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Regulation of PTEN expression by the SWI/SNF
chromatin-remodelling protein BRGI in human

colorectal carcinoma cells

T Watanabe', S Semba™' and H Yokozaki'
'Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan

BACKGROUND: Aberrant expression of Brahma-related gene-1 (BRGI), a core component of the SWI/SNF chromatin-remodelling
complex, has been implicated in cancer development; however, the biological significance of BRGI in colorectal carcinoma (CRC)
remains unknown.

METHODS: In CRC tissues, expression of BRGI and Brahma (BRM) was investigated immunohistochemically. Colorectal carcinoma-
derived DLD-| cells were used for knockdown of BRGI and PTEN with small interfering RNA (siRNA) and transduction of Akt.
Complementary DNA (cDNA) microarray analysis was performed to explore the genes affected by BRGI.

RESULTS: Expression of BRGI, but not BRM, was frequently elevated in CRC specimens, and knockdown of BRGI suppressed cell
proliferation of DLD-1 cells. By cDNA microarray, we determined that PTEN expression was negatively regulated by BRG| in DLD-|
cells, which subsequently influenced the cyclin DI levels via the phosphoinositide 3-OH kinase (PI3K)—Akt signalling pathway.
The interplay of BRGI on cyclin DI expression was confirmed by the introduction of Akt and knockdown of PTEN in the BRGI
siRNA-transduced DLD-1 cells. Interestingly, this positive correlation between BRGI and cyclin DI expression was also observed
in CRC specimens.

CONCLUSION: Brahma-related gene-| has an important role in the process of CRC development by activating the PI3K—Akt signalling

pathway and resultant upregulation of cyclin D1 levels.
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Chromatin is actively remodelled during development, as indicated
by the observations that the same genetic locus in different tissues
varies in its sensitivity to DNase I and restriction enzymes
(Weintraub and Groudine, 1976; McGhee et al, 1981). Chromatin
remodelling of certain genes appears to precede the transcriptional
activation of the genes, suggesting that chromatin remodelling may
occur in anticipation of developmental transitions (Siebenlist et al,
1986). The SWI/SNF chromatin-remodelling complex is a multi-
subunit complex first identified in yeast and highly conserved
among eukaryotes (Kingston and Narlikar, 1999; Wade and Wolffe,
1999). The mammalian SWI/SNF complex mediates ATP-dependent
chromatin remodelling processes that are critical for transcriptional
regulation by remodelling of nucleosomes, control of cellular
processes and involvement in DNA repair, proliferation and
differentiation (Roberts and Orkin, 2004; Dinant et al, 2008;
Reisman et al, 2009). The SWI/SNF complex contains 9-12 different
subunits that assemble into at least three separate complexes
containing either single Brahma-related gene-1 (BRG1) or Brahma
(BRM) as the ATPase subunit (Wang et al, 1996). The BRGI and
BRM possess highly conserved structures, with a sequence identity
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of 75% in humans, and their enzymatic properties are quite similar
(Khavari et al, 1993; Chiba et al, 1994). Despite the fact that these
subunits are interchangeable (Phelan et al, 1999), the mechanism
by which the functions of BRG1 and BRM are distinguished in the
SWI/SNF complex is currently poorly understood.

Brahma-related gene-1 has been reported to affect cell growth
and to interact with the regulatory proteins involved in cellular
proliferation in in vitro studies (Muchardt and Yaniv, 2001).
Transduction of BRGI into BRGI- and BRM-negative cells
inhibited cell proliferation through altered expression of retino-
blastoma (Rb) family members (Dunaief et al, 1994; Strober et al,
1996; Dahiya et al, 2000). In breast carcinoma cells, the induction
of cell cycle arrest by reintroduction of BRG1 was accounted for
by the downregulation of cyclin E and upregulation of cyclin-
dependent kinase inhibitors p21 and pI5 expression (Hendricks
et al, 2004). In addition, BRGI protein directly interacts with
BRCA1 tumour suppressor and subsequently stimulates transcrip-
tional activity of the p53 protein (Bochar et al, 2000). Thus,
evidence has accumulated that supports the tumour-suppressive
effects of BRG1 in human cancers. However, increased expression
of BRG1 was oppositely oncogenic and indispensable for trans-
formation of human cervical, rhabdoid and colon cancer cells:
BRG1 permitted cancer cell proliferation in cooperation with
the histone acetyl transferase protein, CREB-binding protein, to
suppress p53 activity (Naidu et al, 2009). Thus, BRG1 may possibly
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be involved in biological processes that accelerate cell cycle
progression and cell proliferation.

