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BACKGROUND: AMP-activated protein kinase (AMPK, PRKA) has central roles in cellular metabolic sensing and energy balance
homeostasis, and interacts with various pathways (e.g., TP53 (p53), FASN, MTOR and MAPK3/1 (ERK)). AMP-activated protein
kinase activation is cytotoxic to cancer cells, supporting AMPK as a tumour suppressor and a potential therapeutic target. However,
no study has examined its prognostic role in colorectal cancers.
METHODS: Among 718 colon and rectal cancers, phosphorylated AMPK (p-AMPK) and p-MAPK3/1 expression was detected in 409
and 202 tumours, respectively, by immunohistochemistry. Cox proportional hazards model was used to compute mortality hazard
ratio (HR), adjusting for clinical and tumoral features, including microsatellite instability, CpG island methylator phenotype, LINE-1
methylation, and KRAS, BRAF and PIK3CA mutations.
RESULTS: Phosphorylated AMPK expression was not associated with survival among all patients. Notably, prognostic effect of p-AMPK
significantly differed by p-MAPK3/1 status (Pinteraction¼ 0.0017). Phosphorylated AMPK expression was associated with superior
colorectal cancer-specific survival (adjusted HR 0.42; 95% confidence interval (CI), 0.24–0.74) among p-MAPK3/1-positive cases, but
not among p-MAPK3/1-negative cases (adjusted HR 1.22; 95% CI: 0.85–1.75).
CONCLUSION: Phosphorylated AMPK expression in colorectal cancer is associated with superior prognosis among p-MAPK3/1-positive
cases, but not among p-MAPK3/1-negative cases, suggesting a possible interaction between the AMPK and MAPK pathways
influencing tumour behaviour.
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Colorectal cancer is the fourth most common malignancy and the
second most frequent cause of cancer-related death in the United
States, with approximately 50 000 cancer-related deaths in 2009
(Jemal et al, 2009). Colorectal cancer arises through a multistep
carcinogenic process in which genetic and epigenetic alterations
(e.g., microsatellite instability (MSI), CpG island methylation,
mutations in KRAS, BRAF and PIK3CA) accumulate in a sequential
manner. A better understanding of molecular alterations in
colorectal cancer may be of great clinical importance. KRAS muta-
tional status of stage IV colorectal cancer is a predictive biomarker
for anti-EGFR treatment (Loupakis et al, 2009). In addition, BRAF
mutation identifies a subgroup of patients with unfavourable
prognosis (Ogino et al, 2009; Roth et al, 2010).
AMP-activated protein kinase (AMPK; PRKA, the HUGO-

approved official gene stem symbol) is a heterotrimeric serine/

threonine protein kinase, which acts as a cellular sensor for energy
balance status. AMP-activated protein kinase is phosphorylated
by its upstream kinase STK11 (LKB1) in response to an increase in
cellular AMP/ATP ratio (Shackelford and Shaw, 2009). It regulates
cell proliferation and growth by inhibition of the MTOR pathway
and fatty acid synthesis, and activation of the TP53-CDKN1A (p21)
pathway (Figure 1) (Inoki and Guan, 2009). The MAPK3/1 (extra-
cellular signal-regulated kinase (ERK)1/2) pathway is activated
by extracellular and intracellular mitogenic stimuli and has
crucial roles in cellular differentiation, proliferation and survival
(Schubbert et al, 2007). Interactions between the STK11 (LKB1)-
AMPK pathway and the MAPK3/1 pathway in human cancer cells
including colon cancer cells have been documented (Esteve-Puig
et al, 2009; Zheng et al, 2009; Kim et al, 2010). AMP-activated
protein kinase activation is cytotoxic to various cancer cell types,
and inhibits tumour growth (Buzzai et al, 2007; Zakikhani et al,
2008), supporting AMPK as a tumour suppressor and a potential
target for cancer therapy and chemoprevention (Fay et al, 2009).
Thus, better understanding of the mechanism and consequence
of AMPK activation in human cancer is increasingly important.
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To our best knowledge, no previous study has examined AMPK
status and patient prognosis in human colorectal cancer. Given
potential roles of AMPK as a regulator of cellular metabolism and
a tumour suppressor related to cellular signaling pathways (e.g.,
the MAPK3/1 pathway), we hypothesised that AMPK might
interact with MAPK3/1 to modify tumour behaviour.
To test this hypothesis, we utilised a database of 718 stage I–IV

colorectal cancers in two prospective cohort studies, and examined
the prognostic role of phosphorylated-AMPK expression and
modifying effect of MAPK3/1. As a result of our database with
other tumoral variables including FASN, TP53, KRAS, BRAF and
PIK3CA mutations, MSI, the CpG island methylator phenotype
(CIMP) and LINE-1 methylation, we could examine the relation-
ship between AMPK status and other molecular features, as well as
interactive prognostic effect of AMPK and other molecular events.

