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released into the medium on stimulation of protein kinase C
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BACKGROUND: Expression of protein kinase C alpha (PKCa) is elevated in prostate cancer (PCa); thus, we have studied whether the
development of tumourigenesis in prostate epithelial cell lines modifies the normal pattern of choline (Cho) metabolite release on
PKC activation.
METHODS: Normal and tumourigenic human prostate epithelial cell lines were incubated with [3H]-Cho to label choline phospholipids.
Protein kinase C was activated with phorbol ester and blocked with inhibitors. Choline metabolites were resolved by ion-exchange
chromatography. Phospholipase D (PLD) activity was measured by transphosphatidylation. Protein expression was detected by
western blotting and/or RT–PCR. Choline uptake was measured on cells in monolayers over 60min.
RESULTS: Normal prostate epithelial cell lines principally released phosphocholine (PCho) in contrast to tumourigenic lines, which
released Cho. In addition, only with normal cell lines did PKC activation stimulate Cho metabolite release. Protein kinase C alpha
expression varied between normal and tumourigenic cell lines but all showed a PKCa link to myristoylated alanine-rich C kinase
substrate (MARCKS) protein. The five cell lines differed in Cho uptake levels, with normal PNT2C2 line cells showing highest uptake
over 60min incubation. Normal and tumourigenic cell lines expressed mRNA for PLD1 and PLD2, and showed similar levels of basal
and PKC-activated PLD activity.
CONCLUSIONS: The transition to tumourigenesis in prostate epithelial cell lines results in major changes to Cho metabolite release into
the medium and PKC signalling to phosphatidylcholine turnover. The changes, which reflect the metabolic and proliferative needs of
tumourigenic cells compared with untransformed cells, could be significant for both diagnosis and treatment.
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Conventional protein kinase C alpha (PKCa) is linked to the regu-
lation of cell proliferation, motility, survival, apoptosis, differ-
entiation, metastasis and multidrug resistance (Gutcher et al, 2003;
Gavrielides et al, 2004; Koivunen et al, 2006; Larsson, 2006).
Protein kinase C alpha expression is reduced in many cancers
(Koivunen et al, 2006; Griner and Kazanietz, 2007; Mackay and
Twelves, 2007; Ali et al, 2009). However, early prostate adeno-
carcinomas (PCa) show increased PKCa protein (Cornford et al,
1999; Koren et al, 2004; Lahn et al, 2004). Rat prostatic tumour cell
lines also show elevated PKCa expression over controls (Powell
et al, 1994). Androgen-independent human prostatic epithelial
carcinoma lines PC3 and DU145 express PKCa mRNA and protein
more prominently than does the androgen-sensitive LNCaP
line (Krongrad and Bai, 1994; Powell et al, 1996), although only
LNCaP cells undergo PKCa-mediated apoptosis when stimu-
lated with phorbol esters (O’Brian 1998; Gutcher et al, 2003;

Gonzalez-Guerrico et al, 2005). However, PKCa mediates the
apoptosis induced by activation of Toll-like receptor 3 in both
LNCaP and PC3 lines (Paone et al, 2008). Protein kinase C alpha
can affect the growth-inhibiting effects of transforming growth
factor-b in PC3 cells (Lamm et al, 1997), as well as epidermal
growth factor receptor transactivation and activation of Erk1/2
(Stewart and O’Brian, 2005). Protein kinase C alpha is a proposed
therapeutic target in androgen-independent PCa (O’Brian, 1998);
therefore, it is important to understand how elevated PKCa
expression as observed in PCa influences downstream targets
which are also implicated in tumourigenesis; for example,
phospholipase D (PLD) (Cockcroft, 2001; Foster, 2009).
Phospholipase D expression and activity are elevated in several

human tumours and neoplastic cell lines (Foster and Xu, 2003;
Foster 2006, 2009), resulting in increased cell proliferation and
prevention of cell-cycle arrest and apoptosis (Joseph et al, 2002;
Zhong et al, 2003; Foster, 2006). These effects occur partly through
the increased formation of phosphatidic acid (PtdOH), which
modulates the activity of Raf and mammalian target of rapamycin
(mTOR), both regulators of cell proliferation (Guertin and
Sabatini, 2007; Foster, 2007a, b). Mammalian target of rapamycin
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is also implicated in signals that suppress apoptosis in cancer cells
enabling their survival and proliferation under stress conditions
(Foster, 2009). Enhanced PLD activity results in elevated levels of
Cho metabolites, especially phosphocholine (PCho), in breast and
prostate cancer cells (Ackerstaff et al, 2001; Glunde et al, 2006)
where PCho levels may be a useful biomarker of malignant disease
(Eliyahu et al, 2007; Beloueche-Babari et al, 2009). Choline kinase
(CK) activity is increased in many tumours (Ramirez de Molina
et al, 2002; Gallego-Ortega et al, 2009) and is a link to cell-cycle
regulation (Ramirez de Molina et al, 2008) through MAPK and
PI3K/AKT signalling (Chua et al, 2009; de Souza et al, 2009; Yalcin
et al, 2010).
Stimulation of phosphatidylcholine (PtdCho) turnover in cells

(Kiss, 1990) results in the release of Cho metabolites into the
medium (Mufson et al, 1981; Hii et al, 1991; van Blitterswijk et al,
1991; Troyer et al, 1992; Morreale et al, 1997) wherein PCho can
promote the mitogenic activity of insulin and growth factors
(Cuadrado et al, 1993; Tomono et al, 1995; Chung et al, 1997). In
this study, we show that tumourigenesis in human prostate
epithelial cell lines alters the nature and control of Cho metabolites
released into the medium on PKC activation.

