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BACKGROUND: Inhibitors of DNA-binding proteins (Id1-4), lacking the basic DNA-binding domain, function as dominant inhibitors of
cell-cycle regulators. Overexpression of Id proteins promotes cancer cell proliferation and resistance against apoptosis. Level of Id
protein expression, especially of Id1, correlates with poor differentiation, enhanced malignant potential and more aggressive clinical
behaviour of ovarian tumours. Although overexpression of Ids has been found and shown to correlate with poor clinical outcome,
their inhibition at protein level has never been studied.
METHODS: A peptide aptamer, Id1/3-PA7, targeting Id1 and Id3, was isolated from a randomised combinatorial expression library using
yeast and mammalian two-hybrid systems. Id1/3-PA7 was fused, expressed and purified with a cell-penetrating protein transduction
domain.
RESULTS: Intracellular-delivered Id1/3-PA7 colocalised to Id1 and Id3. It induced cell-cycle arrest and apoptosis in ovarian cancer cells
ES-2 and PA-1. It activated the E-box promoter and increased the expression level of cyclin-dependent kinase inhibitor (CDKN2A) in
a dose-dependent manner that is paralleled by the cleavage of poly-ADP ribose polymerase. These effects were counteracted by
ectopically overexpressed Id1 and Id3.
CONCLUSION: Id1/3-PA7 could represent an exogenous anti-tumour agent that can significantly trigger cell-cycle arrest and apoptosis
in ovarian cancer.
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Inhibitors of DNA-binding or differentiation proteins (Id) belong
to the helix– loop–helix (HLH) family of transcription factors.
There are four members of the Id family, Id1 to Id4. Id proteins,
lacking the basic DNA-binding domain, associate with members of
the basic HLH (bHLH) transcription factors and form transcrip-
tionally inactive heterodimers. Thus, they function as dominant-
negative regulators of bHLH transcription factors (Benezra
et al, 1990). Furthermore, Id proteins regulate cellular growth
and senescence through direct sequestration of Ets and Rb
proteins (Iavarone et al, 1994; Ohtani et al, 2001; Ruzinova and
Benezra, 2003). Id proteins are essential for cell differentiation,
proliferation, cell-cycle progression, migration and angiogenesis
(Norton and Atherton, 1998; Israel et al, 1999; Norton, 2000).
Although barely expressed in most normal tissues, deregulated
expression of Id proteins has been demonstrated in a variety of
human tumours (Lin et al, 2000; Schindl et al, 2001; Wang et al,
2004). Overexpression of Id proteins promotes cancer cell
proliferation and resistance against apoptosis (Ouyang et al,
2002a, b; Ling et al, 2003). Id overexpression in different tumours
is significantly associated with poor clinical outcome (Schopp-
mann et al, 2003; Han et al, 2004). Level of Id protein expression,
especially of Id1, correlates with poor differentiation, enhanced

malignant potential and more aggressive clinical behaviour of
epithelial ovarian tumours (Schindl et al, 2003). Recently, it has been
shown that ectopic Id1 expression stimulates ovarian cancer cell
proliferation, and this process is mediated through upregulation of
epidermal growth factor receptor (EGFR), suggesting that Id1 might
serve as an upstream regulator of the EGFR pathway in promoting
ovarian cancer cell growth (Zhang et al, 2004). In various forms of
tumours, including ovarian cancer, Id1 and Id3 are overexpressed
extensively and in an overlapping pattern (Fong et al, 2000; Coppe
et al, 2003). They have been shown to inactivate Ets1 and Ets2, which
leads to the inhibition of CDKN2A expression and consequently
allows phosphorylation of retinoblastoma protein (pRb) (Ohtani
et al, 2001). Furthermore, DNA-binding motif (E-box)-mediated
repression of the CDKN2A promoter by Id1 has been reported (Alani
et al, 2001). A significant positive association has been reported
between CDKN2A expression and clinical outcome for epithelial
ovarian cancer patients (Kusume et al, 1999).
A peptide-conjugated Id1 antisense oligonucleotide homed to