MATERIALS AND METHODS

Study group

We utilised the databases of two independent, prospective cohort
studies; the Nurses’ Health Study (N¼ 121 701 women followed
since 1976), and the Health Professionals Follow-Up Study
(N¼ 51 529 men followed since 1986) (Chan et al, 2007). A subset
of the cohort participants developed colorectal cancers during
prospective follow-up. We collected paraffin-embedded tissue
blocks from hospitals where patients underwent tumour resec-
tions. We excluded cases for which preoperative treatment was
administered. Tissue sections from all colorectal cancer cases were
reviewed by a pathologist (SO) unaware of other data. The tumour
grade was categorised as low vs high (X50 vs o50% gland
formation). The type of tumour border (expansile or infiltrative)
was categorised as previously published criteria (Ogino et al,
2006e). On the basis of the availability of adequate tissue
specimens and follow-up data, a total of 718 colorectal cancers
(diagnosed up to 2004) were included. Patients were observed
until death or 30 June 2008, whichever came first. Among our
cohort studies, there was no significant difference in demographic
features between cases with tissue available and those without

available tissue (Chan et al, 2007). This current analysis represents
a new analysis of p-AMPK and p-MAPK3/1 on the existing
colorectal cancer database that has been previously characterised
for CIMP, MSI, KRAS, BRAF, PIK3CA, LINE-1 methylation and
clinical outcome (Ogino et al, 2007, 2008b, 2009). However, in any
of our previous studies, we have neither examined AMPK or
MAPK3/1 expression. Informed consent was obtained from all
study subjects. Tissue collection and analyses were approved by
the Harvard School of Public Health and Brigham and Women’s
Hospital Institutional Review Boards.

Sequencing of KRAS, BRAF and PIK3CA and MSI analysis

DNA was extracted from tumour tissue, and PCR and pyrosequen-
cing targeted for KRAS (codons 12 and 13) (Ogino et al, 2005),
BRAF (codon 600) (Ogino et al, 2006d) and PIK3CA (exons 9
and 20) were performed (Nosho et al, 2008b). The status of MSI
was determined by analysing variability in the length of the
microsatellite markers from tumour DNA compared with normal
DNA. We used D2S123, D5S346, D17S250, BAT25, BAT26 BAT40,
D18S55, D18S56, D18S67 and D18S487 (Ogino et al, 2006a).
Microsatellite instability-high was defined as the presence of
instability in X30% of the markers, and MSI-low/microsatellite
stability (MSS) as instability in 0–29% of the markers according to
the Bethesda guideline (Boland et al, 1998).

Methylation analyses for CpG islands and LINE-1

Using validated bisulphite DNA treatment and real-time PCR
(MethyLight), we quantified DNA methylation in eight CIMP-
specific promoters (CACNA1G, CDKN2A (p16), CRABP1, IGF2,
MLH1, NEUROG1, RUNX3 and SOCS1) (Weisenberger et al, 2006;
Ogino et al, 2006c, 2007). The CIMP-high was defined as the
presence of X6 out of 8 methylated promoters, CIMP-low/0
as 0 out of 8–5 out of 8 methylated promoters, based on a
distribution of tumours and BRAF and KRAS mutation frequencies
(Ogino et al, 2007). Concordance between our eight-marker panel
and the Weisenberger panel (Weisenberger et al, 2006) was very
high (99%, k¼ 0.94, Po0.0001) (Nosho et al, 2008a). In order to
accurately quantify relatively high methylation levels in LINE-1, we
utilised pyrosequencing (Ogino et al, 2008a; Irahara et al, 2010).