MATERIALS AND METHODS

Cell culture

PNT1A, PNT2C2 and LNCaP prostate epithelial cell lines (up to
passages 80, 150 and 50, respectively) were cultured in RPMI1640
(Gibco, Invitrogen Ltd, Paisley, Scotland, UK) with 10mM HEPES,
2mM glutamine and 10% fetal bovine serum (FBS) (R10). PC3 cells
up to passage 50 were grown in Ham’s F12 medium (Lonza,
Slough, Berkshire, UK) with 7% FBS (F7). P4E6 line cells (Maitland
et al, 2001) were cultured in KSFM medium (Gibco) with
epidermal growth factor and pituitary additivesþ 2% FBS (K2).
For passage/experimentation, cells were rinsed with Tris-saline
(TS) and released with Tris-trypsin (TT) for 10min. Trypsin was
inactivated with R10, cells pelleted by centrifugation and
resuspended in normal growth medium for counting.

[3H]-Choline headgroup release into the medium

A total of 7.5� 104 cells were seeded in triplicate into wells of
24-well plates in normal growth medium (see above) and cultured
overnight. For LNCaP cells, wells were coated with poly-L-lysine
(20mgml�1 in water) to aid adhesion. At 80–90% confluency,
the medium was replaced with RPMI1640, F12 or KSFM containing
1% FBS and 0.5 mCi [3H]-choline (Perkin-Elmer, Beaconsfield,
Buckinghamshire, UK) per well for 30 h to label Cho phospholipids
to equilibrium. With this low level of serum, cells were just
becoming confluent when used, and thus significant changes to
enzyme activity because of contact inhibition or cell-cycle effects
were avoided. Radioactive medium was then removed and cells
were incubated for 60min at 371C with serum-free medium. Cells
were gently rinsed twice more with warm (371C) serum-free
medium and 0.5ml serum-free medium containing 1mM choline
chloride and 1mM phosphocholine plus PKC activators/inhibitors
(see Figure legends) was added per well. Aliquots (25 ml) of
medium were removed from wells at T¼ 0 and then as
appropriate. A volume of 25 ml fresh medium was added back to
wells to maintain volume. Aliquots of medium were centrifuged at
13 000 r.p.m. to pellet any cell debris. Duplicate 10 ml aliquots were
added to 96-well Top Count plates for scintillation counting with
75ml Microscint-20 (Perkin-Elmer Ltd.). Mean c.p.m. values from
triplicate wells were calculated with s.d. (n¼ 6). In experiments to
reduce PKCa protein content, cells in triplicate wells were
chronically treated with 250 nM TPA for the last 9 h of [3H]-
choline labelling and then used as above.

Vesicle release

A volume of 400 ml of culture medium was removed from wells
at the end of 3 h Cho release assays and triplicate 10 ml aliquots
were taken for Top-Count scintillation counting as above. The
remaining medium was transferred to a Beckman Eppendorf tube
and centrifuged for 5min at 13 000 r.p.m. to sediment any cell
debris. Again, triplicate 10 ml aliquots of the low-speed supernatant
were removed for counting. The remaining medium was then
centrifuged at 100 000 g for 30min at 4 1C to sediment exosomes
and/or other vesicles (Nilsson et al, 2009). Aliquots (10 ml) of
supernatant medium from this step were also counted.

Distribution of [3H]-Cho in intracellular Cho metabolites
and lipids on labelling

Cells were seeded into wells of 24-well plates in triplicate and labelled
with 0.5mCi [3H]-Cho for 30h as above. The labelling medium was
removed and cells were rinsed three times with ice-cold PBS
before extraction with 0.5ml methanol, 0.5ml chloroform:methanol,
(1 : 2 v/v) and twice with 0.5ml chloroform :methanol (1 : 1v/v).
Solvent extracts were pooled, chloroform added to a final ratio of
chloroform :methanol 2 : 1 and solvent/aqueous phases separated by
the addition of 0.1M KCl. Aliquots of each phase were taken in
triplicate for scintillation counting. Choline metabolites in 400ml top
phase or medium from release experiments were diluted to 5ml in
distilled water and added to Dowex-50WHþ ion exchange resin
columns to resolve GPCho (glycerylphosphorylcholine), PCho and
Cho (Cook and Wakelam, 1989; Kiss et al, 1994). Radioactivity in
triplicate 0.5ml aliquots of each fraction was measured by
scintillation counting to calculate total dpm/fraction.