tumour endothelium inhibited tumour growth and metastasis
in two different murine models (Henke et al, 2008). Mice lacking
Id1 and Id3 genes (Id1þ /�Id3�/�) are resistant to xenotrans-
planted tumour grafts and show defects in tumour neoangiogen-
esis (Lyden et al, 1999; de Candia et al, 2003). Therefore, Id1 and
Id3 are considered as potentially therapeutic targets.
So far, a joint inhibition of Id1 and Id3 at protein level has

hardly been studied. To develop a new strategy for the inhibition of
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Id1 and Id3, we isolated a novel peptide aptamer Id1/3-PA7 that
specifically interacts with Id1 and Id3 (Mern et al, 2010). Peptide
aptamers represent short peptides of random sequences. On the
basis of their in vivo binding affinity to their target protein, they
can be selected from randomised combinatorial expression
libraries using yeast and mammalian two-hybrid systems (Fields
and Song, 1989; Chien et al, 1991; Bartel et al, 1993). In this
study, we investigated the role of the peptide aptamer Id1/3-PA7
on the progression of cell cycle and apoptosis in Id1- and
Id3-overexpressing ovarian cancer cells ES-2 and PA-1. For its
delivery into ovarian cancer cells, Id1/3-PA7 was fused with a
cell-penetrating protein transduction domain (PTD) (Elliott and
O’Hare, 1997; Phelan et al, 1998; Narita et al, 2001), expressed and
purified from bacteria. We demonstrated that intracellular-
delivered Id1/3-PA7 colocalised to Id1 and Id3 and promoted
increased expression of the tumour suppressor CDKN2A in a dose-
dependent manner. In addition, Id1/3-PA7 induced cleavage of the
apoptosis indicator poly-ADP ribose polymerase (PARP). These
effects were counteracted by ectopically overexpressed Id1 and Id3.
Peptide aptamer Id1/3-PA7 significantly inhibited proliferation
and induced apoptosis in ovarian cancer cells, with deregulated
expression of Id1 and Id3. Therefore, we suggest that Id1/3-PA7
could represent an exogenous anti-tumour agent that could find
applications in targeted therapy.

MATERIALS AND METHODS

Cell lines and cell culture

ES-2 and PA-1 cell lines were purchased in October 2007 from the
American Type Culture Collection (ATCC, Manassas, VA, USA).
PA-1 cell lines were grown in EMEM (ATCC), and ES-2 cell lines
in McCoy’s 5a (ATCC) supplemented with 10% fetal bovine
serum (ATCC), penicillin (50Uml–1), streptomycin (50mgml–1)
and 2mM glutamine (Sigma, Deisenhofen, Germany). All cell lines
were tested and authenticated in February 2008 by the Genetic
Core Facility at the German Cancer Research Center (Heidelberg,
Germany) using the method Multiplex cell Contamination Test
(McCT) (http://www.dkfz.de/gpcf/contamination-control.html).

Transfections

For luciferase assays, ES-2 cells were transiently transfected
using the calcium phosphate method (Chen and Okayama, 1987).
For the analysis of CDKN2A expressions or PARP cleavage, ES-2
and PA-1 cells were transfected using FuGENE 6 Transfection
Reagent (Roche Molecular Biochemicals, Indianapolis, IN, USA).
Cells were selected with 1mgml–1 G418 (Sigma). Transfec-
tions were monitored by immunoblot detection of the expressed
proteins.

Bacterial expression and purification of PTD-fused peptide
aptamers

A PTD, truncated VP22 ORF, was used for the intracellular delivery
of the peptide aptamer (Elliott and O’Hare, 1997; Phelan et al,
1998; Narita et al, 2001). PTD was fused to the C-terminus of
peptide aptamers or TrxA, which were inserted into vectors pCR
T7/VP22-1-TOPO and pCR T7/VP22/NES-2-TOPO (Invitrogen,
Carlsbad, CA, USA). Bacterial expression of the peptide aptamer
was induced with isopropyl-1-thio-b-D-galactopyranoside (1mM)
for 5 h at room temperature. The peptide aptamers were furnished
with 6xHis-tag to facilitate their purification by nickel chelate
chromatography. The peptide aptamer was purified under native
conditions using the ProBond Purification System (Invitrogen).
The purity of the peptide aptamer was investigated by gel
electrophoresis and Coomassie staining. The concentration was

determined using the BCA Protein Assay Kit (Pierce, Rockford,
IL, USA).

