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BACKGROUND: Cytology-based diagnostics of squamous cervical cancer (SCC) precursor lesions is subjective and can be improved
by objective markers.
METHODS: IHC-based analysis of ANXA6, HSP27, peroxiredoxin 2 (PRDX2), NCF2, and tropomyosin 4 (TPM4) during
SCC carcinogenesis.
RESULTS: Expression of ANXA6, HSP27, PRDX2, and NCF2 in the cytoplasm of dysplastic cells increased from cervical intraepithelial
neoplasia 2/3 (CIN2/3) to microinvasive cancer. Invasive SCC showed lower expression of TPM4 than CIN and normal epithelium.
CIN2/3 with the highest sensitivity and specificity differed from normal epithelium by cytoplasmic expression of HSP27. Patients with
cytoplasmic HSP27 expression in SCC deviating from that observed in normal epithelium had worse relapse-free (P¼ 0.019) and
overall (P¼ 0.014) survival. Invasive SCC with the highest sensitivity and specificity differed from normal epithelium by expression of
PRDX2 and TPM4 in the cytoplasm, from CIN2/3 by the expression of ANXA6 and TPM4 in the cytoplasm, and from microinvasive
SCC by the expression of PRDX2 and ANXA6 in the cytoplasm. The number of sporadic ANXA6þ cells between the atypical cells
increased from CIN2/3 to invasive SCC.
CONCLUSION: Detection of expression changes of the proteins ANXA6, HSP27, PRDX2, NCF2, and TPM4 in SCC precursor lesions
may aid current cytological and pathological diagnostics and evaluation of prognosis.
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Cervical cancer (CC) is the second most commonly diagnosed
cancer among women worldwide (Garcia et al, 2007). The
introduction of cytology-based screening has reduced incidence
of the most common squamous cell cervical carcinoma (SCC), but
CC remains a major problem in the developing world.
The aetiological role of human papillomaviruses (HPVs) for CC

and precursor lesions has been established (Wallin et al, 1999;
Munoz et al, 2003; Castellsague, 2008; Zur Hausen, 2009). Persistent
infection with HR-HPV and expression of the viral oncogenes E6
and E7 are critical for malignant transformation (Zur Hausen, 2009),
making detection and monitoring of HR-HPV carriers upon
primary detection of abnormal cervical cytology an attractive
approach (Nobbenhuis et al, 1999; Brismar et al, 2009). However,
more than half of patients with normal cervical histopathology

demonstrate infection with HR-HPV although gain of the 3q26
chromosome region, where the human telomerase RNA gene (hTERC)
is located, is an early event during CC carcinogenesis (Alameda et al,
2009; Andersson et al, 2009). Detection of hTERC amplification
discriminates low- and high-grade squamous intraepithelial lesions
and identifies patients with histologically confirmed cervical intrae-
pithelial neoplasia (CIN) and SCC (Andersson et al, 2009).
In 1928, both Babés and Papanicolaou (Babés, 1928;

Papanicolaou, 1928) described the potential for desquamated cell
material from the uterine cervix to serve as a diagnostic tool for
detection of CC. However, a high false-negative rate remains a
major clinical problem today. The accuracy of Pap smear
technique for early detection of CC and precursor lesions has
been evaluated and the results varied with false-negative rates
ranging from 5% to 40% (Näslund et al, 1986). When compared
with conventional Pap smears, LBC showed neither higher
sensitivity nor specificity for detection of CIN (Arbyn et al, 2008).
Correct diagnosis is important for choice of therapy and

avoiding of under- and over-treatment. This indicates need for
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additional objective markers of CC precursors in cervical cytology
material that can be detected by professionals or assessed through
automated technology, and thus improve early diagnostics.
One promising approach in the search for new cancer markers is

proteomics. Proteomics is used to analyse and identify differen-
tially expressed proteins in tissue samples, and to validate their
significance as disease markers (Kulasingam and Diamandis,
2008). Proteomics was used in several studies of CC markers to
identify a number of differentially expressed proteins, but without
analysing their potential diagnostic value (Bae et al, 2005; Choi
et al, 2005; Zhu et al, 2009). We previously used proteomics
analysis to compare SCC and squamous vaginal cancer (Hellman
et al, 2004, 2009; Lomnytska et al, 2010), and we extend the
analysis in a current study aiming to establish a marker protein
pattern for objective detection of SCC precursor lesions.
We performed an analysis of expression of ANXA6, HSP27,
peroxiredoxin 2 (PRDX2), NCF2, and tropomyosin 4 (TPM4) on
sequential steps of SCC carcinogenesis, that is, on CIN2/3,
microinvasive, and invasive cancers. We evaluated cytoplasmic
and nuclear expression of these proteins in differentiated,
dysplastic, and cancer cells, compared expression of proteins,
and discussed the potential clinical value of the differential
expression of the studied marker protein patterns.