In human cancers, aberrant expressions of BRG1 and BRM have
been documented in the development of tumours, including those
of the stomach (Sentani et al, 2001; Yamamichi et al, 2007), lung
(Reisman et al, 2003), prostate (Sun et al, 2007) and melanocytes
(Lin et al, 2010); nevertheless, there is a major discrepancy in
the biological significance of BRG1. The BRGI gene deletion or
mutation was found in SW13 adrenocortical carcinoma cells and
PANC-1 pancreatic adenocarcinoma cells (Reisman et al, 2003).
Also, ~10% of primary lung cancers showed a concomitant loss of
BRGI and BRM expression, which was closely correlated with poor
prognosis (Reisman et al, 2002). On the other hand, increased
expressions of BRG1 and BRM were associated with development
and progression of prostate cancer (Sun et al, 2007), cutaneous
melanoma (Lin et al, 2010) and gastric carcinoma (Sentani et al,
2001). These findings indicate the possibility that the biological
significance of these SWI/SNF chromatin remodelling complex
molecules during the pathogenesis of human cancer differs
according to cell and/or tissue types.

In this study, we investigated the pathological significance and
underlying mechanisms of BRGl and BRM in human colorectal
carcinoma (CRC). We performed immunostaining of BRG1 and BRM
in primary CRC specimens as well as their adjacent normal mucosa
and adenoma. Knockdown of BRG1 by RNA interference was con-
ducted for cell growth test and gene expression profiling experiment.

MATERIALS AND METHODS

Cell lines and tissue samples

Human CRC cell lines DLD-1, SW480, HCT116, LoVo and SW620
were obtained from the American Type Culture Collection (Manassas,
VA, USA). Cells were cultured in RPMI-1640 medium containing 10%
fetal bovine serum. Cells were treated with phosphoinositide 3-OH
kinase (PI3K) inhibitor LY294002 (Sigma, St Louis, MO, USA)
dissolved in DMSO at a final concentration of 20 um. A total of 31
cases of human CRCs and adenomas surgically or endoscopically
removed at Kobe University Hospital (Kobe, Japan) were employed.
Informed consent was obtained from all patients and the study was
approved by the institutional review committee of the Kobe
University. Histological examination was performed according to
the Japanese Classification of Colorectal Carcinoma (Japanese Society
for Cancer Colon and Rectum, 1998) along with the International
Union Against Cancer classification (Sobin and Wittekind, 1997).

Immunohistochemistry and immunofluorescence

Immunohistochemistry was performed using the Labelled
StreptAvidin-Biotin kit (Dako, Copenhagen, Denmark). Antibodies
against BRG1 (Santa Cruz, Santa Cruz, CA, USA), BRM (Abcam,
Cambridge, MA, USA), cyclin D1 (Cell Signaling, Beverly,
MA, USA), PTEN (Cell Signaling) and phospho-Akt (Ser473)
(p-Akt, Cell Signaling) were used. Sections were incubated
with biotinylated goat anti-mouse/rabbit IgGs, and streptavidin
conjugated to horseradish peroxidase (HRP) was used to immerse
with 3,3-diaminobenzidine tetrahydrochloride. Immunoreacti-
vities of BRG1, BRM, cyclin D1, PTEN and p-Akt were graded
according to the staining intensity in individual cells: (=), <30%
of tumour cells showed weak immunoreactivities; and (+ ), >30%
of tumour cells showed intense immunoreactivities. For immuno-
fluorescence, cells were grown on glass coverslips and then fixed
with 1% formaldehyde. Antibodies against BRG1, BRM, E-cadherin
(Santa Cruz), f-catenin (Cell Signaling), p-Akt, phospho-GSK-3f
(Ser9) (p-GSK-3f5, Cell Signaling) and cyclin DI were used.
Staining patterns were visualised with Cy2- or Cy3-conjugated
antibody against rabbit/mouse IgGs (GE Healthcare Biosciences,
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Little Chalfont Buckinghamshire, UK). The nuclei were stained
with 4,6-diamidino-2-phenylindole (DAPI).

