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Summary To gain more insight into the pharmacological role of endogenous P-glycoprotein in the metabolism of the widely used substrate
drug doxorubicin, we have studied the plasma pharmacokinetics, tissue distribution and excretion of this compound in mdr1a(–/–) and wild-
type mice. Doxorubicin was administered as an i.v. bolus injection at a dose level of 5 mg kg–1. Drug and metabolite concentrations were
determined in plasma, tissues, urine and faeces by high-performance liquid chromatography. In comparison with wild-type mice, the terminal
half-life and the area under the plasma concentration–time curve of doxorubicin in mdr1a(–/–) mice were 1.6- and 1.2-fold higher respectively.
The retention of both doxorubicin and its metabolite doxorubicinol in the hearts of mdr1a(–/–) mice was substantially prolonged. In addition, a
significantly increased drug accumulation was observed in the brain and the liver of mdr1a(–/–) mice. The relative accumulation in most other
tissues was not or only slightly increased. The differences in cumulative faecal and urinary excretion of doxorubicin and metabolites between
both types of mice were small. These experiments demonstrate that the absence of mdr1a P-glycoprotein only slightly alters the plasma
pharmacokinetics of doxorubicin. Furthermore, the substantially prolonged presence of both doxorubicin and doxorubicinol in cardiac tissue
of mdr1a(–/–) mice suggests that a blockade of endogenous P-glycoprotein in patients, for example by a reversal agent, may enhance the risk
of cardiotoxicity upon administration of doxorubicin.

Keywords: P-glycoprotein; doxorubicin; reversal agents; cardiotoxicity; pharmacokinetics

British Journal of Cancer (1999) 79(1), 108–113
© 1999 Cancer Research Campaign
P-glycoprotein is a large plasma membrane protein that can
cause multidrug resistance in tumour cells by actively extruding
substrate drugs out of the cell. These substrates include many anti-
cancer drugs, such as vinca alkaloids, taxanes, epipodophyllo-
toxins and anthracyclines (reviewed in Endicott and Ling, 1989).
The discovery that verapamil was able to reverse multidrug resis-
tance in murine leukaemia cell lines (Tsuruo et al, 1981) initiated
the search for reversal agents, which are compounds capable of
blocking or inhibiting P-glycoprotein. A major concern for the
clinical application of effective reversal agents are the potential
consequences of inhibition of endogenous P-glycoprotein. To
predict possible adverse effects of reversal agents and to gain more
insight into the physiological role of endogenous P-glycoproteins,
mice with homozygously disrupted P-glycoprotein genes have
been generated at our institute (Schinkel et al, 1994, 1997).

In humans, only one P-glycoprotein (MDR1) plays a role in
multidrug resistance, whereas in mice both mdr1a and mdr1b
P-glycoproteins are involved. The tissue distribution of these
proteins suggests that the two murine isoforms together perform
the same function as the single human MDR1 protein. The mdr1a
gene is predominantly expressed in the intestines and in the
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capillaries of the brain and the testis, mdr1b is mainly expressed in
the adrenal gland, pregnant uterus and ovarium. Significant levels
of both mdr1a and mdr1b P-glycoprotein are present in liver,
kidney, lung, heart and spleen (Cordon-Cardo et al, 1989; Croop et
al, 1989). Based on the results of tissue distribution studies, it has
been suggested that P-glycoprotein plays a role in the protection of
the organism against potentially toxic agents, e.g. by limiting the
absorption of orally ingested compounds, by mediating the elimi-
nation of substrates from the body and by protecting essential
organs such as the brain and the testis against toxic substances in
the circulation (Thiebaut et al, 1987; Cordon-Cardo et al, 1989).
Recent studies confirmed that P-glycoprotein in the blood–brain
barrier protects the brain against the entry of toxic compounds,
whereas P-glycoprotein in the intestinal epithelium has been
shown to limit the uptake of substrates from the intestinal lumen
and to mediate their direct excretion from the bloodstream
(Schinkel et al, 1994, 1995, 1996; Mayer et al, 1996; Sparreboom
et al, 1997).