Immunofluorescence and immunoblotting

For immunofluorescence analysis, cells were grown on cover-
slips, fixed and permeabilised in methanol for 20min at �201C
and rehydrated with PBS. Before immunostaining with the
indicated antibodies, cells were blocked in normal serum (1 : 10
in PBS containing 5% BSA). Nuclei were visualised by using
Prolong Gold Antifade Reagent with DAPI (Invitrogen). Cells
were analysed using a Carl Zeiss AxioVision 4 microscope
equipped with a Carl Zeiss AxioCam digital camera and software
version Carl Zeiss AxioVision Rel. 4.6.3 (Carl Zeiss Vision GmbH,
Jena, Germany).
For immunoblot experiments, cell lysates prepared in EBC

buffer (50mM Tris–HCl, 120mM NaCl, 1% (v/v) Nonidet P40, pH
8.0) supplemented with protease and phosphatase inhibitors were
separated by SDS–PAGE and electrotransferred to polyvinylidene
fluoride membranes (Millipore, Temecula, CA, USA). To detect
antigen/antibody complexes, membranes were incubated with
appropriate horseradish peroxidase-labelled secondary antibodies
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) and developed
for enhanced chemiluminescence using the ECL WB Detection kit
(Millipore).
Primary antibodies used were anti-Id1 (C-20), anti-Id3 (C-20)

(Santa Cruz Biotechnology), anti-a-tubulin, anti-Trx (Sigma), anti-
CDKN2A (Millipore) and anti-PARP (BD Biosciences, San Jose,
CA, USA). Secondary antibodies used were goat anti-mouse
or goat anti-rabbit Alexa Fluor 488, 660 and 680 for immuno-
fluorescence experiments and horseradish peroxidase-conjugated
goat anti-rabbit and goat anti-mouse (Santa Cruz Biotechnology)
for immunoblotting.

Coimmunoprecipitation

ES-2 and PA-1 cells were treated with peptide aptamer Id1/3-PA7
(5mg per 106 cells). After 1.5 h, cells were lysed in RIPA buffer
(Pierce) containing protease and phosphatase inhibitors. Protein
samples were purified by nickel chelate chromatography under
native conditions using the ProBond Purification System (Invitro-
gen) and analysed by western blotting using antibodies against
Trx, Id1 and Id3.

E-box promoter-reporter assays

pGL4.1-4Rtk-luc (E-box-dependent reporter construct), pcDNA3-
E47, pCMV-Id1, pCMV-Id3, along with pCMV-LacZ as an internal
standard, were used for transfection of ES-2 cells. After transfec-
tion, cells were treated by adding Id1/3-PA7 (5 mg per 106 cells) at
4 h intervals for 48 h. Cells were lysed in Triton buffer (1% Triton
X-100, 25mM glycylglycin (pH 7.8), 15mM MgSO4, 4mM EGTA and
1mM DTT) for 10min on ice. The lysates were clarified by
centrifugation for 10min at 16 000 g. Lysates (10 ml) were measured
using a luminometer (Berthold, Vista, CA, USA) by injecting
luciferin reagent (25mM glycylglycin (pH 7.8), 5mM ATP (pH 7.8)
and 330mM beetle luciferin). The samples were normalised for
b-galactosidase activity, which was measured after incubating 3 ml
lysate with 33 ml reaction buffer (100mM Na2HPO4, 1mM MgCl2
and 1� Galacton (Tropix, Bedford, MA, USA)) for 30min in the
dark. Galactosidase activity was measured in a luminometer by
injection of amplifier (10% Emerald (Tropix), 0.2 M NaOH).