RNA interference, gene transfection, cell growth test and
flow cytometry

Cells were plated at a density of 1 x 10° cells and treated with BRG1 or
negative control Stealth RNAi small interfering RNA (siRNA) duplex
oligoribonucleotide at a final concentration of 20nm (Invitrogen,
Carlsbad, CA, USA) using Lipofectamine RNAi MAX (Invitrogen).
We also used PTEN Stealth RNAi siRNA (Invitrogen). Wild-type AktI
expression vector (p-Aktl; Upstate, Lake Placid, NY, USA) were
transfected into DLD-1 cells using Lipofetamine 2000 (Invitrogen).
For cell growth test, cells were plated at a density of 5.0 x 10% We
counted the number of the viable cells with cell counting chamber. To
analyse cellular DNA content, DLD-1 cells were collected and fixed in
70% methanol, treated with RNase A and stained with propidium
iodide. The analysis was performed with a FACS Calibur cytometer
(BD Biosciences, San Jose, CA, USA). Cell viability was evaluated
from the population of cells in the subG; DNA content.

Western blot

The cells were lysed in a buffer containing 50mm Tris-HCI
(pH 7.4), 125mM NaCl, 0.1% Triton X-100 and 5mm EDTA
containing 1% protease inhibitor cocktail (Sigma). Proteins (20 ug)
were separated by sodium dodecyl sulphate-polyacrylamide gel
electrophoresis followed by electrotransfer onto Hybond C mem-
brane (Millipore, Bedford, MA, USA). Primary antibodies against
BRGI, BRM, PTEN, Akt (Cell Signaling), p-Akt, p-GSK-3p, GSK-3p8
(Cell Signaling), cyclin D1 and phospho-cyclin D1 at Thr286
(p-cyclin D1; Cell Signaling) were used. Anti-f-actin antibody
(Sigma) was used for a loading control. After blotting with primary
antibodies, HRP-conjugated anti-mouse/rabbit IgGs (1:1000 dilu-
tion; GE Healthcare Biosciences) were used as secondary antibodies.
The signals were visualised with enhanced chemiluminescence.

cDNA microarray

Total RNAs were extracted from the BRGI siRNA- and control
siRNA-treated DLD-1 cells using the RNeasy kit (Qiagen, Hilden,
Germany). Double-stranded ¢cDNA was synthesised from 500 ng of
total RNA Moloney murine leukaemia virus-reverse transcriptase
(Agilent, Palo Alto, CA, USA) and poly dT primer incorporating the
T7 promoter. Cy5-sample cRNA and Cy3-common reference cRNA
were generated and hybridised to a Whole Human Genome oligo
DNA microarray kit (Agilent Technologies), which was scanned
using an Agilent DNA microarray scanner (Agilent), as described
previously (Takeuchi et al, 2006). After data normalisation,
significance analysis of microarray plot analysis was performed
and significantly altered genes were identified in accordance with the
manufacture’s instructions (http://chem.agilent.com).

Quantitative real-time RT-PCR (qRT-PCR)

First-strand cDNA was synthesised using ReverTra Ace (Toyobo,
Tokyo, Japan). In order to analyse the expression level of each
mRNA, real-time quantitative PCR was performed using the ABI
StepOne Realtime PCR system (Applied Biosystems, Foster City,
CA, USA). Gene-specific primers were designed using the Primer
Express software (Applied Biosystems). The primer sequences
were as follows: PTEN: 5'-GACATTATGACACCGCCAAA-3'/5'-AA
GTTCTAGCTGTGGTGGGTTATG-3'; and cyclin DI: 5'-GGGAGGGC
AGTTTTCTAATGGA-3'/5'-CACCACAGTGGCCCACACT-3'. RT-PCR
amplification was performed after 30 s of denaturation at 95 °C, and 40
cycles of PCR were performed at 95°C for 5s and 60 °C for 30s. We
confirmed that a band of single amplicon was detected in each real-
time PCR reaction by the following electrophoresis. The Cr values were
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determined by plotting the observed fluorescence against the cycle
number. Each Cr value was analysed using the comparative threshold
cycle method and normalised to the Cr values of cyclophilin A. The
relative gene expression levels were estimated using the following
formula: relative expression = 2~ (CTltarset genel—CTleyclophilin A])