Western blotting

A total of 1� 105 cells were seeded into 24-well plates in normal
growth medium and cultured overnight. The medium was removed
and cells were rinsed with Tris/saline and solubilised in 100 ml
warm (371C) 2� Laemmli sample buffer (Sigma-Aldrich, Poole,
Dorset, UK) containing protease and phosphatase inhibitor pellets
(Roche Diagnostics Ltd, Burgess Hill, West Sussex, UK). Extracts
were heated at 1001C for 10min. Equal volumes of cell extracts
were resolved by SDS–PAGE on 12.5% gels for western blotting
(Dawson et al, 2003) on Immobilon P (Millipore, Dundee,
Scotland, UK). Protein kinase C alpha, actin and GAPDH blots
were blocked in 5% Marvel/Tris buffered saline-0.2% Tween 20
(TBST). Phospho-MARCKS blots were blocked in 4% bovine
serum albumin (BSA)/TBST. A mouse monoclonal antibody
against the C-terminal V5 region of PKCa was prepared by
Professor Nigel Groome (Oxford Brookes University) and used at
1 : 100. A MARCKS phospho (pS159/163) rabbit monoclonal
antibody (Epitomics, InSight Biotechnology Ltd, Wembley,
Middlesex, UK) was used at 1 : 1000. A polyclonal anti-actin antibody
(Sigma-Aldrich) was used at 1 : 1000. Polyclonal antibodies to PKCd and
PKCe (Cell Signaling, New England Biolabs, Hitchin, Hertfordshire, UK)
were used at 1 : 1000. An anti-GAPDH antibody (Abcam, Cambridge,
Cambridgeshire, UK) was used at 1 : 2000. Detection was by ECL, and X-
ray film was pre-flashed for densitometry using Image J. Protein kinase
C alpha and p-MARCKS blots were stripped and reprobed for GAPDH
or actin as loading controls.

Reverse transcriptase–PCR

Cells were grown in 75 cm2 flasks, rinsed and total RNA was
extracted using a Qiagen RNeasy mini kit (Qiagen, Crawley,
West Sussex, UK) and QIA shredder. RNA was quantified
spectrophotometrically and 1 mg taken for cDNA synthesis using
the Invitrogen SuperScript II RT (Invitrogen Ltd, Paisley, Scotland,
UK) protocol. This was used to prepare a master mix with
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appropriate water controls for PCR. Conditions for amplification
were 941C for 0.5min, 541C for 0.5min, 721C for 1min for 35
cycles. Primers were from Eurogentec Ltd (Southampton, UK).
Sequences for hPLD1 and hPLD2 primers were as described by
Gibbs and Meier (2000). Primers for PKCa and actin were as
described by Myklebust et al (2000).

Transphosphatidylation

A total of 5� 105 cells per well were cultured in duplicate in
six-well plates in 2ml normal growth medium to near confluency
as mentioned above. Cells were rinsed and labelled for 6 h with
1 mCi [3H]-myristic acid (Amersham, GE Health Care, Chalfont St
Giles, Buckinghamshire, UK) in 1ml serum-free medium. Cells
were then incubated for 30min in fresh serum-free medium,
which was then replaced with 1ml fresh serum-free medium
containing 0.3% n-butanol (Morris et al, 1997) and either 1 mM
4a-phorbol, 1 mM 12-O-tetradecanoylphorbol 13-acetate (TPA) or
1 mM TPAþ 1 mM Ro31-8220. Cells were incubated for 30min at
37 1C, rinsed and lipids recovered with 1ml methanol, followed
by 1ml each of 1 : 2 chloroform :methanol and 1 : 1 chloroform :
methanol. Chloroform was added to combined extracts and a
two-phase system was generated with 0.1 M KCl. The chloroform
phase was evaporated, redissolved in 200 ml C/M (2 : 1v/v) and
triplicate 10 ml aliquots were taken into scintillation vials for total
counts. Triplicate 25 ml aliquots were applied to oxalate-
impregnated silicic acid TLC plates and overlayed with authentic
PtdBut, PtdOH and PtdCho standards (Lipid Products, Nutfield,
UK). Plates were developed in chloroform :methanol : acetic acid
(9 : 1 : 1, v/v) and lipids detected with iodine. After removal of
iodine, PtdBut, PtdOH and PtdCho adsorbent areas were scraped
into vials for scintillation counting. Means of triplicate values
were calculated, and dpm in PtdBut expressed as a percentage of
PtdCho d.p.m.

Myristoylated alanine-rich C kinase substrate
phosphorylation

Cells seeded into 24-well plates as above were cultured overnight
in normal growth medium before transfer into RPMI1640, F12
or KSFM containing 1% FBS for 24 h. At 9 h before experi-
ments, some wells were treated with 250 nM TPA to downregulate

PKCa. Subsequently, cells were rinsed with serum-free medium for
60min and then stimulated for 0, 15 and 30min with 1 mM TPA.
Cells were rinsed and immediately solubilised in warm
2� Laemmli sample buffer (Sigma-Aldrich) containing protease
and phosphatase inhibitors (Roche) for western blotting as above.

Choline uptake

A total of 1� 105 cells were seeded with six replicates into BD
amine (BD Biosciences, Oxford, UK) 24-well plates in their normal
growth medium and cultured overnight. Cells were rinsed with
serum-free medium and incubated for 60min in the same medium.
Cells were then rinsed once with TS and twice with Cho-free
uptake buffer (Muller et al, 2009) at 371C. This was finally replaced
with 250ml uptake buffer containing 10 mM Cho plus 1 mCi [3H]-
Cho per well. Cells were incubated for 60min at 371C and uptake
stopped by addition of 750 ml ice-cold phosphate-buffered saline
(PBS). Cells were rinsed three times with ice-cold PBS, solubilised
in 250 ml 1% SDS/0.2 M NaOH (Wang et al, 2007) and triplicate
25 ml aliquots taken for scintillation counting. Use of BD amine
plates ensured that LNCaP cells remained attached during rinsing.

Statistical treatment

Statistical significance was determined by the Student’s two-tailed
t-test or by a one-way Anova and the Tukey HSD test.

