Summary
Neovascularization facilitates tumour growth and metastasis formation. In our laboratory, we attempt to identify clinically available oral efficacious drugs for antiangiogenic activity. Here, we report which non-steroidal anti-inflammatory drugs (NSAIDs) can inhibit corneal neovascularization, induced by basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). This antiangiogenic activity may contribute to the known effects of NSAIDs on gastric ulcers, polyps and tumours. We found that sulindac was one of the most potent antiangiogenic NSAIDs, inhibiting bFGF-induced neovascularization by 50% and VEGF-induced neovascularization by 55%. Previously, we reported that thalidomide inhibited growth factor-induced corneal neovascularization. When we combined sulindac with thalidomide, we found a significantly increased inhibition of bFGF- or VEGF-induced corneal neovascularization (by 63% or 74% respectively) compared with either agent alone (P< 0.01). Because of this strong antiangiogenic effect, we tested the oral combination of thalidomide and sulindac for its ability to inhibit the growth of V2 carcinoma in rabbits. Oral treatment of thalidomide or sulindac alone inhibited tumour growth by 55% and 35% respectively. When given together, the growth of the V2 carcinoma was inhibited by 75%. Our results indicated that oral antiangiogenic combination therapy with thalidomide and sulindac may be a useful non-toxic treatment for cancer.
Article PDF
Change history
16 November 2011
This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication
References
Bossi, P., Viale, G., Lee, A. K. C., Alfano, R. M., Coggi, G. & Bosari, S. (1995). Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res 55: 5049–5053.
Chiu, C., McEntee, M. F. & Whelan, J. (1997). Sulindac causes rapid regression of preexisting tumors in Min/+ mice, independent of prostaglandin biosynthesis. Cancer Res 57: 4267–4273.
D’Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. (1994). Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082–4085.
Duggan, D. E., Hooke, K. F., Risley, E. A., Shen, T. Y. & Van Arman, C. G. (1977). Identification of the biologically active form of sulindac. J Pharm Exp Ther 201: 8–13.
Fine, H. A. (1997). A phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas (abstract). In Thalidomide: Potential Benefits and Risks, Open Public Scientific Workshop, p. 85. National Institute of Health: Bethesda MD
Folkman, J. (1975). Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med 82: 96–100.
Folkman, J. (1989). What is the evidence that tumors are angiogenesis dependent?. J Natl Cancer Inst 82: 4–6.
Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1: 27–31.
Folkman, J. (1997). Antiangiogenic therapy. Cancer, Principles and Practice of Oncology, DeVita Jr VT, Hellman S, Rosenberg SA (eds). pp. 3075–3086, Lipincott Raven: New York
Folkman, J. & Ingber, D. E. (1987). Angiostatic steroids: method of discovery and mechanism of action. Ann Surg 206: 374–384.
Fulton, A. M. (1984). In vivo effects of indomethacin on the growth of murine mammary tumors. Cancer Res 44: 2419–2420.
Giardiello, F. M., Hamilton, S. R., Krush, A. J., Piantodosi, S., Hylind, L. M., Cleano, P., Banker, S. V., Robinson, C. R. & Offerhaus, G. J. (1993). Treatment of colonic rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328: 1313–1316.
Gross, J., Azizkhan, R. G., Biswas, C., Bruns, R. R., Hsieh, D. S. T. & Folkman, J. (1981). Inhibition of tumor growth, vasularization, and collagenolysis in the rabbit cornea by medroxyprogesterone. Proc Natl Acad Sci USA 78: 1176–1180.
Gutman, M., Szold, A., Ravid, A., Lazouskas, T., Merimsky, O. & Klausner, J. M. (1996). Failure of thalidomide to inhibit tumor growth and angiogenesis in vivo. Anticancer Res 16: 3673–3678.
Hanif, R., Pittas, A., Feng, Y., Koutsos, M. I., Qiao, L., Staiano-Coico, L., Shiff, S. I. & Rigos, B. (1996). Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol 52: 237–245.
Haynes, W. L., Proia, A. D. & Klintworth, G. K. (1989). Effect of inhibitors of arachidonic acid metabolism on corneal neovascularization in the rat. Invest Ophthalmol Vis Sci 30: 1588–1593.
Hudson, N., Balsitis, M., Everitt, S. & Hawkey, C. J. (1995). Angiogenesis in gastric ulcers: impaired in patients taking non-steroidal anti-inflammatory drugs. Gut 37: 191–194.
Insel, P. A. (1996). Analgesic–antipyretic and antiinflammatory agents and drugs employed in the treatment of gout. The Pharmacological Basis of Therapeutics, Hardman JG, Limbird LE (eds). 617–658, The McGraw-Hill Companies: New York
Kamei, S., Okada, H., Inoue, Y., Yoshioka, T., Ogawa, Y. & Toguchi, H. (1993). Antitumor effects of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oil solution. J Pharm Exp Ther 264: 469–474.
Karim, S., Habib, A., Levy-Toledano, S. & Maclouf, J. (1995). Cyclooxygenases-1 and -2 of endothelial cells utilize exogenous or endogenous arachidonic acid for transcellular production of thromboxane. J Biol Chem 271: 12042–12048.