MATERIALS AND METHODS

Clinical material

The study was performed on formaldehyde-fixed paraffin-
embedded material, collected at the Department of Gynecology,
Karolinska University Hospital, Huddinge, Sweden, and at the
Department of Oncology and Medical Radiology, Lviv National
Medical University, Ukraine with informed consent and approval
from the local ethics committees (Stockholm County Council –
Dnr. 97-244, 00-068, 352/00; Ethics Committee of Lviv National
Medical University – protocol No. 2; Table 1A). Histopathological
presentation of selected cases was confirmed.

IHC

Paraffinised tissue blocks were cut to obtain 4mm-thick tissue
sections on SuperFrost (Braunschweig, Germany) slides and kept
overnight at 551C before deparaffinisation and rehydratation that was
carried out in a series of xylene and ethanol baths of decreasing
concentration. Antigen was retrieved by boiling in 0.1M Na citrate
buffer (pH 6.0). Endogenous peroxidase was inhibited by 0.5% H2O2.

Samples were incubated in 5% serum of the species from which the
secondary antibody was obtained to avoid non-specific binding.
Monoclonal antibodies to ANXA6 (1 : 400), PRDX2 (1 : 100), HSP27
(1 : 400), NCF2 (1 : 150), TPM4 (1 : 100), vimentin (1 : 200, V5255,
Sigma-Aldrich, St Louis, MO, USA), and CD68 (1 : 400, PG-M1,
DAKO, Carpinteria, CA, USA) in 1% BSA were applied and incubated
overnight at þ 41C (Table 1B). The secondary antibody was coupled
to DAB via a biotin–avidin complex for visualisation (VectaStain,
Vector, Burlingame, CA, USA). Tissue samples were counterstained
with hematoxylin, washed in lukewarm water, dehydrated in a series
of increasing concentrations of ethanol and xylene, mounted using a
permanent mounting medium, and covered. All steps were carried
out in a moist chamber.

Evaluation of staining

Images were captured at a Leica DM4500B light microscope
(camera DFC320, ocular 10� , objectives 20� /0.50 HC PL, and
40� , 506145, Leica Application Suite software (version 2.4.0,
Wetzlar, Germany), 16-bit depth.tif format images with 48bit/mm
image resolution). Expression of the analysed proteins was scored
based on the intensity of staining, location of staining in individual
cells, and on the number of positively stained cells. Intensity of
colour expression was scored as: 0, negative; 1þ , weak; 2þ ,
moderate; and 3þ , strong. The number of positively stained cells
was scored as 0 if no staining was observed or was present in o5%
of cells; 1þ , positive staining in 5–25% of cells; 2þ , positive
staining in 25–75% of cells; and 3þ , positive staining in more
than 75% of cells. Expression of a protein was evaluated as a

Table 1 Characterisation of clinical material (A) and primary antibodies used for immunohistochemistry (IHC) (B)

(A)

Diagnosis, FIGO Histopathology Abbrevation
Number of
cases (%)

Normal cervix Normal cervix SCE 8 (11.94)
CIN 2 Moderate cervical intraepithelial dysplasia CIN 2 4 (5.97)
CIN 3 Severe cervical intraepithelial dysplasia CIN 3 9 (13.43)

Squamous cervical carcinoma in situ 12 (17.91)
SCC, stage IA1 Microinvasion o3mm in depth and o7mm horizontally MicSCC 7 (10.45)
SCC, stage IA2 Invasion 45mm in depth or 47mm horizontally InvSCC 2 (2.99)
SCC, stage IB1 Visible lesion r4 cm in greatest dimension 17 (25.37)
SCC, stage IB2 Visible lesion 44 cm 2 (2.99)
SCC, stage IIA Without parametrial invasion, but involvimg upper 2/3 of vagina 1 (1.49)
SCC, stage IIB With parametrial invasion 1 (1.49)
SCC, stage III Extends to pelvic wall or lower third of vagina 3 (4.48)
Total 66