RESULTS

Protein kinase C alpha expression by prostate epithelial
cell lines

Reverse transcriptase–PCR with the same amount of total RNA
from each cell line taken for reverse transcription confirmed that
all lines express PKCa mRNA. The amplified band for PKCa was
most prominent in PC3 cells and weakest in the P4E6 line (results
not shown). Western blotting of equal cell numbers revealed that
all lines express PKCa protein (Figure 1A). Expression of GAPDH
protein by the five cell lines was almost uniform (Figure 1B and E).
Actin expression was low in LNCaP cells compared with other lines
(Figure 1C and E), making it an unsatisfactory loading control for
comparison between the different cell lines used, although
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protein content of prostate epithelial cell lines normalised to GAPDH protein. (E) Comparison of GAPDH and actin protein content of prostate cell lines
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satisfactory for the same cell line. Bands in the PKCa blot were
thus normalised to GAPDH (Figure 1D) to reveal differences in
PKCa protein expression.

Prostate cell lines express PKCd, PKCe, PKCf and MARCKS

Western blotting revealed that all five prostate cell lines express
PKCd, PKCe, PKCz and MARCKS protein (results not shown).

Myristoylated alanine-rich C kinase substrate
phosphorylation

TPA (1 mM) stimulation of cells for 15 and 30min increased
MARCKS phosphorylation in PNT1A, P4E6 and LNCaP lines
(Figure 2). Constitutively phosphorylated MARCKS was detected
in PNT2C2 and PC3 cells, and this phosphorylation was not
obviously increased by addition of TPA. Cells that had been
exposed to 250 nM TPA for 9 h to downregulate PKCa showed
almost complete suppression of MARCKS phosphorylation on
restimulation with TPA, except for the PC3 line where MARCKS
phosphorylation was at a reduced level (Figure 2).

Prostate cell lines express mRNA for both PLD1 and PLD2

Reverse transcriptase–PCR with equal quantities of total RNA
from each cell line taken for reverse transcription revealed that all
five prostate epithelial cell lines express mRNA for PLD1 and PLD2
(results not shown). PLD1 mRNA expression was most prominent
in PC3 cells. Phospholipase D2 mRNA expression was prominent
in P4E6 and PC3 lines.

Phospholipase D activity

All cell lines showed basal (unstimulated) PtdBut formation
(Figure 3) in the transphosphatidylation reaction indicating PLD
activity. PtdBut formation was increased 2- to 2.5-fold when
PNT2C2, PNT1A, P4E6 and LNCaP cell lines were treated with TPA
to activate PKC, and by about three-fold in PC3 cells. In all cell
lines, TPA-stimulated PtdBut formation was reduced to basal level
by inclusion of the PKC inhibitor Ro31-8220 (Figure 3).

[3H]-label is not released into the medium as vesicles or
exosomes

Neither low- nor high-speed centrifugation (see Materials and
Methods section) reduced levels of radioactivity in 3 h media from
PNT2C2, PNT1A, P4E6 and PC3 lines (Figure 4). Radioactivity in
medium from LNCaP cells decreased on low-speed centrifugation
because of sedimentation of cells that had detached during the
incubation. No further decrease in radioactivity occurred when
LNCaP medium was centrifuged at 100 000 g (Figure 4).

Only PNT2C2 and PNT1A line cells show a consistent
phorbol ester-stimulated release of [3H]-label into the
medium

Prostate cell lines labelled with [3H]-choline were stimulated with
4a-phorbol (basal) or TPA, and the medium collected to measure
released radioactivity. Results of [3H]-label released in 6 h
incubations are shown in Figure 5A–E and are typical of several
repeats. In fact, Cho metabolite release by all cell lines increased
linearly well beyond 6 h, but normal release experiments usually
only extended to 3 h (Figure 6A and B) to avoid PKC down-
regulation caused by longer-term phorbol ester treatment. LNCaP
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cells were particularly difficult to work with in these experiments
as they adhered poorly to plastic (even after polylysine treatment),
leading to variable levels of Cho release (Figures 5D and 6A).
A reproducible TPA-stimulated release of [3H]-label to the medium
was only observed with PNT2C2 and PNT1A cell lines. This release
effect was always greater in PNT2C2 cells than in the PNT1A line.
Routinely, TPA had little or no stimulatory effect on the release of
[3H]-label from P4E6 and LNCaP lines in incubations up to 3 h;
however, by 6 h a significant stimulation of label release by TPA was
observed, especially from LNCaP cells (Figure 5C and D). In the
results shown in Figure 5E, for PC3 cells, TPA induced a small but
significant release of [3H]-label to the medium at 3 and 6h over
basal. This was not a consistent effect, however, as shown by the
results for TPA stimulation of PC3 cells in inhibitor experiments
(Figure 6A and B). Dimethylsulphoxide (DMSO), solvent for
phorbol esters and inhibitors, had no effect on [3H]-label release
into the medium (results not shown). Levels of [3H]-label released
into the medium by P4E6 and PC3 lines were consistently lower
than levels released by PNT2C2, PNT1A and LNCaP lines, although
equal cell numbers were seeded initially; cells were labelled
identically and 60min uptake rates (Figure 8) were the same as
those in PNT1A cells. The three media used contained unlabelled
choline chloride at 21mM (RPMI, KSFM) and 100mM (F12).

Inhibition of phorbol ester-stimulated [3H]-radioactivity
release

Ro31-8220 and GF109203X reduced TPA-stimulated release of
[3H]-choline metabolites from PNT2C2 and PNT1A cells to basal

values as shown in results from a 3-h incubation (Figure 6A).
With LNCaP cells, GF109203X reduced [3H]-label release to the
medium to below basal values. Go6976, a PKC inhibitor sup-
posedly selective for a and b1 isoforms, had only a small inhibitory
effect on [3H]-label release from PNT2C2 cells and was without
significant effect on label release from PNT1A cells.