To gain a detailed insight into the pharmacokinetic conse-
quences of blocking P-glycoprotein in normal tissues, we previ-
ously performed a comprehensive analysis of the plasma
pharmacokinetics, tissue distribution and excretion of vinblastine
and its metabolites in wild-type and mdr1a(–/–) mice (Van
Asperen et al, 1996). However, it is of importance to obtain also
comparable data on other widely used substrate drugs because it is
likely that the impact of endogenous P-glycoprotein on the
pharmacokinetics is substrate dependent. Here, we report on the
comparative pharmacokinetics of doxorubicin and metabolites in
wild-type and mdr1a(–/–) mice.
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Table 1 Pharmacokinetic parameters of doxorubicin in wild-type and
mdr1a(–/–) mice after i.v. bolus administration of 5 mg kg–1

Parameter Wild-type mice mdr1a(–/–) mice

AUC(0–64) 1818 ± 45 2269* ± 52 nmol.h l–1

Cl 4.5 ± 0.1 3.6* ± 0.1 l h–1 kg–1

Vd 101 ± 3.8 128* ± 5.5 l kg–1

t1/2(γ) 15.7 ± 0.2 24.8* ± 0.4 h

Data, means ± standard errors; AUC(0–64), area under the plasma
concentration–time curve up to 64 h after drug administration; Cl, clearance;
t1/2(γ), elimination half-life; *P < 0.05 vs wild-type mice.
MATERIALS AND METHODS

Animals

Female FVB wild-type and mdr1a(–/–) mice between 10 and 16
weeks of age were used in all experiments. The animals were
housed and handled according to institutional guidelines. Food
(Hope Farms, Woerden, The Netherlands) and acidified water
were given ad libitum.

Drugs and chemicals

Doxorubicin hydrochloride (Adriblastina) and daunorubicin
hydrochloride (Cerubidin) were purchased as powder for injection
from Pharmacia-Farmitalia-Carlo Erba (Milan, Italy) and Rhône-
Poulenc Rorer (Antony Cedex, France) respectively. A solution
for injection was prepared by dissolving 10 mg of doxorubicin
hydrochloride in 5 ml of saline (NPBI, Emmer-Compascuum,
The Netherlands), yielding a final concentration of 2 mg ml–1.
The metabolites doxorubicinol, 7-deoxydoxorubicinolone and 7-
deoxydoxorubicinone were kindly provided by Pharmacia-
Farmitalia-Carlo Erba. Bovine serum albumin (BSA) was
obtained from Organon Teknika (Boxtel, The Netherlands). All
other reagents were of analytical or Lichrosolv gradient grade and
were purchased from E Merck (Darmstadt, Germany). Water was
purified by the Milli-Q Plus system (Millipore, Milford, USA).
Blank human plasma was obtained from healthy donors.

Study design

Doxorubicin was administered as an i.v. bolus injection via a
tail vein of diethyl ether-anaesthetized mice at a dose level of
5 mg kg–1 body weight. The excretion study was performed with
two groups of six animals, whereas in the other pharmacokinetic
experiments three or four animals were used per time point. Tissue
and blood samples were taken at 1, 4 and 24 h after drug adminis-
tration. Blood was obtained by orbital bleeding under diethyl ether
anaesthesia and collected in heparinized tubes. The animals were
sacrificed by cervical dislocation to collect the following tissues:
brain, skeletal muscle, colon, caecum, small gut, stomach, liver
(without gall bladder), kidney, lung, spleen, heart, ovary, uterus
and breast. The tissues were homogenized with a Polytron tissue
homogenizer (Kinematica, Littau, Switzerland) in 4% (w/v) BSA
in water, resulting in final concentrations of approximately
0.05–0.2 g tissue ml–1. Additional blood samples were obtained at
5, 15, 30 and 45 min and at 2, 8, 16, 30, 40, 56 and 64 h after drug
administration. Blood samples were centrifuged (10 min, 2000 g,
4°C) to separate the plasma fraction, which was stored for
analysis. Urine and faeces from mice kept in Ruco Type M/1 stain-
less-steel metabolic cages (Valkenswaard, The Netherlands) were
collected during time intervals of 0–8, 8–24, 24–48, 48–72 and
72–96 h after drug administration. Homogenization of faeces in
4% (w/v) BSA in water (0.03–0.1 g faeces ml–1) was according to
the procedure described above for tissue specimens. All biological
specimens were stored at –20°C until analysis.