Immunohistochemistry

Tissue microarrays were constructed as previously described
(Ogino et al, 2006b). Methods of immunohistochemistry were
previously described for TP53 and FASN (fatty acid synthase)
(Ogino et al, 2006a, 2008c). For AMP-activated protein kinase
(AMPK, PRKA), we evaluated PRKAA (AMPKa) Thr172 phos-
phorylation status (Figure 2). Deparaffinised tissue sections
in Antigen Retrieval Citra Solution (Biogenex Laboratories,
San Ramon, CA, USA) were treated with microwave in a pressure
cooker (25min). Tissue sections were incubated with 5% normal
goat serum (Vector Laboratories, Burlingame, CA, USA) in
phosphate-buffered saline (30min). Primary antibody against
p-AMPK (rabbit monoclonal anti-phospho-AMPKa (Thr172)
(40H9), 1 : 100 dilution; Cell Signaling Technology, Boston, MA,
USA) was applied (Ji et al, 2007; Contreras et al, 2008; Hadad et al,
2009; Vazquez-Martin et al, 2009; Zheng et al, 2009), and the slides
were maintained at 41C for overnight, followed by rabbit secon-
dary antibody (Vector Laboratories) (60min), an avidin–biotin
complex conjugate (Vector Laboratories) (60min), diamino-
benzidine (5min) and methyl-green counterstain. Cytoplasmic
p-AMPK expression was recorded as no expression, weak
expression or moderate/strong expression with the percentage of
positive tumour cells. The CIMP status reflects global epigenomic
aberrations in tumour cells (Ogino and Goel, 2008) and may influ-
ence energy sensing status of cancer cells. Indeed, epidemiological
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Figure 1 Schematic representation of the AMPK pathway in relation to
various molecules. Arrows and lines indicate the pathways potentially
related with the complex interaction between AMPK and MAPK3/1. Circles
indicate the tissue markers analysed in our current study.
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studies has suggested a potential link between CIMP and energy
metabolism in colorectal cancer; high intake of high-fat dairy
products is associated with CIMP-high rectal cancers (Slattery
et al, 2010) and exposure to a period of severe transient energy
restriction during adolescence is inversely associated with the risk
of having a CIMP-high tumour later in life (Hughes et al, 2009). In
addition, the relationship between CIMP and a molecular
alteration related to energy metabolism (e.g., SIRT1) has been
reported (Nosho et al, 2009). Thus, we explored the use of CIMP
status to determine a cutoff for p-AMPK positivity; there was no
alternative biologically based method in our cohort studies. First,
we categorised tumours according to intensity of p-AMPK and the
fraction of p-AMPK-expressing cells. In our initial exploratory
analysis, we randomly selected 358 tumours as a training set,
leaving the remaining 360 tumours as a validation set. Using the
training set, the frequency of CIMP-high in each category was: 25%
(29 out of 117) in tumours with no expression; 21% (11 out of 53)
in tumours with weak expression in 1–19% of tumour cells; 12%
(14 out of 117) in tumours with weak expression in 20–100% of
cells; 7.8% (5 out of 64) in tumours with moderate or strong
expression. Thus, p-AMPK positivity was defined as the presence
of weak cytoplasmic expression in X20% of tumour cells or
moderate/strong expression in any fraction of tumour cells. In the
remaining validation set, p-AMPK expression defined by the
training set was inversely associated with CIMP-high (odds ratio
(OR) 0.45; 95% confidence interval (CI): 0.25–0.83; P¼ 0.0094),
validating the cutoff although it might not be the most biologically
reasonable cutoff. In addition, to evaluate whether p-AMPK
expressions in tumour centre and invasive front were different,
we stained 20 whole tissue sections for p-AMPK and recorded
p-AMPK expression status of both tumour centre and tumour
invasive front.
For phosphorylated-MAPK3/1 (p-MAPK3/1), the same protocol

with p-AMPK was used except for primary antibody (rabbit mono-
clonal anti-phospho-p44/42 MAPK (ERK1/2) (Thr202/Thr204)
(20G11), 1 : 100 dilution; Cell Signaling Technology). Nuclear
p-MAPK3/1 expression was recorded as no, weak, moderate or
strong expression with the percentage of positive tumour cells.

Considering that MAPK3/1 is downstream of the RAF pathway,
we used BRAF mutation frequency to determine a cutoff for
p-MAPK3/1 positivity. First, we categorised tumours according
to the intensity of p-MAPK3/1 expression. Using the training set,
the frequency of BRAF mutation in each category was: 17% (35 out
of 206) in tumours with no expression; 8.5% (6 out of 71) in
tumours with weak expression; 7.0% (4 out of 57) in tumours with
moderate or strong expression. Thus, p-MAPK3/1 positivity was
defined as weak/moderate/strong expression. In the remaining
validation set, p-MAPK3/1 expression defined by the training set
was inversely associated with BRAF mutation (OR 0.42; 95% CI:
0.20–0.90; P¼ 0.023), validating the cutoff although it might not
be the most biologically reasonable cutoff.
Appropriate positive and negative controls were included in

each run of immunohistochemistry. Each immunohistochemical
maker was interpreted by one of the investigators (p-AMPK and
p-MAPK3/1 by YB; TP53 and FASN by SO) unaware of other
data. For agreement studies, a random selection of 108–246 cases
was examined for each marker by a second observer (by KN)
unaware of other data. The concordance between the two observers
(all Po0.0001) was 0.82 (k¼ 0.63; N¼ 137) for p-AMPK, 0.86
(k¼ 0.70; N¼ 137) for p-MAPK3/1, 0.87 (k¼ 0.75; N¼ 108) for
TP53 and 0.93 (k¼ 0.57; N¼ 246) for FASN, indicating good-to-
substantial agreement.

Statistical analysis

For all statistical analyses, we used SAS program (Version 9.1, SAS
Institute, Cary, NC, USA). All P-values were two-sided, and
statistical significance was set at P¼ 0.05. Nonetheless, when we
performed multiple hypothesis testing, a P-value for significance
was adjusted by Bonferroni correction to P¼ 0.0029 (¼ 0.05/17).
For categorical data, the w2 test was performed. For survival
analysis, Kaplan–Meier method and log-rank test was used. For
analyses of colorectal cancer-specific mortality, deaths as a result
of causes other than colorectal cancer were censored. To assess
independent effect of p-AMPK on mortality, tumour stage (I, IIA,
IIB, IIIA, IIIB, IIIC, IV, unknown) was used as a stratifying variable