RNA analysis

Cells were treated with different doses of Id1/3-PA7 (1–7.5 mg
per 106 cells) at 4 h intervals for 48 h. Total RNA was purified
using an RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) and
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inspected by agarose gel electrophoresis. cDNAs were synthesised
using TaqMan Reverse Transcription Reagents (Applied Bio-
systems, Foster City, CA, USA). The mRNAs of CDKN2A,
CDKN1A, CDKN1B and b-actin as internal standard were
measured by real-time PCR with TaqMan gene expression assays
(Applied Biosystems), using the LightCycler 480 Real-Time PCR
System and LightCycler 480 Probes Master (Roche Applied
Science, Mannheim, Germany) under the following conditions:
15min at 951C activation, 40 cycles of 15 s at 951C, followed by
30 s at 551C and 1 s at 721C, melting for 1 s at 551C and cooling
for 1min at 401C. For the relative quantification of mRNA levels,
three independent amplifications were performed for each probe,
with triplicate samples.

Flow cytometry cell-cycle analysis

Cells were treated with Id1/3-PA7 (5 mg per 106 cells) at 4 h
intervals for 48 h. For quantitative cell-cycle analysis, the BD

Pharmingen FITC bromodeoxyuridine (BrdU) Flow Kit (BD
Biosciences) was used. Prolonged cell exposure (6 h) to BrdU
allowed the identification and analysis of actively cycling, as
opposed to non-cycling, cell fractions. Cell-incorporated BrdU
(with FITC anti-BrdU) and total DNA content (with 7-AAD) in
cells were measured using the BD FACSCalibur Flow Cytometer
(BD Biosciences).

RESULTS

Peptide aptamer Id1/3-PA7 colocalises to Id1 and Id3

Using yeast and mammalian two-hybrid systems, we isolated from
the randomised expression library a constrained peptide aptamer
Id1/3-PA7 that interacts specifically with Id1 and Id3 (Mern et al,
2010). Here, we used Id1/3-PA7 to analyse its functional
interference in Id1- and Id3-overexpressing ovarian cancer cells
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Figure 1 Colocalisation of the intracellular-delivered peptide aptamer Id1/3-PA7 to Id1 and Id3. (A, B) His-tag coimmunoprecipitation of Id1/3-PA7 with
Id1 and Id3 in ovarian cancer cells ES-2 and PA-1. (C, D) His-tag coimmunoprecipitation of TrxA as negative control. (E–H) Coimmunofluorescence
staining of Id1/3-PA7 with Id1 and Id3 in ES-2 and PA-1 cells. DAPI, 4,6-diamidino-2-phenylindole.
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ES-2 and PA-1. For its delivery into ovarian cancer cells, Id1/3-PA7
was fused with cell-penetrating PTD (Elliott and O’Hare, 1997;
Phelan et al, 1998; Narita et al, 2001), expressed in bacteria and
purified under native conditions. Ovarian cancer cells ES-2 and

PA-1 were treated with Id1/3-PA7 (5 mg per 106 cells). At 1.5 h after
treatment, the internalisation of the peptide aptamer into cells and
its colocalisation with Id1 and Id3 were verified by His-tag
coimmunoprecipitation (Figure 1A and B). Cells treated with TrxA
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(5mg per 106 cells) were used as negative control in coimmuno-
precipitation (Figure 1C and D). In addition, the colocalisation was
verified by coimmunofluorescence staining (Figure 1E–H).

Functional interference of Id1/3-PA7 with Id1 and Id3

E-proteins activate transcription by binding to promoter E-boxes.
Formation of heterodimers between Id protein and E-protein
prevents E-proteins from forming DNA-binding transcriptionally
active complexes. To analyse the potency of Id1/3-PA7 with respect
to Id1 and Id3 inhibition and restoration of E-box promoter
activity, we used the E-box-dependent reporter gene 4Rtk-luc,
which contains four tandem E-boxes from the MCK enhancer
upstream of the thymidine kinase basal promoter (Weintraub et al,
1990). ES-2 cells were transfected with 4Rtk-luc, pcDNA3-E47,
pCMV-Id1, pCMV-Id3 and pCMV-LacZ as an internal standard.
After transfection, cells were treated with different doses of
Id1/3-PA7 (1, 3 and 5 mg per 106 cells, half-life 2.5 h) at 4 h intervals
for 48 h. The reporter gene was upregulated in the presence of