Drug analysis

Doxorubicin and its metabolites doxorubicinol, 7-deoxydoxorubi-
cinolone and 7-deoxydoxorubicinone were quantified in plasma,
tissues, urine and faeces according to a validated high-performance
liquid chromatographic (HPLC) method, which was shown to be
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suitable for comparative pharmacokinetic studies (Van Asperen et
al, 1998). In brief, dilutions of faeces homogenate (20-fold) and
urine (100-fold) were prepared in blank human plasma, all other
specimens were used without further dilution. Sample volumes of
50–200 µl were used, aliquots < 200 µl were supplemented with
blank human plasma to a final volume of 200 µl. Next, 100 µl of a
solution of the internal standard daunorubicin and 200 µl of a 6%
borate buffer (pH 9.5) were added. The analytes were extracted
from the samples with 1 ml of chloroform-1-propanol (4:1, v/v) by
mixing for 5 min. After centrifugation for 10 min at 4°C (3000 g),
the aqueous layer and the pellet were removed by suction. The
organic layer was evaporated in vacuo in a Speed-Vac Plus
SC210A system (Savant, Farmingdale, USA) at 43°C. The residue
was reconstituted in 100 µl of acetonitrile–tetrahydrofuran (40:1,
v/v) by sonication for 5 min. After adding 300 µl acidified water
(pH 2.05) and vortexing, a 50-µl aliquot was injected into the
HPLC system. The reversed-phase chromatographic system
consisted of a SpectroFlow 400 solvent delivery system (Kratos,
Ramsey, USA), a Basic Marathon autosampler provided with
a cooled (4°C) sample tray (Spark Holland, Emmen, The
Netherlands) and a Model FP920 fluorescence detector (Jasco,
Hachioji City, Japan). Doxorubicin and metabolites were separated
at ambient temperature using a Chromsep glass analytical column
(100 × 3 µm, ID) packed with 7-µm Lichrosorb RP-8 material
(Chrompack, Middelburg, The Netherlands). The mobile phase
consisted of acidified water (pH 2.05)–acetonitrile–tetrahydrofuran
(80:30:1, v/v/v) and was delivered at a flow rate of 0.4 ml min–1.
The column eluent was monitored fluorimetrically at an excitation
wavelength of 460 nm and an emission wavelength of 550 nm,
with a bandwidth of 40 nm. Peak recording and integration were
performed with an SP4600 DataJet integrator connected to a
WINner/286 data station (Spectra Physics, San Jose, USA).
Calibration curves, prepared in blank human plasma, were calcu-
lated by weighted (1/y2) least squares linear-regression analysis of
the nominal concentration (abscissa) versus the ratio (y) of the peak
area of each of the compounds and the internal standard (ordinate).

Pharmacokinetics

Pharmacokinetic parameters were calculated by non-compart-
mental methods using the software package Quattro Pro for
Windows (Version 5.0, 1993; Borland International, Scotts Valley,
USA). The area under the plasma concentration–time curve
(AUC) was calculated by the linear trapezoidal rule without
extrapolation to infinity. The standard error of the AUC was calcu-
lated with the law of propagation of errors. To calculate the body
clearance (Cl), the following formula was used:
British Journal of Cancer (1999) 79(1), 108–113
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Figure 1 Plasma concentration vs time curve of doxorubicin in mdr1a(–/–)
(uu) and wild-type mice (u) after i.v. bolus administration of 5 mg kg–1.
Inset: plasma concentrations of doxorubicinol (squares) and 7-
deoxydoxorubicinolone (circles) in mdr1a(–/–) (open symbols) and wild-type
(closed symbols) mice. Data are shown as the mean concentrations, and
error bars represent the standard errors. The absence of error bars indicates
that the standard error is smaller than the size of the symbols
(1) Cl = dose/AUC

The elimination rate constant (k) and the standard error of k
were calculated by linear regression analysis of the ln(concentra-
tion) vs time data points of the final part of the plasma concentra-
tion–time curve. Subsequently, the terminal half-life (t1/2(γ)) was
calculated with the formula:

(2) t1/2(γ) = ln2/k

The volume of distribution (Vd) was calculated using the
formula:

(3) Vd = Cl/k

Statistics

The unpaired Student’s t-test (two-tailed) was used to compare the
pharmacokinetics of wild-type and mdr1a(–/–) mice. A P-value of
less than 0.05 was regarded as significant.
British Journal of Cancer (1999) 79(1), 108–113