Effects of hemicholinium-3 and D609

When monitored in a 3-h incubation (Figure 6B), D609 at 200mM
almost completely inhibited the TPA-stimulated release of [3H]-
label from PNT2C2 and PNT1A cells. The choline transporter
inhibitor hemicholinium 3 (HC-3) at 100 mM was without effect on
[3H]-label released from PNT2C2 cells, and induced a partial but
significant inhibition of label release from PNT1A cells. In the
experiment shown (Figure 6B), activation of PKC with TPA
stimulated a slight increase in label release from LNCaP cells, but
this was not a consistent effect. Hemicholinium 3 reduced this
stimulated release to basal levels. In this experiment, effects of TPA
and inhibitors on PC3 cells were not significantly different from
basal values.

Nature of the choline metabolites released into the
medium

Medium from basal and phorbol ester-stimulated cells at 3 h time
points was resolved into GPCho(GPC), PCho and Cho fractions on
Dowex-50WHþ ion exchange resin columns (Figure 7). Results
for each Cho metabolite are expressed as a % of the total Cho
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metabolites released (i.e., GPChoþPChoþCho). Phosphocholine
was the major metabolite released into the medium by basal and
phorbol ester-stimulated PNT2C2 cells, whereas Cho was the major
metabolite detected in media from basal and stimulated P4E6,
LNCaP and PC3 lines. PNT1A cells were intermediate in that PCho
and Cho each accounted for about equal proportions of the
[3H]-label released. In the results shown for PC3 cells, Cho
accounted for a higher proportion of the metabolites released on
TPA stimulation (68%) compared with unstimulated cells (45%).
With all other lines, the proportions of GPCho, PCho and Cho were
the same in unstimulated and TPA-stimulated cells. Thus, in
PNT2C2 cells, TPA treatment increased Cho metabolite release, but
the proportions of GPCho : PCho :Cho were the same as from
unstimulated cells.

[3H]-Choline uptake by prostate cell lines

PNT2C2 cells at 1� 105 cells per well showed a greater uptake of
[3H]-Cho label over 60min at 371C (Figure 8) compared with the
other four cell lines where levels taken up were more comparable
under identical conditions.

[3H]-Choline distribution in Cho metabolites and
phospholipids after labelling

Over the 30-h labelling period, PNT1A, P4E6, LNCaP and PC3 cells
contained more label into choline phospholipids than into Cho
metabolites (Figure 9A). This was the opposite in PNT2C2 cells
where the label detected in Cho metabolites was higher than in Cho
phospholipids. These results also confirm the uptake data
(Figure 8), indicating that PNT2C2 cells incorporate more label
than the other cell lines under similar conditions. After labelling,
most radioactivity was detected in PCho in all cell lines, especially
in PNT2C2, LNCaP and PC3 lines; the least label was detected in
Cho. Surprisingly, quite a high proportion of label was in GPCho,
especially in P4E6 cells.

Chronic phorbol ester treatment of PNT2C2 and PNT1A
cells downregulates PKCa protein and reduces choline
headgroup release

Chronic exposure of PNT2C2 and PNT1A cells to 250 nM TPA
for 9 h markedly reduced the PKCa protein content of cells
(Figure 10A). Reprobing for actin indicated that approximately
equal levels of total cell protein had been resolved, in agreement
with previous results. TPA activation of PKC stimulated Cho
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metabolite release into the medium from both PNT2C2 and PNT1A
lines. This effect was reduced to basal levels in PKCa-depleted
PNT1A cells and by about 60% in PKCa-depleted PNT2C2
cells (Figure 10B). In contrast, TPA treatment of PC3 cells failed
to stimulate significant Cho metabolite release over basal
levels (Figure 10B), showing the variable effect of TPA on Cho
metabolite release from PC3 cells.

DISCUSSION

Protein kinase C alpha expression

We studied five cell lines to span the non-tumourigenic to
metastatic extremes of PCa. PNT2C2- and PNT1A-immortalised
cell lines were derived from normal prostate epithelia (Cussenot
et al, 1991; Berthon et al, 1995). The P4E6-immortalised line was
derived from an early prostate tumour (Maitland et al, 2001). The
widely studied tumourigenic LNCaP and PC3 cell lines differ in
their apoptotic response to PKCa activation, formation of
metastases and regulation of the PI3K–PKB pathway (Sharrard
and Maitland, 2007). We focused on PKCa because it regulates
PLD (Cockcroft, 2001), which is linked to tumourigenesis (Foster,
2009). When normalised to GAPDH, PKCa protein expression
varied considerably between the five cell lines, being weakest in
P4E6 cells derived from an early prostate tumour (Figure 1D). This
was surprising as PKCa expression is reportedly increased in PCa
(Cornford et al, 1999; Koren et al, 2004; Lahn et al, 2004) and, in

agreement, was 2–4 times higher in tumourigenic LNCaP and PC3
cell lines compared with P4E6 cells. This observation with P4E6
cells derived from an early tumour may indicate that PKCa protein
expression is reduced in early PCa and that expression increases in
later metastatic disease. However, the immortalised PNT2C2 and
PNT1A cell lines from normal prostate epithelia express PKCa
protein at the same level as the tumourigenic LNCaP and PC3 cell
lines. A study of PKCa expression in primary prostate epithelial
cells from normal and tumour tissue is in progress to determine
whether immortalisation influences PKCa expression.