(B)

Protein Antibody Origin Clone
Epitope
detection

Dilution
factor

Tissues for positive
controls Manufacturer

ANXA6 Sc-1931 Goat polyclonal N-19 N-terminus 400 Liver hepatocytes SantaCruz (SantaCruz, CA, USA)
HSP27 Sc-13132 Mouse monoclonal F-4 Amino acids 32–108 400 Tonsilla SantaCruz (SantaCruz, CA, USA)
PRDX2 WH007001 Mouse monoclonal 4E 10-2D2 Amino acids 1–199 100 Tonsilla Sigma-Aldrich
NCF2 HPA006040 Rabbit polyclonal PrEST Full-length 150 Glandular epithelium of colon Sigma-Aldrich
TPM4 WH000717 Mouse monoclonal 4E4-1D2 Full-length 200 Placenta, decidual tissue Sigma-Aldrich

Abbreviations: CIN¼ cervical intraepithelial neoplasia; FIGO¼ International Federation of Gynecologic Oncology; SCC¼ squamous cervical cancer; SCE¼ squamous cervical
epithelial.
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histoscore, that is, as a sum of the scores of the intensity and of the
cell number counts (Cheng et al, 2008).

DNA cytometry

DNA cytometry was performed on tissue sections (6 mm) of CIN2/3
and SCC. Slides were stained with Feulgen and the DNA content in
nuclei of atypical cells was measured as described (Steinbeck et al,
1999). DNA values were determined in relation to a corresponding
control, which denoted the normal DNA (diploid) content at 2c
region. Histograms with a narrow stem line in the 2c region
represented diploid genomically stable tumours, whereas those
with a broad stem line in the 2c region expanding towards the 4c
region were classified as diploid genomically unstable. Histograms
with a narrow peak outside the 2c region were considered to be
aneuploid genomically stable, whereas with a broad peak outside
the 2c region and additional peaks exceeding the 4c region were
classified as aneuploid genomically unstable. Approximately 100
cells were analysed for each tumour specimen.

Statistical analysis

Software Statistica 6.0 (StatSoft Inc., Tulsa, OK, USA) was used for
the w2 test, t-test, P-value, software MedCalc 11.2.1.0 (MedCalc
Software bvba, Mariakerke, Belgium) for ROC analysis, evaluation
of sensitivity and specificity. Relapse-free survival (RFS) and
overall survival (OS) were evaluated using univariate Kaplan–
Meier analysis with log-rank test. A difference of Po0.05 was
considered statistically significant (Glantz, 1998).

RESULTS

Intensity of expression of ANXA6, HSP27, PRDX2, NCF2,
and TPM4 in normal uterine cervix and during
development of SCC

In squamous cervical epithelial (SCE), expression of ANXA6 was
localised to the epithelial cell membrane with moderately intense
expression in the submucosal stroma. Positive expression of

ANXA6
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Figure 1 Six selected cases (1–6) showing immunohistochemical expression of ANXA6 (A), HSP27 (B), PRDX2 (C), NCF2 (D), and TPM4 (E),
magnification: � 400 (D1, D2, E2, C6 have magnification � 200), noncropped images with inserts. Observed expression of ANXA6 was membranous
in SCE (A1), cytoplasmic and sporadic in CIN2/3, MicSCC and InvSCC (A2–A6). Expression of HSP27 in the nuclei was observed in CIN2/3, MicSCC
(B2–B4), and less in InvSCC (B5–B6). Expression of PRDX2 was cytoplasmic in positive cases. Expression of NCF2 was observed in the cytoplasm
(D2–D6), and expression of TPM4 in the cytoplasm was observed mainly in SCE (D1). Histopathological description. SCE (1): stratified layers of epithelial
cells with a thin layer of parabasal cells. CIN2/3 (2–3): dysplastic cells with hyperchromatic irregular nuclei and koilocytar atypia with perinuclear clear
vacuolisation as characteristic of HPV infection (marked with black arrows – C2, A4, B4) that gradually substitute epithelial layers from basal membrane
throughout the epithelium forming carcinoma in situ. MisSCC (4): invasion of dysplastic cells into underlying stroma for o3mm in depth and o7mm
horizontally. InvSCC (5–6): irregular infiltrates of tumor cells in connective tissue with inflammatory reaction.
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HSP27, PRDX2, NCF2, and TPM4 was observed in the cytoplasm
(Figure 1; Table 2A).
In CIN2, we observed weak and moderate expression of