Table 2 Tissue levels of doxorubicin in wild-type and mdr1a(–/–) mice at 1, 4 and

1 h

Wild-type mdr1a(–/–) Ratio Wild-type

Plasma 130 ± 18.5 110 ± 3.5 0.9 70.9 ± 6.12
Brain 0.10 ± 0.01 0.28 ± 0.01 2.8 0.12 ± 0.02
Muscle 6.95 ± 0.65 6.03 ± 0.61 0.9 7.92 ± 0.74
Colon 8.17 ± 0.83 9.65 ± 0.78 1.2 13.0 ± 0.84
Caecum 7.95 ± 0.04 9.64 ± 0.35 1.2 9.84 ± 0.99
Small gut 14.2 ± 1.30 17.5 ± 1.08 1.2 14.6 ± 0.57
Stomach 7.68 ± 0.64 7.21 ± 1.51 0.9 7.40 ± 1.56
Liver 20.6 ± 8.86 44.7 ± 11.3 2.2 10.2 ± 0.83
Kidney 36.2 ± 4.70 33.2 ± 1.86 0.9 22.3 ± 1.36
Lung 23.3 ± 1.31 25.3 ± 1.79 1.1 23.4 ± 1.50
Spleen 16.6 ± 0.80 18.9 ± 1.43 1.1 23.7 ± 1.09
Heart 21.5 ± 1.87 23.6 ± 1.45 1.1 12.6 ± 0.75
Ovary 7.41 ± 0.50 9.58 ± 0.77 1.3 6.74 ± 0.32
Uterus 7.98 ± 1.92 10.6 ± 1.10 1.3 12.1 ± 0.48
Breast 5.71 ± 0.53 6.46 ± 0.43 1.1 4.25 ± 0.60

Data, means ± standard errors in nmol g–1 tissue (for plasma, in nM); ratio, drug co
RESULTS

A limited toxicity study revealed that a 5 mg kg–1 dose level of
doxorubicin was well tolerated by both types of mice (data not
shown). The plasma concentration–time curves of doxorubicin in
wild-type and mdr1a(–/–) mice coincided, but diverged at approx-
imately 16 h after drug administration because of a prolonged t1/2(γ)

in mdr1a(–/–) mice (Figure 1 and Table 1). Consequently, a 1.2-
fold higher AUC was observed in mdr1a(–/–) mice than in wild-
type mice. Low plasma concentrations of all metabolites were
detected in both types of mice, with 7-deoxydoxorubicinone only
detectable at 5 min after drug administration. The irregular shape
of the plasma concentration–time curve of 7-deoxydoxorubici-
nolone was in agreement with previous observations in humans
(Mross et al, 1988). The Vd of doxorubicin was 1.3-fold higher in
mdr1a(–/–) mice than in wild-type mice.

An increased accumulation of doxorubicin in brain and liver of
mdr1a(–/–) mice was observed at all time points (Table 2). In all
other tissues, minor differences were found at 1 and 4 h after drug
administration, whereas at 24 h relatively higher doxorubicin
concentrations were observed in heart, intestinal tissues, lung and
breast of mdr1a(–/–) mice. All metabolites were present in an organ-
specific fashion, which was similar in both types of mice. The
metabolites doxorubicinol and 7-deoxydoxorubicinolone were
detected in all tissues, except for brain for doxorubicinol and brain,
ovary and uterus for 7-deoxydoxorubicinolone. The metabolite 7-
deoxydoxorubicinone was only found in caecum, small gut, liver,
kidney and breast. An increased accumulation of all metabolites was
observed in the liver of mdr1a(–/–) mice (Table 3). At 24 h after
drug administration, the concentrations of doxorubicinol and 7-
deoxydoxorubicinolone were also higher in most other tissues of
mdr1a(–/–) mice, e.g. the heart and the kidney (Table 3). No clear
differences were observed at 1 and 4 h. Of all organs, the liver and
the kidney accumulated the highest amounts of each metabolite.