Protein kinase C alpha signalling to MARCKS

Protein kinase C alpha regulates cell spreading and motility
through the F-actin-binding protein MARCKS (Uberall et al, 1997;
Larsson, 2006). Protein kinase C activation stimulates MARCKS
phosphorylation in PNT1A, LNCaP and P4E6 cells (Figure 2),
indicating that a phorbol ester-PKCa-MARCKS pathway is active
even in the P4E6 line with its weaker PKCa protein content.
Surprisingly, some MARCKS was constitutively phosphorylated in
unstimulated PNT2C2 and PC3 cells. Novel PKCe, a MARCKS
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kinase in fibroblasts (Uberall et al, 1997; Rombouts et al, 2008),
might contribute to MARCKS phosphorylation in these prostate
cell lines. However, PKCa protein turns over much more rapidly
than PKCe on chronic exposure of cells to phorbol ester (Olivier
and Parker, 1992) and is barely detectable in PNT1A and PNT2C2
cells exposed to TPA for 9 h (Figure 10A). Myristoylated alanine-
rich C kinase phosphorylation in prostate cell lines depleted in
PKCa protein was reduced, indicating that PKCa is the major link
to MARCKS. Phosphorylation of MARCKS causes its release from
the plasma membrane exposing PI(4,5)P2 and regulating local
F-actin organisation for cell spreading and focal adhesion
formation (Larsson, 2006). Thus, constitutively phosphorylated
MARCKS in PC3 cells could contribute to the increased motility
and invasiveness shown by this line compared with LNCaP cells
(Lang et al, 2002). MicroRNA-21 (miR-21), which is overexpressed
in PCa (Krichevsky and Gabriely, 2009), targets MARCKS, promo-
ting resistance to apoptosis and increased invasiveness (Li et al,
2009). MicroRNA-21 expression is higher in PC3 cells than in the
LNCaP line (Li et al, 2009) contributing to their greater invasiveness.

Phospholipase D activation by PKCa

Phospholipase D activity is elevated in many cancers and
transformed cell lines (Foster and Xu, 2003; Foster, 2006); thus, we
were surprised that levels of basal and PKC-stimulated PLD activity
(Figure 3) were similar between the five cell lines. Protein kinase
C alpha is specifically linked to activation of PLD1 (Kim et al, 1999;
Cockcroft, 2001) and PLD2 (Chen and Exton, 2004); results show that
a PKCa link to PLD is active in cell lines derived from both normal
and tumourigenic epithelia, including P4E6 cells derived from an
early tumour. Activation of PKCa increases PLD activity more in PC3
cells probably because this cell line expresses PKCa, PLD 1 and PLD2
prominently. Standard PLD assay conditions with 30mM 1-butanol
can interfere with the interaction between PKCa and PLD1, leading
to a reduction in measured PLD1 activity (Hu and Exton, 2005) This
might account for why basal PLD activity is similar in normal and
tumourigenic cell lines (Figure 3). Myristoylated alanine-rich
C kinase, which functions as a reversible source of plasma membrane
PI(4, 5)P2 (Larsson, 2006), is a key regulator of the PKCa–PLD
pathway (Sundaram et al, 2004).

[3H]-label release

The centrifugation results (Figure 4) indicate that [3H]-label is not
released into the medium from cell lines in any membrane-bound
prostasome or exosome form (Whiteside, 2005; Nilsson et al,
2009). Differences in levels of basal [3H]-label release from the five
cell lines (Figure 5A–E) must reflect a variation in the initial
[3H]-Cho uptake into cells by Cho transporters (Michel et al,
2006), as well as in Cho metabolism and rates of PtdCho synthesis
and turnover. Our uptake results (Figure 8) indicate that PNT2C2
cells, which release the highest levels of Cho metabolites, also show
the greatest uptake of Cho over 60min. The uptake results also
confirm that LNCaP cells import Cho more rapidly than do PC3
cells, as noted by Baba et al (2007) and Muller et al (2009). Choline
transporter expression has been partially defined for LNCaP and
PC3 cells (Hara et al, 2006; Baba et al, 2007; Muller et al, 2009).
According to Muller et al (2009), Cho uptake into LNCaP and PC3
cells involves a selective Cho transporter (Michel et al, 2006). Our
finding that TPA-stimulated Cho metabolite release from PNT2C2
cells is not HC-3 sensitive suggests that a CTL1 family member
(Michel et al, 2006) is not involved in the release mechanism.
Choline metabolite release from PNT1A cells is partially HC-3
sensitive, suggesting a contribution by a CTL1-type component
(Figure 6B). Bakovic (personal communication) comments ‘CTL1
could efflux free Cho as it regulates an ATP-independent, passive
transport depending on Cho concentration gradient and that
CTL1, as well as OCTs are probably not involved in PCho and

GPCho transport, though the efflux of such metabolites has not
been tested’ (Michel et al, 2006). Our results in Figure 9B indicate
that most Cho taken up by all the cell lines is converted into PCho
by CK as found by Hara et al (2006) for PC3 cells. After labelling,
only non-tumourigenic PNT2C2 cells had label preferentially in
water-soluble Cho metabolites (mainly PCho, Figure 9B) compared
with phospholipids, perhaps indicating slower membrane turnover
compared with tumourigenic cell lines. Phosphocholine levels in
LNCaP and PC3 cells have been measured at about 0.8 and 1.2mM,

respectively, compared with 0.1mM for senescent normal prostate
epithelial cells (Ackerstaff et al, 2001; Glunde et al, 2006).