Figure 2 Phosphorylated AMPK and p-MAPK3/1 expression in colorectal cancer. (A) Positive for p-AMPK cytoplasmic expression (arrowheads).
(B) Negative for p-AMPK expression (white arrowheads). (C) Positive for p-MAPK3/1 nuclear expression (white arrows). (D) Negative for p-MAPK3/1
expression (block arrow). Stromal cells serve as an internal positive control for p-MAPK3/1 expression (arrow).
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in Cox models using the ‘strata’ option in the SAS ‘proc phreg’
command to avoid residual confounding and overfitting. We
constructed a multivariate, stage-stratified Cox proportional
hazards model to compute a hazard ratio (HR) according to
p-AMPK status, initially including sex, age at diagnosis (contin-
uous), body mass index (BMI, o30 vs X30 kgm–2), family history
of colorectal cancer in any first-degree relative (present vs absent),
tumour location (rectum vs colon), tumour grade (low vs high),
tumour border (infiltrative vs expansile), CIMP (high vs low/0),
MSI (high vs low/MSS), LINE-1 methylation (continuous), BRAF,
KRAS, PIK3CA, TP53 and FASN. A backward stepwise elimination
with a threshold of P¼ 0.20 was used to select variables in the final
model. For cases with missing information in any of categorical
variables (tumour location (1.2%), MSI (1.9%), BRAF (1.7%),
KRAS (1.3%), PIK3CA (10%), TP53 (0.6%) and FASN (1.0%)), we
included those cases in a majority category of a given covariate to
avoid overfitting. We confirmed that excluding cases with missing
information in any of the covariates did not substantially alter
results (data not shown). The proportionality of hazard assump-
tion was satisfied by evaluating time-dependent variables, which
were the cross-product of the AMPK variable and survival time
(P40.05). An interaction was assessed by including the cross
product of p-AMPK variable and another variable of interest
(without data-missing cases) in a multivariate Cox model, and the
Wald test was performed. Backward stepwise elimination with a
threshold of P¼ 0.20 was used to select variables in the final
model. A P-value for significance was adjusted to P¼ 0.0029 by
Bonferroni correction for multiple hypothesis testing.

RESULTS

AMPK expression in colorectal cancer

To evaluate whether phosphorylated AMPK (p-AMPK, p-PRKA)
expressions in tumour centre and invasive front were different,
we stained 20 whole tissue sections for p-AMPK and recorded
p-AMPK expression status of both tumour centre and tumour
invasive front. In 16 of 20 sections, tumour centre and tumour
invasive front showed concordant expression status, indicating
that p-AMPK expressions in tumour centre and invasive front were
not different in most cases. Furthermore, whole tissue section-
based expression status and TMA-based expression status were
concordant in 18 of 20 cases, indicating that expression status
determined using TMA represented expression status of tumour as
a whole in a vast majority of cases.
Among 718 colorectal cancers in the two prospective cohort

studies, we detected p-AMPK in 409 tumours (57%) by immuno-
histochemistry. Phosphorylated AMPK expression was associated
with p-MAPK3/1 expression (Po0.0001) and inversely with high
tumour grade (P¼ 0.0009), MSI-high (P¼ 0.0021) and CIMP-high
(Po0.0001) (Table 1).

AMPK expression and prognosis in colorectal cancer

Among the 718 patients (with median follow-up of 129 months for
censored patients), there were 306 deaths, including 194 colorectal
cancer-specific deaths. In Kaplan–Meier or Cox regression
analysis, p-AMPK status was not significantly associated with
colorectal cancer-specific or overall survival among all eligible
patients (Figure 3A, Table 2).

Modifying effect of p-MAPK3/1 expression on p-AMPK
expression in survival analysis

Considering experimental data on the interaction between AMPK
and MAPK3/1 (Esteve-Puig et al, 2009; Zheng et al, 2009; Kim et al,
2010), we assessed whether p-MAPK3/1 status could modify the
prognostic effect of p-AMPK expression. We found a significant

modifying effect of p-MAPK3/1 expression on the relation between
p-AMPK expression and mortality (Pinteraction¼ 0.0017 (for color-
ectal cancer-specific mortality) and Pinteraction¼ 0.0026 (for overall
mortality)). Among patients with p-MAPK3/1-positive tumour,
p-AMPK expression was associated with a significant decrease
in colorectal cancer-specific mortality (adjusted HR 0.42; 95% CI:
0.24–0.74), whereas p-AMPK expression was not significantly
related with prognosis among patients with p-MAPK3/1-negative
tumour (adjusted HR 1.22; 95% CI: 0.85–1.75; p-AMPK-positive vs
negative) (Table 3).
In Kaplan–Meier method, the differential prognostic effect of

p-AMPK expression according to p-MAPK3/1 expression status
was evident (Figure 3A). Phosphorylated AMPK expression was
associated with longer colorectal cancer-specific survival (log-rank
P¼ 0.0006) among p-MAPK3/1-positive cases, whereas p-AMPK
expression was not significantly associated with survival among
p-MAPK3/1-negative cases (log-rank P¼ 0.45).