RESULTS

Increased levels of BRG1 expression in human CRC cases

To investigate the role of BRG1 and BRM during the pathogenesis
of CRC, we first investigated the expressions of BRG1 and BRM in

A Normal mucosa

BRG1 expression

BRM expression

human CRC as well as normal colorectal mucosa and adenoma.
In normal mucosa, weak immunoreactivities of BRG1 and BRM in
the nuclei were detected, particularly in the cells located at the
proliferative zone of crypts (Figure 1A). In CRC tissues, the BRG1
expression levels were dramatically increased, clearly indicating
upregulation in comparison with those of adenoma (Figure 1A).
However, no significant elevation of BRM levels was found in the
same tissue samples (Figure 1A). We evaluated the average ratio of
BRG1-positive cells in normal colorectal mucosa, adenoma and
CRC as well as that of BRM-positive cells, and found that the
average ratios of BRG1-positive cells in normal colorectal mucosa,
adenoma and CRC were 31.9+ 1.6, 66.5+3.3, and 90.6 + 1.8%,

Carcinoma
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Figure |

Adenoma
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The SWI/SNF chromatin-remodelling BRG| and BRM expression in human CRC tissues. (A) Immunohistochemical results of BRGI and BRM

expression in the representative normal mucosa, adenoma and adenocarcinoma of the colorectum. (B) Average percentages of BRGI- and BRM-positive

cells. *P<0.05, Student’s t-test.
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respectively (P<0.05, Student’s t-test, Figure 1B). However, there
was no significant difference in the ratios of BRM-positive cells
among normal colorectal mucosa, adenoma and CRC (Figure 1B).

BRG1 knockdown reduces cell proliferation and induces
morphological changes

To examine the biological function of BRG1 in CRC cells, we
collected five CRC cell lines and examined the protein levels of
BRGI and BRM. DLD-1, SW480 and HCT116 cells showed high
levels of BRG1 and BRM expression, whereas LoVo and SW620
cells expressed neither BRG1 nor BRM (Figure 2A). Nuclear
localisation of both BRG1 and BRM in DLD-1 cells are shown
in Figure 2B. Then, we performed an RNA interference of BRGI
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to assess the impact of silencing BRG1 on cell proliferation and
morphology. The BRGI siRNA specifically decreased BRGI
expression; however, there was no significant effect on BRM levels
(Figure 2C). Transduction of BRGI siRNA significantly reduced
cell growth (P<0.05; Student’ t-test; Figure 2D) and increased the
population of cells in the G;/G, phase (Figure 2E). As transduction
of BRGI siRNA did not increase the population of cells in the
subG; DNA content, we considered that knockdown of BRG1 did
not influence cell viability (Figure 2E). Also, BRG1 knockdown
caused the morphologic changes: although cells treated with the
negative control siRNA transfectant formed stable cell-to-cell
junctions, and E-cadherin and f-catenin were linearly localised at
the cell-cell borders, the distribution of these molecules was
disrupted by the BRGI siRNA transfectant (Figure 2F).

DLD-1

B-ACtin — ————— DAPI
C D E M1M2M3 M4 M1M2M3 M4
< = t i HH + i
Z < 300 200 200
c Z ——— Control siRNA SubG,: 3.1% SubG,: 2.5%
(%] E=
— (2] _— i
® 5 _ BRG1 sIRNA 160 GG, 35.0% 160 GGy 45.3%
c 5 |
38 gg — 200 * SIM/G,: 61.9% SIM/Gy: 52.2%
BRGT — € 150
8
3 100
BRM — e m ©
50
B-Actin — 0 ! :
0 3 5 (] 1 2 3 4 0 il 2 3 4
) 10° 10" 102 10° 10 10° 10" 102 10° 10
Time (days) FL2-H FL2-H
Control siRNA BRG1 siRNA
F E-cadherin
<
Z
o
»
[
S
o
o