the E-protein, E47. E47-dependent activation was reduced in
the presence of Id1 or Id3, and, by addition of Id1/3-PA7,
the activation was restored again (Figure 2A). Id1/3-PA7 restored
E47-dependent activation in a dose-dependent manner (Figure 2B
and Supplementary data 1). Treatment of cells with different doses
of TrxA ((1, 3 and 5 mg per 106 cells) had no effect on E-box
promoter activity (Figure 2A and Supplementary data 1).

Id1/3-PA7 enhances the expression level of CDKN2A

E-box promoter-mediated repression of CDKN2A, CDKN1A and
CDKN1B expression by Ids has been reported (Prabhu et al, 1997;
Alani et al, 2001; Perk et al, 2005). Furthermore, it has been shown
that Id1 and Id3 inactivate Ets1 and Ets2 and inhibit the
transcriptional expression of CDKN2A (Ohtani et al, 2001).
Therefore, we analysed the effect of Id1/3-PA7 on the expression
level of CDKN2A, CDKN1A and CDKN1B, using real-time PCR and
western blotting. Ovarian cancer cells ES-2 and PA-1 were treated
with different doses of Id1/3-PA7 (1–7.5 mg per 106 cells) at 4 h
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Figure 4 Id1/3-PA7 induces cycle arrest and apoptosis in ovarian cancer cells. (A– J) Quantification of cell-incorporated bromodeoxyuridine (BrdU)
(fluorescein isothiocyanate (FITC) anti-BrdU) and total DNA content (7-AAD) in untreated and TrxA-treated (5 mg per 106 cells) or Id1/3-PA7-treated
(5mg per 106 cells) ES-2 cells (A, C) and PA-1 cells (D–F). Flow cytometric analysis of untreated cells vs Id1/3-PA7-treated cells showed S-phase reduction
of actively cycling ES-2 cells (G) and PA-1 cells (I), increasing apoptotic cells in sub-G0/G1- and G2/M-resided ES-2 cells (H) and PA-1 cells (J). There were
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Results are represented as mean values of three independent experiments with s.d. (Pp0.05).
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intervals for 48 h. Intracellular delivery of Id1/3-PA7 caused a
dose-dependent increase in the mRNA and protein levels of
CDKN2A (Figure 3A and B). Untreated cells or cells treated with
TrxA (5 mg per 106 cells) did not show any change in CDKN2A
expression (Figure 3A and B). This increased expression level of
CDKN2A is Id1 and Id3 specific, being counteracted by ectopically
overexpressed Id1 and Id3 (Figure 3A). The expression levels of
CDKN1A and CDKN1B were moderately increased after treatment
with only high doses of Id1/3-PA7 (5 and 7.5mg per 106 cells)
(Supplementary data 2). However, these moderately increased
expression levels of mRNA could not be confirmed at protein
level. The treatment of PA-1 and ES-2 cells with lower doses of
Id1/3-PA7 (1–4 mg per 106 cells) did not change the expression
levels of CDKN1A and CDKN1B (Supplementary data 2).