Prognostic effect of p-MAPK3/1 expression in strata
of p-AMPK status

In Kaplan–Meier analysis, p-MAPK3/1 was not significantly
associated with colorectal cancer-specific survival (log-rank
P¼ 0.31) (Figure 3B) or overall survival (log-rank P¼ 0.68).
In light of the significant interaction between p-AMPK and
p-MAPK3/1 (Pinteraction¼ 0.0017), we examined the prognostic
effect of p-MAPK3/1 expression in strata of p-AMPK expression
status. Among p-AMPK-negative cases, p-MAPK3/1 expression
was significantly associated with inferior colorectal cancer-specific
survival (adjusted HR 1.94; 95% CI: 1.17–3.24; p-MAPK3/1-
positive vs negative tumours). In contrast, among p-AMPK-
positive cases, p-MAPK3/1 expression was significantly associated
with superior colorectal cancer-specific survival (adjusted HR 0.55;
95% CI: 0.35–0.86) (Table 3). A similar interaction was observed
in overall mortality analysis (Pinteraction¼ 0.0026).

Stratified analysis of p-AMPK expression and mortality

We examined whether the influence of p-AMPK expression on
colorectal cancer-specific survival was modified by any of the other
variables including sex, age, BMI, family history of colorectal
cancer, tumour location, stage, tumour grade, CIMP, MSI, BRAF,
KRAS, PIK3CA, LINE-1 methylation, TP53 and FASN. We did
not observe a significant modifying effect by any of the variables
(all Pinteraction40.10). Notably, there was no significant inter-
action between p-AMPK and mutation in KRAS or BRAF
(Pinteraction¼ 0.12 for BRAF and Pinteraction¼ 0.30 for KRAS).

DISCUSSION

We conducted this study to examine prognostic significance of
p-AMPK (phosphorylated AMP-activated protein kinase; p-PRKA)
expression in a large cohort of colorectal cancers. To our best
knowledge, no previous study has examined its prognostic role in
human colorectal cancer. Considering a pivotal role of AMPK as a
regulator of cellular metabolism and the relationship of AMPK
with the MAPK3/1 (ERK1/2) pathway and other signaling path-
ways, we hypothesised that cellular AMPK might interact with
MAPK3/1 to modify tumour behaviour. Notably, we found that the
prognostic effect of p-AMPK expression differed according to
p-MAPK3/1 status. Phosphorylated AMPK expression was asso-
ciated with superior survival among p-MAPK3/1-positive cases,
but not among p-MAPK3/1-negative cases. Our results support
an interaction between the AMPK and MAPK3/1 pathways in
colorectal cancer cells to modify tumour behaviour.
Examining molecular changes or prognostic factors is impor-

tant in cancer research (Fluge et al, 2009; Gaber et al, 2009;
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Jubb et al, 2009; Rasheed et al, 2009; Kontos et al, 2010; Rego et al,
2010; Zlobec et al, 2010). Accumulating evidence suggests that
AMPK acts as a tumour suppressor. STK11 (LKB1) has been
identified as an upstream activator of AMPK (Shackelford and
Shaw, 2009), and TSC2, which is a negative regulator of MTOR, is a
downstream effector of AMPK (Inoki and Guan, 2009). Experi-
mental studies have shown that AMPK activation inhibits cancer
cell proliferation and growth (Buzzai et al, 2007; Zakikhani et al,
2008). In a study using 354 breast cancers (Hadad et al, 2009),
p-AMPK expression was not significantly associated with prog-
nosis, but modifying effect of MAPK3/1 was not examined. To our
knowledge, no previous study has examined the prognostic role
of AMPK in colorectal cancer.
Considering experimental data on the link between the STK11

(LKB1)-AMPK and MAPK3/1 pathways, the modifying effect
of MAPK3/1 on AMPK may not be surprising. In colon cancer
cells, AMPK potentially inhibits the MAPK3/1 pathway; inhibition
of AMPK by expressing a dominant-negative form potentiates
MAPK3/1 activation under glucose deprivation (Kim et al, 2010).
Selenium, an essential trace element, blocks the carcinogenic
agent-induced MAPK3/1 activation via AMPK (Hwang et al, 2006).
AMP-activated protein kinase is rapidly activated by cisplatin and
suppresses an apoptotic signal via MAPK3/1 in colon cancer cells
(Kim et al, 2008). A study using melanoma cells (Zheng et al, 2009)
has shown that the MAPK3/1 pathway phosphorylates STK11 on
Ser325 and Ser428 and promotes the uncoupling of AMPK from
STK11, which negatively regulates AMPK. Regulation of AMPK
activity by the MAPK3/1 pathway, independent of STK11 Ser428
phosphorylation, has also been reported (Esteve-Puig et al, 2009).
In fibroblast cells, AMPK differentially inhibits the MAPK3/1
pathway by inhibiting RAS activation or stimulating the
RAS-independent pathway in response to cellular energy status
(Kim et al, 2001). We should also consider the complex
TSC2-MTOR axis-mediated linkage. AMP-activated protein kinase
suppresses MTOR activity directly by phosphorylating MTOR at
Thr2446 and indirectly by phosphorylating TSC2 at Thr1227 and
Ser1345 and increasing the activity of TSC-complex (Inoki and
Guan, 2009). MAPK3/1 increases MTOR activity by phosphorylat-
ing TSC2 at Ser540 and Ser664, which causes the attenuation of
TSC2 (Ma et al, 2005). Our findings may support the hypothesis
that AMPK activation can make a strong impact on tumour
behaviour as the ‘brake’ only when MAPK3/1 is active. Additional
studies are needed to confirm our findings and elucidate the exact
mechanism of effect of MAPK3/1 on AMPK to modify tumour
behaviour.
Our study has shown that MAPK3/1 activation has a differential

effect on patient mortality according to AMPK status; p-MAPK3/1

Table 1 p-AMPK expression in colorectal cancer, and clinical, pathologic
and molecular features