BRG1 siRNA

Figure 2 Effects of knockdown of BRGI in human CRC cell lines. (A) Expressions of BRGI and BRM in CRC cell lines. f-Actin was used as a loading
control. (B) Nuclear localisation of BRGI and BRM protein in DLD-1| cells. (€) Silencing of BRGI by transduction of BRG/ siRNA into DLD-1 cells. The
negative control siRNA was also transduced. (D) Results of cell growth test. #*P < 0.05, Student’s t-test. (E) Results of cell cycle analysis. The percentages of
cells in the subG,, Go/G, and S/M/G, DNA content are shown. (F) Morphological changes and altered expressions of E-cadherin and -catenin in the BRG

siRNA-transfected DLD-1 cells.
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Table | Cell cycle-related genes differentially expressed in DLD-1 cells transfected with BRG small interfering RNA (siRNA) and negative control siRNA
Accession number Gene symbol Gene title Fold change
Upregulated genes
NM_018571 ALS2CR2 Amyotrophic lateral sclerosis 2 chromosome region, candidate 2 352
NM_002923 RGS2 Regulator of G protein signalling 323
NM_0003 14 PTEN Phosphatase and tensin homolog 322
NM_078469 BCCIP BRCA2 and CDKNIA interacting protein 320
NM_133646 ZAK Sterile-ai-motif and leucine zipper containing kinase 3.00
Downregulated genes
ABO13462 FZRI mRNA for Fzrl 0.29
NM_001924 GADD45A Growth arrest and DNA-damage-inducible, o 0.26
NM_000389 CDKNIA Cyclin-dependent kinase inhibitor 1A 0.25
NM_004083 DDIT3 DNA-damage-inducible transcript 3 0.23
NM_005427 TP73 Tumour protein p73 0.21
NM_012191 NATé6 N-acetyltransferase 6 0.21
NM_000700 ANXAI Annexin Al 0.17
Knockdown of BRG1 upregulates the PTEN mRNA levels A 3 B
<
To explore the genes affected by BRG1 that are attributed to - z 2
elevated cell growth, we performed a cDNA microarray gene T “' g %
expression profile using cDNAs from DLD-1 cells in the presence g2 £ G
or absence of the BRG1 knockdown. We confirmed an approxi- g %_ 8§ 5
mately eight-fold reduction of BRGI transcripts by trans- €S
duction of BRGI siRNA in the cDNA microarray experiment g § 1 PTEN — S
(data not shown). Then, we extracted a total of 12 cell cycle- g
related genes whose expressions were up- or down-regulated A
>3-fold by transduction of BRGI siRNA (Table 1). According Frhctin - g—
to the results, we hypothesised that PTEN might have an impor- 0

tant role as a downstream target of BRG1 in human CRC,
because PTEN was a key tumour suppressor by suppressing
the PI3K - Akt signalling pathway in a variety of human cancers
(Li et al, 1997; Steck et al, 1997; Semba et al, 2009). Upregu-
lation of PTEN expression was confirmed in DLD-1 (Figure 3)
and SW480 cells (Supplementary Data S1). We investigated the
altered expressions of the PI3K-Akt signalling-related genes.
Although there was no significant difference in the PIK3CA,
PIK3CB, PIK3CD and PIK3CG genes, decreased levels of gene
expression of PDKI and PI3KDI transcripts were detected
by transduction of BRGI siRNA (Supplementary Data S2).
Furthermore, no change of the Rb and p53 mRNA and protein
levels were found in the BRG1 siRNA-treated DLD-1 cells (data not
shown).

Knockdown of BRG1 downregulates the cyclin D1
expression levels via inhibition of the PI3K - Akt signalling
pathway

The major role of PTEN is to suppress tumourigenesis as a
negative regulator of the PI3K-AKT signalling pathway (Franke
et al, 1997). We examined altered expression levels of the key
proteins involved in the PI3K-Akt signalling pathway when
the cells were transfected with BRGI siRNA. Silencing of BRGI
remarkably reduced not only the phosphorylated forms of
Akt and GSK-3f levels, but also the total amount of cyclin D1
protein levels in DLD-1 cells, whereas transduction of BRGI
siRNA did not significantly decrease p-cyclin D1 levels (Figure 4A
and B). Treatment by the LY294002 PI3K inhibitor showed
the same effects on the reduced levels of p-Akt, p-GSK-3f and
cyclin D1 expression (Figure 4A). The similar effect of silencing of
BRG1 on the negative regulation of the PI3K-Akt signalling
pathway was confirmed in SW480 cells (Supplementary Data S1).
GSK-3f-induced nuclear accumulation of f-catenin is another
main pathway targeting cyclin D1 by upregulation of cyclin DI