Kenyon, B. M., Voest, E. E., Chen, C., Flynn, E., Folkman, J. & D’Amato, R. J. (1996). A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37: 1625–1632.
Kenyon, B. M., Browne, F. & D’Amato, R. J. (1997). Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 64: 971–978.
Kidd, J. G. & Rous, P. (1940). A transplantable rabbit carcinoma originating in a virus-induced papilloma and containing the virus in masked or altered form. J Exp Med 71: 813–838.
Labayle, D., Fischer, D., Vielh, P., Drouhin, F., Pariente, A., Bories, C., Duhamel, A., Transset, M. & Attali, P. (1991). Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101: 635–639.
Little, R., Welles, L., Wyvill, K., Pluda, J., Figg, W., Tosato, G. & Yarchoan, R. (1997). Preliminary results of a phase II dose titration study of oral thalidomide in patients with HIV infection and Kaposi’s sarcoma (abstract). Thalidomide: Potential Benefits and Risks, Open Public Scientific Workshop, 91. National Institute of Health: Bethesda
Lynch, N. R., Castes, M., Astoin, M. & Salomon, J. C. (1978). Mechanism of inhibition of tumour growth by aspirin and indomethacin. Br J Cancer 38: 503–512.
Marnett, L. J. (1992). Aspirin and the potential role of prostaglandins in colon cancer. Cancer Res 52: 5575–5589.
Meade, E. A., Smith, W. L. & DeWitt, D. L. (1993). Differential inhibition of prostaglandin endoperoxide synthetase (cyclooygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 268: 6610–6614.
Minchinton, A. I., Fryer, K. H., Wendt, K. R., Clow, K. A. & Hayes, M. M. M. (1996). The effect of thalidomide on experimental tumors and metastases. Anticancer Drugs 7: 339–343.
Mitchell, J. A., Akarasereenont, P., Thiemermann, C., Flower, R. J. & Vane, J. R. (1993). Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA 90: 11693–11697.
Peterson, H. (1996). Tumor angiogenesis inhibition by prostaglandin synthetase inhibitors. Anticancer Res 6: 251–254.
Piazza, G. A., Rahm, A. L., Krutzsch, M., Sperl, G., Paranka, N. S., Gross, P. H., Brendel, K., Burt, R. W., Alberts, O. S. & Paniukou, R. (1997). Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res 55: 3110–3116.
Pliess, G. (1962). Thalidomide and congenital abnormalities. Lancet 2: 1128–1129.
Sakamoto, T., Soriano, D., Nassaralla, J., Murphy, T. L., Oganesian, A., Spee, C., Hinton, D. R. & Ryan, S. J. (1995). Effect of intravitreal administration of indomethacin on experimental subretinal neovascularization in the subhuman primate. Arch Ophthamol 113: 222–226.
Schumacher, H., Smith, R. L. & Williams, R. T. (1965). Metabolism of thalidomide: the fate of thalidomide and some of its hydrolysis products in various species. Br J Pharmacol 25: 338–351.
Schumacher, H., Blake, D. A. & Gilette, J. R. (1968). Disposition of thalidomide in rabbits and rats. J Pharm Exp Ther 160: 201–211.
Silverman, K. J., Lund, D. P., Zetter, B. R., Lainey, L. L., Shahood, J. A., Freiman, D. G., Folkman, J. & Burger, A. C. (1988). Angiogenic activity of adipose tissue. Biochem Biophys Res Commun 153: 347–352.
Smith, W. L., Meade, E. A. & DeWitt, D. L. (1994). Interactions of PGH synthase isozymes-1 and -2 with NSAIDs. Ann NY Acad Sci 744: 50–57.
Szabo, K. T. & Steelman, R. L. (1967). Effects of maternal thalidomide treatment on pregnancy, fetal development, and mortality of the offspring in random-bred mice. Am J Vet Res 28: 1823–1828.
Tanaka, H., Sukhova, G. K. & Libby, P. (1994). Interaction of the allogeneic state and hypercholesterolemia in arterial lesion formation in experimental cardiac allografts. Arteriosclerosis Thromb 14: 734–745.
Teicher, B. A., Korbut, T. T., Menon, K., Holden, S. A. & Ara, G. (1994). Cyclooxygenase and lipoxygenase as modulators of cancer therapies. Cancer Chem Pharm 33: 515–522.
Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. (1991). Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med 324: 1–8.
Author information
Authors and Affiliations
Rights and permissions
From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
About this article
Cite this article
Verheul, H., Panigrahy, D., Yuan, J. et al. Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Br J Cancer 79, 114–118 (1999). https://doi.org/10.1038/sj.bjc.6690020
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/sj.bjc.6690020
Keywords
This article is cited by
-
The efficacy and safety of thalidomide for treating metastatic breast cancer: a systematic review
Oncology and Translational Medicine (2020)
-
IMiDs New and Old
Current Hematologic Malignancy Reports (2019)
-
Sulindac, a non-steroidal anti-inflammatory drug, mediates breast cancer inhibition as an immune modulator
Scientific Reports (2016)
-
The hexane fraction of Ardisia crispa Thunb. A. DC. roots inhibits inflammation-induced angiogenesis
BMC Complementary and Alternative Medicine (2013)
-
Therapeutic renaissance of thalidomide in the treatment of haematological malignancies
Leukemia (2005)