Clinical, pathologic

p-AMPK
expression

or molecular feature Total N Negative Positive P-value

All cases 718 309 409

Sex 0.051
Male 259 (36%) 99 (32%) 160 (39%)
Female 459 (64%) 210 (68%) 249 (61%)

Age (years)
p59 143 (20%) 71 (23%) 72 (18%) 0.071
60–69 301 (42%) 116 (38%) 185 (45%)
X70 274 (38%) 122 (39%) 152 (37%)

BMI 0.69
o30 kgm– 2 594 (83%) 254 (82%) 340 (83%)
X30 kgm– 2 123 (17%) 55 (18%) 68 (17%)

Family history of colorectal cancer 0.66
(�) 554 (77%) 236 (76%) 318 (78%)
(+) 164 (23%) 73 (24%) 91 (22%)

Tumour location 0.61
Proximal colon
(cecum to transverse)

347 (49%) 155 (51%) 192 (48%)

Distal colon (splenic flexure
to sigmoid)

220 (31%) 89 (29%) 131 (32%)

Rectum 140 (20%) 61 (20%) 79 (20%)

Stage 0.16
I 160 (22%) 55 (18%) 105 (26%)
II 214 (30%) 100 (32%) 114 (28%)
III 204 (28%) 91 (29%) 113 (28%)
IV 101 (14%) 45 (15%) 56 (14%)
Unknown 39 (5.4%) 18 (5.8%) 21 (5.1%)

Tumour grade 0.0009
Low 655 (92%) 269 (88%) 386 (95%)
High 60 (8.4%) 38 (12%) 22 (5.4%)

Tumour border 0.80
Expansile 543 (86%) 237 (86%) 306 (85%)
Infiltrative 90 (14%) 38 (14%) 52 (15%)

p-MAPK3/1 expression
(�) 469 (70%) 227 (80%) 242 (63%) o0.0001
(+) 202 (30%) 57 (20%) 145 (37%)

TP53 expression 0.055
(�) 423 (59%) 194 (63%) 229 (56%)
(+) 290 (41%) 112 (37%) 178 (44%)

FASN expression 0.024
(�) 597 (84%) 267 (88%) 330 (81%)
(+) 114 (16%) 38 (12%) 76 (19%)

MSI 0.0021
MSI-low/MSS 591 (84%) 242 (79%) 349 (88%)
MSI-high 113 (16%) 64 (21%) 49 (12%)

CIMP
CIMP-low/0 596 (85%) 237 (78%) 359 (89%) o0.0001
CIMP-high 109 (15%) 66 (22%) 43 (11%)

LINE-1 methylation
X70% 121 (17%) 53 (18%) 68 (17%) 0.16
50–69% 497 (71%) 220 (74%) 277 (70%)
o50% 79 (11%) 26 (8.7%) 53 (13%)

BRAF mutation 0.048
(�) 602 (85%) 250 (82%) 352 (88%)
(+) 104 (15%) 54(18%) 50 (12%)

Table 1 (Continued )

Clinical, pathologic

p-AMPK
expression

or molecular feature Total N Negative Positive P-value

KRAS mutation 0.26
(�) 438 (62%) 195 (64%) 243 (60%)
(+) 271 (38%) 109 (36%) 162 (40%)

PIK3CA mutation 0.79
(�) 538 (84%) 236 (84%) 302 (83%)
(+) 106 (16%) 45 (16%) 61 (17%)

Abbreviations: BMI¼ body mass index; CIMP¼CpG island methylator phenotype;
FASN¼ fatty acid synthase; MSI¼microsatellite instability; MSS¼microsatellite
stable; p-AMPK¼ phosphorylated AMP-activated protein kinase; p-MAPK3/1
¼ phosphorylated mitogen-activated protein kinase. % Number indicated the
proportion of cases with a given clinical, pathologic or molecular feature among all
cases, p-AMPK-negative cases or p-AMPK-positive cases.
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expression is associated with good prognosis among p-AMPK-
positive patients, but with poor prognosis among p-AMPK-
negative patients. It remains controversial how MAPK3/1 activa-
tion affects behaviour of different cancers (Milde-Langosch et al,
2005; Pelloski et al, 2006). A study on 135 colorectal cancers
has shown that p-MAPK3/1 expression is associated with poor
prognosis (Schmitz et al, 2007). In contrast to that study (N¼ 135),
our study evaluated the expression status of both p-MAPK3/1 and
p-AMPK in a much larger cohort of 718 colorectal cancers. In
addition, we assessed the interactive effect of p-MAPK3/1 and
p-AMPK expression independent of other molecular events that
have been documented to be critical in colorectal carcinogenesis.
Recently, AMPK has been proposed as a potential target for