ANXA6 in the cytoplasm of dysplastic cells; parabasal cells were
characterised by moderate cytoplasmic protein expression.
Additionally, we observed strong expression of ANXA6 in 5 to
10% of cells within the dysplastic cell layer. Those cells were
negative for expression of vimentin (VIM�) and CD68. Strong
cytoplasmic expression of HSP27 and its stromal expression were
detected. NCF2 and TPM4 showed weak cytoplasmic expression.
In CIN3, dysplastic cells showed weak and moderate expression

of ANXA6 in 18 cases (72%) with a presence of sporadic ANXA6þ
cells. Weak and moderate nuclear expression of HPS27 was
detected in addition to moderate/strong cytoplasmic and stromal
expression. Peroxiredoxin 2 was positive in only one out of three
cases, NCF2 in half of cases, and TPM4 in two out of three cases.
In CIN2/3, NCF2þ cells were localised to the deep parabasal layers
of epithelium, and TPM4þ cells were seen in superficial
differentiated layers.
In MicSCC, expression of ANXA6 was positive in cancer cells in

seven (77.8%) cases showing presence of sporadic ANXA6þ cells.
Expression of HSP27 was predominantly cytoplasmic moderate.
Peroxiredoxin 2 and NCF2 were positive in almost all cases,
whereas TPM4 was detected in five (55.6%) cases.
In InvSCC, sporadic ANXA6þ cells (5–30%) were observed in

19 (79.2%) cases, although diffuse cytoplasmic expression of the
protein was uncommon. Moderate/strong cytoplasmic expression
of HSP27 was found in almost all cases and moderate
nuclear expression in half the cases (11–43.8%). Weak cytoplasmic
expression of PRDX2 and NCF2 was observed. Weak cytoplasmic
expression of TPM4 was found in six (25%) cases.

Histoscore of expression of ANXA6, HSP27, PRDX2,
NCF2, and TPM4 in SCC carcinogenesis

The histoscore (a sum of scores representing number of cells
expressing the protein and intensity of staining) is another
parameter used to evaluate proteins. Diffuse cytoplasmic expres-
sion of ANXA6 was lower in InvSCC than in MicSCC and CIN3.
The number of sporadic ANXA6þ cells increased towards InvSCC
(Figure 2; Table 2B). Expression of HSP27 in the cytoplasm of
dysplastic cells was higher in CIN2/3 than in SCE. A diffuse
cytoplasmic expression of NCF2 was similar in the dysplastic cells
of CIN2/3, but higher in MicSCC than in InvSCC. Expression
of PRDX2 in MicSCC was similar to expression in SCE, which
was higher than in InvSCC. Tropomyosin 4 expression in the
cytoplasm of dysplastic and cancer cells gradually decreased from SCE
to InvSCC, with a significant difference between CIN3 and InvSCC.

Sensitivity and specificity

For distinguishing between normal SCE and CIN2/3, expression of
HSP27 in the cytoplasm had the best sensitivity and specificity
(Figure 3A). Expression of PRDX2 and TPM4 in the cytoplasm was
associated with both the highest sensitivity and specificity for
differentiation between SCE and InvSCC, and expression of PRDX2
and ANXA6 in the cytoplasm was the most sensitive and specific
for differentiation between MicSCC and InvSCC (Figure 3B).
Finally, expression of ANXA6 and TPM4 in the cytoplasm
provided the best specificity and sensitivity for distinguishing
between CIN2/3 and InvSCC.

Coexpression of ANXA6, HSP27, PRDX2, NCF2, and
TPM4 in CIN3 and SCC

ANXA6 was coexpressed with PRDX2 in the cytoplasm of
dysplastic cells in 3/4 of cases (P¼ 0.057; Table 3) of CIN3 and
MicSCC. A correlation between genomic instability and positive

nuclear expression of HSP27 in dysplastic cells was observed.
Between genomically unstable CIN2/3 and MicSCC, 11 (91.7%)
cases with positive nuclear expression of HSP27 (P¼ 0.061) were
found.