Over a period of 96 h after injection, 18% and 13% of the
administered dose were recovered as doxorubicin plus metabolites
in urine of mdr1a(–/–) and wild-type mice respectively. The cumu-
lative faecal excretion of these compounds was below 13% of the
dose in both types of mice (Table 4).
© Cancer Research Campaign 1999

 24 h after i.v. administration of 5 mg kg–1

4 h 24 h

mdr1a(–/–) Ratio Wild-type mdr1a(–/–) Ratio

66.2 ± 4.96 0.9 16.3 ± 0.39 28.2 ± 4.30 1.7
0.33 ± 0.02 2.8 0.06 ± 0.01 0.21 ± 0.02 3.8
6.58 ± 0.60 0.8 1.35 ± 0.13 1.88 ± 0.14 1.4
12.6 ± 1.33 1.0 2.99 ± 0.36 7.70 ± 0.25 2.6
11.3 ± 0.64 1.1 2.81 ± 0.29 6.96 ± 1.11 2.5
18.7 ± 2.94 1.3 3.56 ± 0.27 13.0 ± 1.31 3.7
11.2 ± 1.20 1.5 3.25 ± 0.44 5.82 ± 0.35 1.8
45.3 ± 5.58 4.5 1.69 ± 0.16 13.6 ± 1.05 8.1
21.6 ± 1.30 1.0 5.68 ± 0.44 9.05 ± 0.39 1.6
24.5 ± 2.72 1.0 5.05 ± 0.58 18.9 ± 0.87 3.8
22.5 ± 0.70 0.9 16.6 ± 1.04 29.2 ± 1.83 1.8
13.7 ± 0.78 1.1 1.69 ± 0.14 4.74 ± 0.39 2.8
9.15 ± 1.11 1.4 4.76 ± 1.10 5.85 ± 1.06 1.2
8.07 ± 1.13 0.7 6.78 ± 1.98 12.9 ± 1.52 1.9
7.11 ± 1.06 1.7 1.47 ± 0.22 5.42 ± 0.63 3.7

ncentration in mdr1a(–/–) vs wild-type mice.
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Table 3 Tissue levels of doxorubicinol, 7-deoxydoxorubicinolone and 7-deoxydoxorubicinone at 1, 4 and 24 h after i.v. administration of 5 mg kg–1 doxorubicin
to wild-type and mdr1a(–/–) mice

Metabolite Time Heart Liver Kidney
(h)

Wild-type mdr1a(–/–) Ratio Wild-type mdr1a(–/–) Ratio Wild-type mdr1a(–/–) Ratio

Doxorubicinol 1 0.14 ± 0.01 0.15 ± 0.01 1.1 0.21 ± 0.09 0.69 ± 0.20 3.3 0.46 ± 0.10 0.45 ± 0.06 1.0
4 0.21 ± 0.01 0.16* ± 0.01 0.8 0.19 ± 0.04 1.53* ± 0.14 8.1 0.33 ± 0.05 0.48 ± 0.07 1.5
24 0.04 ± 0.00 0.09* ± 0.01 2.3 0.05 ± 0.01 0.66* ± 0.06 13.8 0.08 ± 0.01 0.22* ± 0.04 2.8

7-Deoxydoxorubicinolone 1 0.35 ± 0.10 0.22 ± 0.04 0.6 16.8 ± 5.55 14.3 ± 3.17 0.9 2.86 ± 0.73 3.13 ± 0.54 1.1
4 0.09 ± 0.01 0.09 ± 0.02 1.1 1.99 ± 0.52 9.84 ± 3.26 4.9 0.62 ± 0.06 0.65 ± 0.09 1.1
24 <LLQa 0.05 ± 0.00 0.10 ± 0.01 0.40* ± 0.02 4.3 0.05 ± 0.01 0.16* ± 0.01 3.5

7-Deoxydoxorubicinone 1 <LLQa <LLQa 1.54 ± 0.15 2.80* ± 0.44 1.8 0.56 ± 0.18 0.60 ± 0.07 1.1
4 <LLQa <LLQa 0.46 ± 0.12 1.65* ± 0.37 3.6 0.09 ± 0.01 0.15* ± 0.02 1.6

24 <LLQa <LLQa 0.03 ± 0.00 0.15* ± 0.01 4.4 <LLQa <LLQa

Data, means ± standard errors in nmol g–1 tissue; ratio, drug concentration in mdr1a(–/–) vs wild-type mice. a<LLQ, concentration below the lower limit of
quantification of the analytical assay; *P<0.05 vs wild-type mice.