Id1/3-PA7 induces cell-cycle arrest and apoptosis in
ovarian cancer cells

Tumour suppressor CDKN2A inhibits the cyclin-dependent
kinases (Cdk4 and Cdk6) that initiate the phosphorylation of the
pRb (Ruas and Peters, 1998; Sherr and Roberts, 1999). Therefore,
CDKN2A has the capacity to arrest cells in the G1 phase of the cell
cycle. Applying immunofluorescent staining of incorporated BrdU,
an analogue of the DNA precursor thymidine, and flow cytometric
analysis, we quantified individual cells that have incorporated
BrdU into newly synthesised DNA as cells entering and progres-
sing through the S (DNA synthesis) phase of the cell cycle. ES-2
and PA-1 cells were treated with TrxA or Id1/3-PA7 (5 mg per
106 cells) at 4 h intervals for 48 h. For the identification and analysis
of actively cycling, as opposed to non-cycling, cell fractions, we
exposed untreated and TrxA- or Id1/3-PA7-treated cells to BrdU
for 6 h. The cell-cycle positions and active DNA synthetic activities
of cells were determined by analysing the correlated expression of
total DNA and incorporated BrdU levels as shown by the region
gates applied to the 7-AAD vs BrdU dot plot (Figure 4A–F). Flow
cytometric analysis of untreated cells vs Id1/3-PA7-treated cells
demonstrated that the anti-proliferative and apoptotic effects of
Id1/3-PA7 reduced the number of actively cycling cells in S from
93.1 to 54.8% for ES-2 cells (Figure 4G) and from 91.4 to 54.6%
for PA-1 cells (Figure 4I). The number of apoptotic cells in

sub-G0/G1- and in G0/G1- or G2/M-resided cells increased from
1.4 to 21.1%, from 3.2 to 13.2% and from 0.2 to 5.9%, respectively,
for ES-2 cells (Figure 4H), and from 1.7 to 14,6%, from 3.9 to 16%
and from 0.3 to 7.2%, respectively, for PA-1 cells (Figure 4J). There
were no significant differences between untreated and TrxA-
treated cells (Figure 4A–J).

Apoptotic PARP cleavage in response to Id1/3-PA7

It has been reported that wild-type CDKN2A expression from an
adenovirus vector (Adv/p16) in non-small-cell lung cancer cell
line A549, which carries the wild-type p53 gene, results in
activation of caspase-3, accompanied by the cleavage of its
substrate PARP (Koh et al, 2002). Furthermore, it has been shown
that ectopically overexpressed Id1 is able to suppress PARP
cleavage in response to different anticancer drugs, which leads to
increased apoptosis rates and increased cleaved PARP in different
cancer cell lines (Zhang et al, 2007). Therefore, Id1/3-PA7-treated
ES-2 and PA-1 cells were analysed for PARP cleavage compared
with untreated or TrxA-treated cells. We detected PARP cleavage
by western blotting in cell extracts of Id1/3-PA7-treated cells using
anti-PARP antibody, which recognises uncleaved PARP (113 kDa)
and cleaved PARP (85 kDa) (Figure 5A and B). PARP cleavage
was counteracted in Id1/3-PA7-treated cells by ectopically
overexpressed Id1 and Id3 (Figure 5C and D).

DISCUSSION

Id1 and Id3 are considered as potentially versatile therapeutic
targets. In various forms of tumours, Id1 and Id3 are over-
expressed extensively and in an overlapping pattern (Fong et al,
2000; Coppe et al, 2003). The level of Id protein expression
correlates with poor differentiation, enhanced malignant potential,
aggressive clinical behaviour of different tumours, including
epithelial ovarian tumours, and is a strong predicator of shorter
survival (Schindl et al, 2003). Depending on the tumour art and
stage, partial loss of Id functions is sufficient to have a therapeutic
effect, as shown in Id1þ /�Id3�/� knockout mice (Lyden et al, 1999;
de Candia et al, 2003). It has also been shown that Id1 and Id3