British Journal of Cancer (2011) 104(1), 146—154

Control siRNA BRG1 siRNA

Figure 3 Knockdown of BRGI upregulates PTEN levels in DLD-1 cells.
(A) Results of real-time quantitative RT—PCR analysis. The cyclophilin
mRNA levels were examined as a quality and quantity of control
of mRNA. #*P<0.05, Student's t-test. (B) Increased levels of PTEN
protein in the BRGI siRNA transfectant. f-Actin was used as a loading
control.

mRNA transcripts (Shtutman et al, 1999; Tetsu and McCormick,
1999). Therefore, we examined the amount of f-catenin in
subcellular fractions and the cyclin DI mRNA levels in the BRGI
siRNA- and control siRNA-transfected cells; however, we did not
detect any significant changes in either experiment (Supple-
mentary Data S3). Furthermore, co-transfection of BRGI siRNA
and p-Aktl restored cell growth accompanied by upregulation of
p-Akt, p-GSK-3f and cyclin D1 levels (Figure 4C and D), whereas
transduction of PTEN siRNA decreased tumour-suppressing effect
of BRG1 silencing (Figure 4E and F).

High levels of BRG1 are associated with the cyclin D1
status in human CRC tissues

Finally, we investigated whether the expression pattern of
BRG1 was consistent with that of cyclin D1 expression in
human CRC tissues (Figure 5A). The results are summarised in
Figure 5B. Of 31 CRCs, 23 (74%) cases showed positive
immunoreactivity against BRG1. Interestingly, positive immunor-
eactivity against cyclin D1 was frequently detected in 21 (91%)
of 23 BRG1(+) CRCs and only in 1 (13%) of 8 BRG(—) CRCs.
As for the status of PTEN and p-Akt levels, there was no signi-
ficant difference between BRG1(+ ) and BRG1(—) CRCs. Overall,
11 (35%) of BRG1(+ )/PETN(—)/p-Akt(+ )/cyclin D1(+) CRC
cases were detected, which supported the results obtained in
in vitro experiments.
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Figure 4 The impact of BRGI on the cyclin D1 levels via the PI3K—Akt signalling pathway in DLD-1 cells. (A) Results of western blot analysis. Cells were
also treated with PI3K inhibitor LY294002. f-Actin was used as a loading control. (B) The status of p-Akt, p-GSK-3f and cyclin DI expressions in the BRG |
SiRNA transfectant. (€) Transduction of recombinant Akt expression vector (p-Aktl) inhibited tumour-suppressive effects of BRG/ siRNA. -Actin was
used as a loading control. (D) Results of the growth test. *P <0.05, Student's t-test. (E) Co-transduction of BRG/ siRNA and PTEN siRNA. f-Actin was used
as a loading control. (F) Results of the growth test. *P<0.05, Student's t-test.

DISCUSSION

In this study, we examined the biological significance of BRGI, the
SWI/SNF chromatin-remodelling factor, during the development
of CRC. Our results showed that BRG1 expression was frequently
elevated in CRC tissues and that BRG1 knockdown in DLD-1
cells reduced cell proliferation by suppressing the activity of the

© 2011 Cancer Research UK

PI3K - Akt signalling pathway by induction of PTEN expression
and resultant downregulation of cyclin D1 expression. Interest-
ingly, this correlation between BRG1 and cyclin D1 expression was
also observed in human CRC tissues. To our knowledge, this is the
first report indicating that aberrant BRG1 expression may promote
tumour development and growth through the PI3K- Akt pathway
in CRC. In these clinical specimens of human CRC, we found
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BRG1(+)
23 (74%) cases

BRG1(-)
8 (26%) cases

Cyclin D1(+)
1 (13%) case

Cyclin D1

Cyclin D1(+)
21 (91%) cases
p-Akt(+)