Prognostic value of cytoplasmic HSP27 expression in
InvSCC cancer cells

Relapse-freeRFS and OS were evaluated in 14 patients with
InvSCC, who were followed for 60–72 months (5–6 years) after
primary diagnosis (Figure 4C). Patients with weak HSP27
cytoplasmic expression (two cases, 14.3%) had the worst RFS
(P¼ 0.019) and OS (P¼ 0.014), compared with other patients
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(Figure 4A and B). Patients with strong HSP27 cytoplasmic
expression (four cases, 28.6%) had worse RFS (P¼ 0.062) and OS
(P¼ 0.048) than patients with moderate expression of that protein

(eight cases, 57.1%). Among the nine patients who were diagnosed
at stages IB1-2, three patients showed strong HSP27 expression,
whereas six patients showed moderate expression of the protein.
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Within a 3–4-year period, relapse with lethal outcome was
observed in two (66.7%) out of three cases with strong HSP27
expression and in one (16.7%) out of six cases with moderate
protein expression (Po0.001).

DISCUSSION

Mutations that occur during progression from dysplasia to
invasive SCC are reflected by changes in expression of tissue
proteins. We previously identified the differential protein marker
pattern that characterises SCC (Hellman et al, 2009; Lomnytska
et al, 2010), and in current study, we analysed expression of
proteins ANXA6, HSP27, PRDX2, NCF2, and TPM4 during SCC
carcinogenesis.
We observed that ANXA6 expression gradually increased during

the progression from CIN2 to MicSCC, whereas it decreased in
InvSCC. Cleavage of the NH2-domain severely impairs the function
of ANXA6 (Gerke and Moss, 2002), while full-length ANXA6 is
generally described to be under expressed in cancer and during
carcinogenesis (Francia et al, 1996). Previously, we found that only
the NH2-terminal domain of ANXA6 was overexpressed in SCC

(Lomnytska et al, 2010), which may indicate dysfunction
of ANXA6 in SCC and explain the decrease in expression of
full-length protein, as detected by IHC in cases of InvSCC. ANXA6
localises to the endoplasmic reticulum and plasma membrane
(Barwise and Walker, 1996), and relocation of the protein from the
cytosol to the plasma membrane is dependent on the elevation of
Ca2þ influx (Buzhynskyy et al, 2009; Sztolsztener et al, 2009). We
did not observe ANXA6 expression on plasma membranes of
atypical cells, where expression was mainly cytoplasmic. One
regulator of ANXA6-dependent plasma membrane dynamics is
EGF, through the EGF-dependent influx of Ca2þ (Strzelecka-
Kiliszek et al, 2008), and development of CC is also determined by
EGF activity (Bellone et al, 2007). We observed that the number of
strongly ANXA6þ cells increased during the progression from
CIN2 to InvSCC. We previously suggested that this observation
represents nuclear expression of ANXA6 in cancer cells
(Lomnytska et al, 2010), however, because of the variable
histopathological appearance we could not exclude the possibility
that these were infiltrating immune cells. Further analysis showed
that these cells were negative for vimentin and CD68 and thus
could not be identified as fibroblasts, endothelial cells, lymphoid
cells, monocytes, or macrophages. Appearance of ANXA6þ cells

Table 3 Coexpression of proteins in CIN3, microinvasive and invasive SCC

Protein 2, localisation

ANXA6, cyt

Diagnosis Protein 1, localisation Positive Negative P-value

CIN 3 – MicSCC PRDX2, cyt Positive 12/18 (66.7%) 0/2 0.057
(n¼ 20) Negative 5/18 (27.8%) 2/2 (100%)
TPM4, cyt Positive 16/24 (66.7%) 2/5 (40%) 0.272
(n¼ 29) Negative 8/24 (33.3%) 3/5 (60%)
NCF2, cyt Positive 15/23 (65.2%) 2/5 (40%) 0.304
(n¼ 28) Negative 8/23 (34.7%) 3/5 (60%)

InvSCC NCF2, cyt Positive 2/6 (33.3%) 6/20 (30%) 0.879

(n¼ 26) Negative 4/6 (66.7%) 14/20 (70%)

NCF2, cyt

CIN 3 – MicSCC TPM4, cyt Positive 9/11 (81.8%) 6/10 (60%) 0.281
(n¼ 21) Negative 2/11 (18.2%) 4/10 (40%)
HSP27, nuc Positive 7/10 (70%) 5/10 (50%) 0.222
(n¼ 20) Negative 2/10 (20%) 5/10 (50%)