Table 4 Excretion of doxorubicin and metabolites within 96 h after i.v.
administration of 5 mg kg–1 doxorubicin to wild-type and mdr1a(–/–) mice

Compound Faeces Urine

Wild-type mdr1a(–/–) Wild-type mdr1a(–/–)

Doxorubicin 5.2 ± 0.3 4.1 ± 0.5 10.9 ± 0.7 15.4* ± 1.1
Doxorubicinol 0.2 ± 0.0 0.4* ± 0.0 1.4 ± 0.2 2.0 ± 0.2
7-Deoxydoxorubicinolone 2.2 ± 0.2 1.7* ± 0.1 <0.1 ± 0.1 ± 0.1
7-Deoxydoxorubicinone 5.2 ± 0.5 3.1* ± 0.3 0.5 ± 0.1 0.2* ± 0.0

Data, means ± standard errors as percentage of the administered dose;
*P<0.05 vs wild-type mice.
DISCUSSION

The most remarkable observation of the present study is the
increased accumulation of doxorubicin in heart, brain and liver of
mdr1a(–/–) mice compared with wild-type mice. No or small
differences in drug accumulation were observed for most other
tissues. In addition, the absence of mdr1a P-glycoprotein resulted
in only slight alterations of the plasma pharmacokinetics and
excretion of doxorubicin and metabolites. These results are in
sharp contrast to those of similar studies with vinblastine and
paclitaxel (Van Asperen et al, 1996; Sparreboom et al, 1997). This
indicates either that mdr1a P-glycoprotein has a minor impact on
the pharmacokinetics of doxorubicin in comparison with vinblas-
tine or paclitaxel, or that the absence of this protein is more
efficiently compensated by alternative mechanisms of drug elimi-
nation for doxorubicin than for the other drugs.

A relatively small impact of mdr1a P-glycoprotein on the
plasma pharmacokinetics of doxorubicin may be explained by
several factors. For example, mdr1a P-glycoprotein may have a
low affinity for doxorubicin. In comparison with non-P-glycopro-
tein-expressing parental cells, the resistance of mdr1a transfected
cells to doxorubicin and vinblastine was shown to be 35- and 53-
fold higher respectively (Tang-Wai et al, 1995). Although this
suggests that vinblastine may be somewhat more efficiently trans-
ported by mdr1a P-glycoprotein than doxorubicin, the latter still
seems to be a rather good substrate. An alternative explanation
may be the difference in excretion of unchanged drug. Excretion
studies with vinblastine (over 48 h) and paclitaxel (over 96 h)
© Cancer Research Campaign 1999
demonstrated that 24% and 40% of the i.v. administered dose,
respectively, was excreted unchanged in the faeces of wild-type
mice, whereas this was reduced to 10% and 2% in mdr1a(–/–)
mice respectively (Van Asperen et al, 1996; Sparreboom et al,
1997). This indicates that mdr1a P-glycoprotein in the gut wall
and/or in the liver substantially contributes to the elimination of
vinblastine and paclitaxel because the urinary excretion of these
compounds was similar in both types of mice. Furthermore, a
comparable biliary excretion of unchanged paclitaxel was
observed in mdr1a(–/–) and wild-type mice (Sparreboom et al,
1997) suggesting that the diminished clearance of paclitaxel in the
former was caused by the absence of intestinal P-glycoprotein, e.g.
as a result of a substantially enhanced reuptake of unchanged drug
from the intestinal lumen. The reduced clearance of vinblastine
may be explained analogously. However, within 96 h after admin-
istration of doxorubicin, only 5% of the dose was excreted
unchanged in faeces of wild-type mice, indicating that any
possible reuptake from the intestinal lumen in mdr1a(–/–) mice is
of minor importance for the overall clearance. Furthermore, it is
also possible that the elimination of doxorubicin is mainly medi-
ated by transport mechanisms other than P-glycoprotein.

Our previous data on vinblastine suggested that an increased
drug accumulation in most tissues of mdr1a(–/–) mice compared
with wild-type mice may be caused by the concurrently higher
plasma levels (Van Asperen et al, 1996). Possibly, the same holds
true for other P-glycoprotein substrate drugs. Hence, a minor
impact of mdr1a P-glycoprotein on the accumulation of doxoru-
bicin in most tissues may result from a small difference in plasma
pharmacokinetics between mdr1a(–/–) and wild-type mice.