19 (83%) cases

BRG1(+)/cyclin D1(+)/PTEN(-)/p-Akt(+) ]|
11 (35%) cases —

p-Akt(+)
5 (63%) cases

PTEN(-)
1 (63%) case

Figure 5 The status of BRGI expression correlates with high cyclin D1 levels in CRC cases. (A) Representative illustrations of immunoreactivities against
cyclin DI, PTEN and p-Akt antibodies. (B) Summary of immunohistochemical analyses. Immunoreactivities against BRGI, cyclin DI, PTEN and p-Akt were

evaluated as described in the text.

significantly increased expression of BRG1 but not BRM compared
with the normal mucosa. In addition, the average ratio of
BRGI1(+) cells in adenoma and CRC was significantly higher
than that in normal mucosa. This positive correlation between
BRGI expression and tissue malignancy was in agreement with
the results of gastric cancer (Sentani et al, 2001), prostate cancer
(Sun et al, 2007) and cutaneous melanoma (Lin et al, 2010) but not
with those of lung cancer (Reisman et al, 2003).

In our BRGI knockdown experiments, we found remarkable
reduction of cell proliferation and cessation of cell cycle. As a
molecular mechanism of BRG1 affecting cell proliferation, we
provided evidence that BRG1 possibly suppressed PTEN expres-
sion at the mRNA and protein levels and then downregulated
the PI3K - Akt signalling pathway. As reported previously, loss of
PTEN (Frattini et al, 2005; Sawai et al, 2008) and phosphorylation
of Akt (Itoh et al, 2002) are essential for the tumour progression of

British Journal of Cancer (2011) 104(l), 46— 154

CRC cells. Although PTEN transcription is regulated by several
molecules, including Egr-1 (Virolle et al, 2001), c-Jun (Hettinger
et al, 2007), 1d-1 (Lee et al, 2009) and TGE-f§ (Chow et al, 2010),
little is known about the gene regulating PTEN transcription
during CRC development. Our results may offer a key to under-
standing the regulatory basis for the PTEN mRNA in CRC.
Although BRG1 contributed to tumour suppression by interaction
with Rb (Dunaief et al, 1994; Strober et al, 1996; Dahiya et al, 2000)
and p53 (Bochar et al, 2000), other BRG1-related mechanisms may
exist for the promotion of tumour growth in CRC. Here, we have
proposed the possibility that the transcription of PTEN is regulated
by BRGI; further study is required to determine what mechanism
BRGI uses for transcriptional regulation of PTEN, whether by the
disruption of histone-DNA contacts by ATP-dependent chromatin
remodellers, or by histone tail modifications including methylation
and acetylation or by direct regulation.

© 201 | Cancer Research UK



Cyclin D1 is an important target of the PI3K- Akt signalling
pathway, and overexpression of cyclin D1 may be a significant
predictor of CRC progression (Ogino et al, 2009). Nuclear
p-catenin interacts with DNA-binding proteins of the TCF/LEF
family and acts as a transcriptional activator of many target genes
including cyclin D1 (Shtutman et al, 1999; Tetsu and McCormick,
1999). Despite previous reports showing that f-catenin expression
in the nuclei can be a prognostic marker in CRC patients (Horst
et al, 2008), and that BRG1 directly interacts with f-catenin to
promote target gene activation (Barker et al, 2001), our results
show that BRG1 expression is significantly associated with cyclin
D1 expression but not nuclear f-catenin expression. This finding
derives from our experiments using DLD-1 cells: BRG1 knockdown
downregulated expression of cyclin D1 without subcellular change
of f-catenin (Supplementary Data S3), and p-cyclin D1 expression
level was relatively higher than total cyclin D1 levels (Figure 4A).
Therefore, it seems reasonable that the aberrant expression of
BRGI can regulate the degradation of cyclin D1 via direct
phosphorylation by GSK-3f (Diehl et al, 1998), but not via nuclear
p-catenin accumulation.

The data from our cDNA microarray study using BRGI siRNA-
and negative control siRNA-treated cells suggests the further
possibility that BRG1 is involved in regulating other tumour-
related genes as well as the PTEN gene. In genes upregulated by
BRGI siRNA transduction, the regulator of G-protein signalling 2
(RGS2) gene is suggested to have an important role as tumour
suppressor in several human cancers (Cao et al, 2006; Smalley
et al, 2007). The zipper sterile-o-motif kinase (ZAK) gene might
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