InvSCC TPM4, cyt Positive 2/8 (25%) 6/18 (33.3%) 0.677
(n¼ 26) Negative 6/8 (75%) 12/18 (66.7%)
HSP27, nuc Positive 6/8 (75%) 7/18 (38.9%) 0.096
(n¼ 26) Negative 2/8 (25%) 11/18 (61.1%)

HSP27, nuc

CIN 3 – MicSCC TPM4, cyt Positive 9/12 (75%) 5/8 (62.5%) 0.560
(n¼ 20) Negative 3/12 (25%) 3/8 (37.5%)
Ploidy DAU* 11/12 (91.7%) 5/9 (55.6%) 0.061
(n¼ 21) DAS* 1/12 (8.3%) 4/9 (43.4%)

InvSCC TPM4, cyt Positive 4/12 (33.3%) 3/12 (25%) 0.66
(n¼ 24) Negative 8/12 (66.7%) 9/12 (75%)
Ploidy DAU* 10/12 (83.3%) 13/13 (100%) 0.133
(n¼ 25) DAS* 2/12 (16.7%) 0/13

NCF2, sporadic

InvSCC ANXA6,
sporadic

Positive 14/15 (93.3%) 16/18 (88.9%) 0.663

(n¼ 33) Negative 1/15 (6.7%) 2/18 (11.1%)

Abbreviations: CIN¼ cervical intraepithelial neoplasia; InvSCC¼ invasion SCC; MicSCC¼microinvasion SCC; PRDX¼ peroxiredoxin; SCC¼ squamous cervical cancer;
TPM¼ tropomyosin. *DAU¼ diploid and aneuploid unstable; *DAS-diploid and aneuploid stable.
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only between dysplastic and cancer cells was an interesting
observation, which may improve diagnosis.
HSP27 is a member of the HSP family that maintains protein

structure, restores denaturated, aggregated, and damaged proteins,
and are therefore activates when subjected to different types of
stress, such as oxidative stress, inflammation, and malignant
transformation (Ciocca and Calderwood, 2005). It was recently
reported that HSP27 expression in cervical precursor lesions is
higher than in SCE, and that it is higher in invasive SCC than in
precursor lesions (Ono et al, 2009). We have also observed
increase of the cytoplasmic expression of HSP27 in cervical
precursor lesions. However, cytoplasmic expression of HSP27 in
microinvasive and invasive SCC was lower than in precursor
lesions. Previously noted low sporadic expression or no expression
of HSP27 in InvSCC was not explained (Ono et al, 2009). We
observed that RFS and OS for patients with weak or strong HSP27
expression in cancer cells were lower than for patients with
moderate and essentially normal (as in SCE) protein expression. In
uterine cervix, HSP27 has a role in the maturation of squamous
cells and is associated with more differentiated tumours, whereas
its decreased expression associates dedifferentiation and transfor-
mation to adenocarcinoma. At the same time, highly expressed
HSPs, including HSP27, may facilitate cancer progression by
repairing cells that were damaged by chemo- and radiotherapy and
by protecting them from apoptosis (Ciocca and Calderwood, 2005).
CIN2/3, microinvasive, and invasive SCC were characterised by
nuclear expression of HSP27. In eukaryotic cells, HSPs and HSP27
relocate to nuclei under stress, whereas HSP27 is found to be a
permanent component of the interchromatin granule clusters
known as nuclear speckles (Van den IJssel et al, 2003). We
observed a link between positive nuclear expression and genomic
instability in CIN2/3 and MicSCC. It was shown that in cervical
smears the number of cells with genomic instability gradually
increase during the progression from low- to high-grade
intraepithelial lesions (Singh et al, 2008). Development
of chromosomal instability is the initial consequence of HPV
infection, representing a preparatory event in the integration
of the virus into the genome (Melsheimer et al, 2004). Finally,
HPV has an influence on HSP27 expression (Ciocca and
Calderwood, 2005).