The tissue distribution of doxorubicin is previously examined in
mice treated in combination with GF120918, cyclosporin A or SDZ
PSC 833 (Hyafil et al, 1993; Colombo et al, 1994; Bellamy et al,
1995; Gonzalez et al, 1995). Co-administration of these reversal
agents did only slightly change the tissue distribution of doxoru-
bicin, which corresponds with the results of our experiments in
mdr1a(–/–) mice. The impact of reversal agents on the plasma phar-
macokinetics of doxorubicin has also been investigated (Hyafil et al,
1993; Colombo et al, 1994; Gonzalez et al, 1995; Dantzig
et al, 1996). Small differences in the plasma pharmacokinetics of
doxorubicin were observed between control mice and mice co-
treated with GF120918, cyclosporin A (formulated in olive oil),
SDZ PSC 833, LY335979 or verapamil, which also corresponds
British Journal of Cancer (1999) 79(1), 108–113
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with the presently observed differences between wild-type and
mdr1a(–/–) mice. Treatment with cyclosporin A (formulated in
Cremophor EL), however, resulted in a substantially increased AUC
of doxorubicin (Dantzig et al, 1996), but this was probably caused
by the vehicle Cremophor EL as Webster et al (1996) clearly
demonstrated that this compound alters the plasma pharmaco-
kinetics of doxorubicin. Despite minor pharmacokinetic alterations,
co-administration of the reversal agents cyclosporin A or SDZ PSC
833 resulted in a high mortality of non-tumour-bearing mice treated
with doxorubicin, whereas each of these compounds alone was well
tolerated (Colombo et al, 1994; Bellamy et al, 1995; Gonzalez et al,
1995). The increased toxicity has been suggested to be, at least
partially, caused by an increased accumulation of doxorubicin in the
heart because in this tissue up to twofold higher drug concentrations
and severe myocardial damage were observed (Bellamy et al, 1995).
Several studies have shown that not only doxorubicin itself but also
its metabolite doxorubicinol has cardiotoxic properties (Olson et al,
1988; De Jong et al, 1993). Our findings support the idea that a
blockade of P-glycoprotein may enhance the risk of cardiac toxicity
upon treatment with doxorubicin because the absolute concentra-
tions of both doxorubicin and doxorubicinol were more than
twofold higher in the hearts of mdr1a(–/–) mice at 24 h after drug
administration (Tables 2 and 3). As significant amounts of mdr1b P-
glycoprotein are still present in the hearts of these animals, even
more pronounced effects may be expected upon a complete
blockade of drug-transporting P-glycoproteins.

For the clinical situation, these data suggest that a blockade of
endogenous P-glycoprotein, for example by a reversal agent, may
increase the risk of cardiotoxicity when patients are co-treated
with doxorubicin. In general, an increased cardiotoxicity of
doxorubicin has hitherto not been observed in clinical trials with
reversal agents (Erlichman et al, 1993; Bartlett et al, 1994;
Giaccone et al, 1997), but this may be explained by the insufficient
potency of the currently available reversal agents to block
endogenous P-glycoprotein completely under in vivo conditions.
Furthermore, it is important to stress that reversal agents also
frequently cause other effects beyond those resulting from inhibi-
tion of P-glycoprotein. For example, SDZ PSC 833 has been
reported to inhibit the biliary elimination of [3H]digoxin in
mdr1a/1b(–/–) mice (Mayer et al, 1997). The investigators demon-
strated that this was not the result of cholestasis, and they
suggested that SDZ PSC 833 does not only inhibit P-glycoprotein
but also another hepatic transporter (or transporters) of
[3H]digoxin. Furthermore, metabolic inhibition can easily occur
because many reversal agents and anti-cancer drugs are substrates
for the cytochrome P450 3A enzymes (Wacher et al, 1995).

In conclusion, only slight alterations in the plasma pharmaco-
kinetics of doxorubicin were found in the absence of mdr1a P-
glycoprotein. However, a substantially prolonged presence of both
doxorubicin and doxorubicinol was observed in the hearts of
mdr1a(–/–) mice, which suggests that a blockade of endogenous
P-glycoprotein in patients, for example by the clinical application
of a reversal agent, may enhance the risk of cardiotoxicity upon
co-administration of doxorubicin.
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