cancer prevention and treatment, and various AMPK activators
have been preclinically assessed (Fay et al, 2009). Among them,
metformin, a widely used anti-diabetic drug, has shown promising
results (Buzzai et al, 2007; Zakikhani et al, 2008). Metformin may
have two properties of potential oncologic relevance: it has a

direct, STK11-AMPK pathway-dependent growth inhibitory effect
and decreases systemic insulin levels (Pollak, 2008). Interestingly,
two observational studies have shown that diabetic patients treated
with metformin experienced a lower incidence of any kind of
cancer and a lower cancer-related mortality (Evans et al, 2005;
Bowker et al, 2006). Hereafter, in clinical trial of this drug,
examining AMPK status in cancer tissue might be important. In
this regard, our findings may have clinical implications. In
addition, drugs targeting the MAPK3/1 pathway are intensively
being developed and tested in clinical trials for various human
cancers (Beeram et al, 2005). Although the usefulness of MAPK3/1
expression as a biomarker for sensitivity to these drugs is
uncertain (Yeh et al, 2009), further understanding of the linkage
between the AMPK and MAPK3/1 pathways could potentially
provide useful information for refinement of therapeutic strategies.
We found significant relations of p-AMPK expression with

MSI-high and CIMP-high. MSI and CIMP status reflect global
genomic and epigenomic aberrations in tumour cells, and hence,
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Figure 3 Kaplan–Meier curves for colorectal cancer-specific survival. (A) p-AMPK status and survival of colorectal cancer patients. The left panel includes
all eligible cases, the middle panel includes p-MAPK3/1-positive cases, and the right panel includes p-MAPK3/1-negative cases. (B) p-MAPK3/1 status and
survival of colorectal cancer patients. The left panel includes all eligible cases, the middle panel includes p-AMPK-positive cases, and the right panel includes
p-AMPK-negative cases.

Table 2 p-AMPK status in colorectal cancer and patient mortality

Colorectal cancer-specific mortality Overall mortality

AMPK
status

Total
N

Deaths/
person-years

Univariate
HR (95% CI)

Multivariate stage-matched
HR (95% CI)

Deaths/
person-years

Univariate
HR (95% CI)

Multivariate stage-matched
HR (95% CI)

p-AMPK (�) 309 86/2164 1 (referent) 1 (referent) 125/2164 1 (referent) 1 (referent)
p-AMPK (+) 409 108/2952 0.84 (0.61–1.17) 0.95 (0.71–1.28) 181/2952 1.08 (0.84–1.39) 1.12 (0.89–1.42)

Abbreviations: BMI¼ body mass index; CI¼ confidence interval; HR¼ hazard ratio; CIMP¼CpG island methylator phenotype; FASN¼ fatty acid synthase; MSI¼microsatellite
instability; p-AMPK¼ phosphorylated AMP-activated protein kinase. The multivariate, stage-matched (stratified) Cox model initially included sex, age at diagnosis, year of
diagnosis, BMI, family history of colorectal cancer, tumour location, tumour grade, tumour border, CIMP, MSI, LINE-1 methylation, BRAF, KRAS, PIK3CA, TP53 and FASN.
A backward stepwise elimination with a threshold of P¼ 0.20 was used to select variables in the final model. Stage adjustment (I, IIA, IIB, IIIA, IIIB, IIIC, IV, unknown) was done
using the ‘strata’ option in the SAS ‘proc phreg’ command.
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are associated with various clinical, pathologic and molecular
features (Ogino and Goel, 2008). Considering the known relation-
ship between MSI and/or CIMP and molecular alterations related
to energy metabolism (Ogino et al, 2007b; Nosho et al, 2009), MSI
and CIMP may influence energy sensing status of cancer cells.
There are limitations in this study. For example, data on

cancer treatment were limited. Nonetheless, it is unlikely that
chemotherapy use substantially differed according to AMPK status
in tumour, because such data were unavailable for treatment
decision making. In addition, our multivariate survival analysis
finely adjusted for disease stage (I, IIA, IIB, IIIA, IIIB, IIIC, IV,
unknown), on which treatment decision making was mostly based.
As another limitation, beyond cause of mortality, data on cancer
recurrence were unavailable in these cohort studies. Nonetheless,
colorectal cancer-specific survival might be a reasonable surrogate
of colorectal cancer-specific outcome. Furthermore, the cutoffs for
p-AMPK and p-MAPK3/1 used in this current study need to be
validated in an independent data set.
There are advantages in utilising the database of the two

prospective cohort studies, the Nurses’ Health Study and the
Health Professionals Follow-Up Study, to examine prognostic
significance of tumour AMPK expression. Anthropometric mea-
surements, family history, cancer staging, and other clinical,
pathologic, and tumour molecular data were prospectively
collected, blinded to patient outcome. Cohort participants who
developed cancer were treated at hospitals throughout the United
States, and thus more representative colorectal cancers in the US
population than patients in one to several academic hospitals.
There was no demographic difference between cases with tumour
tissue analysed and those without tumour tissue analysed (Chan
et al, 2007). Finally, our rich tumour database enabled us to
simultaneously assess pathologic and tumoral molecular correlates
and control for confounding by a number of tumoral molecular
alterations.
In summary, we have shown that AMPK activation is associated