Peroxiredoxins have been linked with regulation of prolifera-
tion, differentiation, and apoptosis (Park et al, 2006). Peroxire-
doxin 2 has both proliferative and antiapoptotic properties and
thus may induce carcinogenic changes (Noh et al, 2001). When
overexpressed, PRDX2 protects cancer cells from oxidative
stress and thus mediates resistance to chemo- and radiotherapy
(Soini et al, 2006; Smith-Pearson et al, 2008). NCF2 is an NADPH
oxidase cytosolic component and the gene that encodes this
protein is upregulated by TNF-a (Gauss et al, 2005; Ammons et al,
2007). TNF-a and the encoding gene impact development of CC by
increasing susceptibility to infection with HR-HPV (Deshpande
et al, 2005). In our study, NCF2 was overexpressed in MicSCC.
In cervical precursor lesions, we observed a tendency for
coexpression of ANXA6 and NCF2.
Tropomyosins (TPMs) are actin-interacting protein components

of the cytoskeleton that have been implicated in neoplastic-specific
alterations of actin-based organisation. Rearrangement of microfila-
ment bundles, morphological alterations, and increased cell motility
are major features of a transformed phenotype and are usually
associated with decreased expression of nonmuscle isoforms of
TPMs (Helfman et al, 2008). Decreased expression of TPMs can be
caused by hypermethylation of the encoding gene (Bharadwaj and
Prasad, 2002) or dysfunction of Rho-kinase (Bharadwaj et al, 2005).
In our study, expression of the TPM4 protein was significantly lower
in MicSCC and InvSCC than in precancerous lesions and SCE. In
precursor lesions we observed coexpression of TPM4 and NCF2,
usually characterised by overexpression of NCF2 in atypical cells and
of TPM4 in differentiated cells.
Our study is the first to assess a marker proteins pattern

previously identified by proteomics-based analysis of SCC for the
changes in expression during the sequential steps of SCC
carcinogenesis. In particular, cytoplasmic expression of ANXA6
gradually increased in CIN and MicSCC and decreased in InvSCC.
Sporadic ANXA6þ cells were observed between dysplastic cells.
Cytoplasmic expression of HSP27 increased towards CIN and was
more intense in dysplastic lesions than in MicSCC and InvSCC.
Cervical precursor lesions and invasive cancer were characterised
by nuclear expression of HSP27. MicSCC was characterised by
overexpression of PRDX2 and NCF2, whereas expression of TPM4
was observed mostly in SCE and partially in precursor lesions. Our

Cytoplasmic
expression of
HSP27, score:

Patient

1 IIB

IIA

IB1

IB1

IIIB

IB1
IB1

IIIB

IIIB
IB1

IB1
IB1
IB2

IB2 2

2
2
2

2

2

3

3

3
3

3

3

3 60 –

–

–
–

–
–
–
– –

–
–
–

–
–

–

–

60

60
60

72
72
72
72 72

72
72
72

60
60

60

60

Yes 4

5

6

6

4

5
5

6

6
5
5
5
5

5

Yes

Yes

Yes

Yes

Yes

3
Pulmonary
metastasis

Pulmonary
metastasis

Liver metastasis

Liver metastasis

Local

Mediastinal
metastasis

24

44

12

55

24

36 48

36

13

60

48

26

2

3

4

5

6
7

8

9
10
11
12
13

14

Note: *G - differentiation of cancer cells,
** - Relapse-free survival, censored cases underlined;
*** - Overall survival, censored cases underlined

Stage of
SCC

G*
RFS**,
months

Type of
relapse

OS***,
months

Cancer-
related death

HSP27, cyt,
histoscore

Cytoplasmic
expression of
HSP27, score:

4
5
6

4
5
6

R
el

ap
se

-f
re

e 
cu

m
ul

at
iv

e
pr

op
or

tio
na

l s
ur

vi
va

l
O

ve
ra

ll 
cu

m
ul

at
iv

e
pr

op
or

tio
na

l s
ur

vi
va

l

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Follow-up, months

0 15 30 45 60 75

Follow-up, months

0 15 30 45 60 75

P = 0.019

P = 0.014

A C

B

Figure 4 Relapse-free (A) and overall (B) survival of patients with SCC (C) with various expression of HSP27 in cytoplasm of cancer cells (univariate
method by Kaplan–Meier, log-rank test).

Protein marker patterns of cervical cancer precursors

MI Lomnytska et al

117

British Journal of Cancer (2011) 104(1), 110 – 119& 2011 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



findings describing the differences in expression of marker
proteins during SCC carcinogenesis may be useful for developing
more objective methods for early diagnosis of precursor SCC
lesions and for monitoring patients.
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