Stimulated Cho metabolite release

Unstimulated prostate cell lines release GPCho, PCho and Cho into
the medium in varying proportions. However, the main Cho
metabolite released changes from PCho to Cho with the transition
to tumourigenesis (Figure 7). Significantly, tumourigenic cell lines
fail to show a consistent PKC-stimulated release of Cho
metabolites (Figures 5A–E, 6A and B) compared with the marked
stimulation shown by PNT2C2 cells derived from normal epithelia.
PNT1A cells, also from normal prostate epithelia, occupy an
intermediate position in that PCho and Cho are released in about
equal proportions, whereas PKC activation stimulates Cho
metabolite release more weakly than is detected with PNT2C2
cells. Other cell types, for example, fibroblasts, are known to
release PCho into the medium on ATP stimulation (Chung et al,
1997). The TPA-stimulated release of Cho metabolites from
PNT2C2 and PNT1A cells is reduced to basal levels by the widely
used PKC inhibitors Ro31-8220 and GF109203X at 1 mM concen-
tration (Figure 6A). Neither inhibitor is specific for PKC; however,
the MAPKAP kinase-1b and p70S6 kinase also inhibited by
GF109203X and Ro31-8220 (Alessi, 1997) are not directly involved
in PtdCho turnover and Cho metabolism. These inhibitor results
indicate a PKC involvement in the TPA-stimulated release pathway
and are also in agreement with the observations in Figure 3 that
Ro31-8220 inhibits TPA-stimulated PLD activity in all the cell
lines. PNT lines depleted in PKCa protein (Figure 10A) show
reduced Cho metabolite release on restimulation (Figure 10B),
further supporting the PKCa link to PLD. Therefore, in all cell
lines, a TPA–PKCa–PLD pathway stimulates turnover of PtdCho
to generate PtdOH and Cho. However, PCho is the main metabolite
released by PNT2C2 cells, and thus Cho formed by PLD action
must be converted into PCho before release. PNT1A cells release
both PCho and Cho, indicating that the two non-tumourigenic cell
lines differ in Cho metabolism, Cho transporter expression and
PtdCho turnover. Phosphocholine may be released as a secondary
signal (Cuadrado et al, 1993; Chung et al, 1997; Kiss and
Mukherjee, 1997).

Phosphocholine release from PNT2C2 cells

In HeLa cells, basal turnover of PtdCho occurs through
phosphatidylcholine-specific phospholipase C (PC-PLC), DAG
kinase and lipid phosphate phosphatases, and does not involve
PLD (Hii et al, 1991). Therefore, PCho released by PNT cell lines
could be formed by PC-PLC activity, as is observed in normal and
ovarian epithelial cancer cells (Spadaro et al, 2008) or in phorbol
ester- or PDGF-stimulated fibroblasts (Podo et al, 1996; van Dijk
et al, 1997). Involvement of a PC-PLC would explain the inhibition
of Cho metabolite release from PNT lines by 100 mM D609
(Figure 6B), initially reported as a PC-PLC inhibitor (Muller-
Decker, 1989). However, D609 can inhibit PLD and a group IV
PLA2 (Kiss and Tomoro, 1995; van Dijk et al, 1997; Kang et al,
2008), as well as sphingomyelin synthase (Luberto and Hannun,
1998). In epithelial ovarian cancer cells and NK cells, D609 has no
effect on PLD or sphingomyelin synthase (Cecchetti et al, 2007;
Spadaro et al, 2008). Intriguingly, PCho could also be released by
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the two PNT cell lines following translocation of a PC-PLC enzyme
to the external surface of the plasma membrane (Ramoni et al,
2001, 2004). At this site, hydrolysis of PtdCho in the outer
lipid leaflet would result in a direct release of PCho into the
medium (Figure 11). As an example, exogenous B. cereus PC-PLC
hydrolyses PtdCho in the outer lipid leaflet of fibroblasts (van Dijk
et al, 1997). Such a translocation of PC-PLC may be regulated
by PKC (Figure 11) as TPA can stimulate PC-PLC movement to
the plasma membrane in fibroblasts (Ramoni et al, 2004).
Hemicholinium 3 at 200mM, an inhibitor of CK (Jimenez et al,
1995) and of high- and medium-affinity Cho transporters (Michel
et al, 2006), has no effect on TPA-stimulated Cho metabo-
lite release from PNT2C2 cells. This supports the possibility that
PC-PLC translocated to the cell surface releases PCho directly
into the medium (Figure 11). Hemicholinium 3 partially inhibits
PCho/Cho release from TPA-stimulated PNT1A cells, suggesting
that Cho release via a CTL1 family transporter is blocked, whereas
PCho release is unaffected.

Choline metabolite release from tumourigenic cell lines

Our results show that, although PKC stimulates PLD activity in
P4E6, LNCaP and PC3 cell lines (Figure 3), there is no consistent
increase in Cho metabolite release into the medium (Figures 5C–E
and 9). If the new Cho formed is not released, it must be rapidly
converted into PCho by CK as detected in PC3 and LNCaP cells
(Ackerstaff et al, 2001; Glunde et al, 2006; Hara et al, 2006) and in
other malignant cells and cancers (Glunde et al, 2006). Choline
kinase activity is upregulated in tumour-derived cell lines
(Ramirez de Molina et al, 2002), probably accounting for the
rapid conversion of Cho to PCho in tumourigenic prostate lines
and why Cho is not released on PLD activation. Phospholipase D
expression and activity is also increased in several cancers and
malignant cell lines (Foster and Xu, 2003), which could further