Id1/3-PA7TrxAControlId1/3-PA7TrxAControl

PARP

Cleaved PARP

Cleaved PARP

�-Tubulin

�-Tubulin

ES-2 PA-1

ES-2 PA-1

PARP

Id1/3
PA7

Id1+Id3
Id1/3
PA7

Id1/3
PA7

Id1+Id3
Id1/3
PA7

A B

C D

Figure 5 Apoptotic poly-ADP ribose polymerase (PARP) cleavage induced by Id1/3-PA7. (A, B) Untreated and TrxA- or Id1/3-PA7-treated (5mg per
106 cells) ES-2 and PA-1 cells were analysed for PARP cleavage by western blotting. PARP cleavage was detected in cell extracts of Id1/3-PA7-treated cells.
(C, D) In Id1/3-PA7-treated cells, PARP cleavage was counteracted by ectopically overexpressed Id1 and Id3.
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overexpression correlates with loss of CDKN2A expression in
different tumours (Polsky et al, 2001; Lee et al, 2003), suggesting
that in some settings Id1/3-induced cell proliferation is mediated
through the inactivation of the CDKN2A-pRb pathway. Therefore,
we investigated the biological effect of the peptide aptamer
Id1/3-PA7 in Id1/Id3-overexpressing and CDKN2A-positive ovar-
ian cancer cells, ES-2 and PA-1. In this paper, we demonstrated
that inhibition of Id1 and Id3 by the peptide aptamer Id1/3-PA7
induced cell-cycle arrest and apoptosis. It significantly increased
the endogenous expression level of CDKN2A in a dose-dependent
manner, which is paralleled by the cleavage of PARP. In contrast
to this, the expression levels of CDKN1A and CDKN1B were
moderately increased after treatment with only high doses of
Id1/3-PA7 (5 and 7.5mg per 106 cells) (Supplementary data 2).
However, these moderately increased expression levels of mRNA
could not be confirmed at protein level. The treatment of PA-1 and
ES-2 cells with lower doses of Id1/3-PA7 (1–4 mg per 106 cells) has
not changed the expression levels of CDKN1A and CDKN1B
(Supplementary data 2). This could indicate that in PA-1 and ES-2
ovarian cancer cells, Id1/3-PA7 might preferentially inhibit the
heterodimerisation of Id1 and Id3 with ETS proteins, which are
the positive regulators of CDKN2A. Previously, we have shown that
Id1/3-PA7 regulates the expression of CDKN1A and CDKN1B in a
dose-dependent manner in breast cancer cells MCF-7 and MDA-
MB-231, which contain the homozygous deletions of the gene
CDKN2A (Kamb et al, 1994). These results together suggest that
Id1 and Id3, depending on the tumour type, might differentially
regulate the expression of tumour suppressor genes CDKN2A,
CDKN1A and CDKN1B.
Besides the CDKN/pRb pathways, Id1/3-PA7 could interestingly

be used to analyse EGFR pathway-dependent functions, as Id
proteins, especially Id1, induce upregulation of EGFR in different
tumour cells, very frequently in androgen-independent prostate
cancer cells. Thus, Id1/3-PA7 could have effects on androgen-
independent proliferation of prostate cancer cells. Overexpression
of Id1 is associated with progression of prostate cancer and
Id1-induced androgen-independent prostate cancer cell growth is
correlated with upregulation of EGFR (Ouyang et al, 2002a, b;
Ling et al, 2004).
In our previous work (Mern et al, 2010), we demonstrated using

a mammalian two-hybrid system that Id1/3-PA7 interacts with Id1

and Id3 but does not bind to Id2, Id3 and the interacting partners
of Id proteins, such as E47, MyoD, ETS1, ETS2 and S5A.
Furthermore, we have shown that the biological effects of
Id1/3-PA7, in analysed breast and ovarian cancer cells, were
counteracted by forced expression of Id1 and Id3. These results
indicate that the biological effects of Id1/3-PA7 are based on the
functional blocking of Id1 and Id3. We hope that future in vivo
application of the peptide aptamer Id1/3-PA7 in tumour-bearing
Id1/3 transgenic mice and in Id1þ /�Id3�/� knockout mice will
give rise to more information regarding its in vivo stability,
functional specificity and potential toxicity.
Overexpression of Id proteins, especially of Id1, has been found

to be correlated with the progression of different types of solid
tumours (Perk et al, 2005; Ling et al, 2006). Their low post-
natal expression and their roles in tumourigenesis and tumour
neoangiogenesis mark them as attractive targets for anticancer
therapy (Perk et al, 2005). Therefore, we suggest that Id1/3-PA7,
as inhibitor of Id1 and Id3, could have the potential to be used as a
new tool for targeted tumour therapy.
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