Guchelaar et al, 1993), can
potentiate the cytotoxicity of cisplatin, etoposide and bleomycin in
a human ovarian teratocarcinoma (Le Ruppert et al, 1992) and is
synergistic with cisplatin and 5-fluorouracil in squamous cell
carcinoma cells (Sacks et al, 1995). Furthermore, enhanced anti-
tumour efficacy of cisplatin is observed in combination with 9-
retinoic acid in human oral squamous cell carcinoma xenografts in
nude mice, with no change in systemic toxicity or dose tolerance
of the individual agents (Shalinsky et al, 1996).

Encouraging preliminary clinical results for retinoid 
chemotherapy combination therapy have also been reported in one
small study (20 patients) using ATRA with cisplatin and VP16 in
advanced non-small cell lung cancer, with a 53% objective response
rate (Thiruvengadam et al, 1996). However, the optimal retinoid
agent, dose, schedule and combination for a given tumour has yet to
be determined in animal models. It also remains to be determined
whether this enhancement of cytotoxicity is restricted to cisplatin or
also occurs with other cytotoxic agents, and whether using immuno-
cytochemistry to determine the presence of RARs or RXRs in a given
tumour specimen will predict for tumour response or enhanced cyto-
toxicity. Nevertheless this is a promising approach in an attempt to
overcome cytotoxic drug resistance which remains a significant
cause of treatment failure.

In summary, the discovery of new, synthetic retinoid analogues
may enable longer term administration with less toxicity than the
naturally occurring retinoids. These agents will also be useful in
the laboratory to further dissect the retinoid signalling pathway,
which in turn may identify new therapeutic targets. In addition to
revisiting the chemoprevention approach in certain tumour groups,
these new agents may be useful in advanced disease or as adjuvant
therapy in combination with other steroid hormones, inhibitors of
specific signal transduction pathways, or in combination with
cytotoxic chemotherapy agents currently in use in the clinic.
Retinoid resistance, both intrinsic and acquired, represents a
further major challenge in the field of differentiation therapy.
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