increase Cho formation. Such an increase was not detected in these
tumourigenic prostate cell lines perhaps because of the butanol
inhibition effects discussed above. Choline transport into
tumourigenic cells may be increased (Figure 11), as has been
observed in several cancer cell lines (Katz-Brull et al, 2002;
Yoshimoto et al, 2004; Iorio et al, 2005), although we did not
observe this with the cell lines studied here (Figure 8). Protein
kinase C may also influence CK activity directly (Macara, 1989;
Choi et al, 2005), further explaining why Cho is not released into
the medium on TPA activation of PKC. PC-PLC activity may also
be upregulated in tumourigenic prostate lines (Figure 11), as
detected in ovarian and breast cancer cells (Glunde et al, 2004;
Iorio et al, 2005, 2010), further increasing PCho formation.
Elevated levels of PCho in neoplastic cells promote growth
factor-induced mitogenic signalling to Raf-1 and MAP kinases
(Cuadrado et al, 1993; Jimenez et al, 1995; Yalcin et al, 2010) and
will also maintain flow through the Kennedy pathway, increasing
PtdCho synthesis for membrane biogenesis (Figure 11) and cell
proliferation, as well as to compensate for endosome formation for
growth factor signalling (Vieira et al, 1996; Li et al, 1997). The
a isoform of CK also affects cell-cycle regulation promoting both
cell survival and proliferation (Ramirez de Molina et al, 2008; Chua
et al, 2009). PtdOH generated in transformed cells also regulates
cell proliferation and survival pathways via mTOR and Raf (Foster
and Xu, 2003; Foster, 2007a, b; Ramirez de Molina et al, 2008;
Foster, 2009). An increase in cytidylyltransferase (CT) activity in
tumourigenic prostate cells, as has been detected in some breast
cancer lines (Eliyahu et al, 2007), would further increase PCho
utilisation for PtdCho synthesis. A coupling between CT and PLD
turnover of PtdCho, which might further stimulate PtdCho
synthesis, has been reviewed (Cornell and Northwood, 2000). As
PCho levels are elevated in neoplastic cells and transformed cell
lines, it is relevant to ask why this metabolite is not released into
the medium from tumourigenic prostate epithelial cells as occurs

Normal
PNT2C2

Tumourigenic
P4E6, LNCaP, PC3

PtdCho

PtdOH

D
AG

D
AG

KPCho
Kennedy
pathway

PtdCho

MAPK

PI3k/A
kt

mTOR
MAPK

PI3k/A
kt

mTORPCho

PCho

P
C

-P
LC

P
td

C
ho

Kennedy
pathway

PCho

P
C

-P
LC

P
C

-P
LC

P
td

C
ho

D
A

G
D

A
G

K

PtdOH

CT
CK� Cho

out/
in

PCho

Cho

m
TOR

M
APK

PI3
K/A

kt

CK�

Pt
dO

H

PKC
PKC�

PKC
?X

PCho

P
tdC

ho

P
C

-P
LC

+

?

PLD
Marcks

Cho

MAPK

PI3K/A
kt

PtdOH

PKC�

PLD
Marcks

PtdCho PtdChoPhorbol
ester-TPA

Phorbol
ester-TPA

Cho uptake raised
in some cancer cells
but not observed
with the tumourigenic
cell lines used here

PIP2PIP2

?

X

CT

Figure 11 Summary of Cho metabolite formation and release from non-tumourigenic PNT2C2 and tumourigenic P4E6, LNCaP and PC3 cell lines.
PNT2C2 cells: basal PC-PLC generates PCho, some of which is reused for PtdCho synthesis for membrane biogenesis and PtdCho turnover. DAG from
PC-PLC activity might sustain long-term PKC activity and generates PtdOH via DAG kinase to regulate MAPK, mTOR, PI3K/Akt signalling for cell
proliferation. Phosphocholine is released to function as an external secondary signal promoting growth factor signalling: PCho transporters are not identified.
Phosphocholine may be released into the medium directly by PC-PLC translocated to the external cell surface. Protein kinase C isoforms may regulate
PC-PLC translocation, which would increase on addition of phorbol ester. Protein kinase C activation by phorbol ester (TPA) stimulates PLD, increasing
PCho formation, and may upregulate PC-PLC activity. In tumourigenic cell lines, PLD and CKa activities are upregulated to maintain high PCho levels for
PtdCho formation for increased membrane biogenesis and PtdCho turnover for PtdOH formation. PtdOH promotes cell proliferation and malignant cell
survival through MAPK, PI3K/Akt and mTOR pathways. PC-PLC activity is upregulated, increasing PCho formation. Increased Cho uptake as reported in
some malignant cells (but not observed in these cell lines) would further increase PCho levels. Mechanisms of PCho release are downregulated to maintain
high intracellular PCho levels in cancer cells. Phorbol ester (TPA) activation of PKC does not stimulate Cho formation by PLD and its release into the
medium as it is rapidly phosphorylated to PCho by CKa.

Prostate epithelial cell lines release choline metabolites

M Rumsby et al

681

British Journal of Cancer (2011) 104(4), 673 – 684& 2011 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



with normal PNT cell lines. Our findings with these cell lines infer
that tumourigenesis in prostate epithelia results in the down-
regulation of normal mechanisms of PCho release into the medium
so that high intracellular levels of PCho are maintained to enhance
mitogen pathway signalling and PtdCho synthesis for increased
cell proliferation and survival, as summarised in Figure 11.
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