with good prognosis among MAPK3/1-activated colorectal cancer
patients, while AMPK activation is not associated with prognosis
among MAPK3/1-inactive cancer patients. Additional studies are

necessary to confirm our observations and to elucidate exact
mechanisms by which AMPK and MAPK3/1 interact and affect
tumour behaviour. This possible interaction between the AMPK
and MAPK3/1 pathways may have considerable implications
because both pathways are potential targets for cancer treatment
and prevention. In this regard, examining AMPK and MAPK3/1
status in cancer tissue may be important in future clinical trials.
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Table 3 p-AMPK status and patient mortality in strata of p-MAPK3/1 status (upper rows) and p-MAPK3/1 status and patient mortality in strata of p-AMPK
status (lower rows)

Colorectal cancer-specific mortality Overall mortality

No. of
deaths/cases

Univariate
HR (95% CI)

Multivariate stage-matched
HR (95% CI)

No. of
deaths/cases

Univariate
HR (95% CI)

Multivariate stage-matched
HR (95% CI)

p-MAPK3/1 (�)
p-AMPK (�) 59/227 1 (referent) 1 (referent) 84/227 1 (referent) 1 (referent)
p-AMPK (+) 72/242 1.14 (0.81–1.61) 1.22 (0.85–1.75) 106/242 1.20 (0.90–1.60) 1.31 (0.98–1.76)

p-MAPK3/1 (+)n p-AMPK (�) 23/57 1 (referent) 1 (referent) 32/57 1 (referent) 1 (referent)
p-AMPK (+) 27/145 0.39 (0.23–0.69) 0.42 (0.24–0.74) 62/145 0.64 (0.42–0.98) 0.65 (0.42–1.01)

p-AMPK (�)n p-MAPK3/1 (�) 59/227 1 (referent) 1 (referent) 84/227 1 (referent) 1 (referent)
p-MAPK3/1 (+) 23/57 1.75 (1.08–2.82) 1.94 (1.17–3.24) 32/57 1.67 (1.12–2.50) 1.88 (1.23–2.86)

p-AMPK (+)n p-MAPK3/1 (�) 72/242 1 (referent) 1 (referent) 106/242 1 (referent) 1 (referent)
p-MAPK3/1 (+) 27/145 0.55 (0.36–0.85) 0.55 (0.35–0.86) 62/145 0.84 (0.62–1.14) 0.80 (0.58–1.10)

Pinteraction (p-AMPK and p-MAPK3/1) 0.0014 0.0017 0.016 0.0026

Abbreviations: BMI¼ body mass index; CI¼ confidence interval; HR¼ hazard ratio; p-AMPK¼ phosphorylated AMP-activated protein kinase; p-MAPK3/1¼ phosphorylated
mitogen-activated protein kinase. The multivariate, stage-matched (stratified) Cox model included p-AMPK variable stratified by p-MAPK3/1 status (or p-MAPK3/1 variable
stratified by p-AMPK status), sex, age, year of diagnosis, BMI, tumour location, tumour grade, tumour border, CIMP, MSI, LINE-1 methylation, BRAF, KRAS, PIK3CA, TP53 and
FASN. A backward stepwise elimination with a threshold of P¼ 0.20 was used to select variables in the final model. Stage adjustment (I, IIA, IIB, IIIA, IIIB, IIIC, IV, unknown) was
done using the ‘strata’ option in the SAS ‘proc phreg’ command.

AMPK, MAPK3/1 and prognosis in colorectal cancer

Y Baba et al

1031

British Journal of Cancer (2010) 103(7), 1025 – 1033& 2010 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



REFERENCES

Beeram M, Patnaik A, Rowinsky EK (2005) Raf: a strategic target for
therapeutic development against cancer. J Clin Oncol 23: 6771–6790

Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW,
Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S (1998)
A National Cancer Institute Workshop on Microsatellite Instability for
cancer detection and familial predisposition: development of international
criteria for the determination of microsatellite instability in colorectal
cancer. Cancer Res 58: 5248–5257

Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased
cancer-related mortality for patients with type 2 diabetes who use
sulfonylureas or insulin. Diabetes Care 29: 254–258

Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F,
Viollet B, Thompson CB (2007) Systemic treatment with the antidiabetic
drug metformin selectively impairs p53-deficient tumor cell growth.
Cancer Res 67: 6745–6752

Chan AT, Ogino S, Fuchs CS (2007) Aspirin and the risk of colorectal
cancer in relation to the expression of COX-2. N Engl J Med 356:
2131–2142

Contreras CM, Gurumurthy S, Haynie JM, Shirley LJ, Akbay EA, Wingo SN,
Schorge JO, Broaddus RR, Wong KK, Bardeesy N, Castrillon DH (2008)
Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas.
Cancer Res 68: 759–766

Esteve-Puig R, Canals F, Colome N, Merlino G, Recio JA (2009) Uncoupling
of the LKB1-AMPKalpha energy sensor pathway by growth factors and
oncogenic BRAF. PLoS ONE 4: e4771

Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005)
Metformin and reduced risk of cancer in diabetic patients. Bmj 330:
1304–1305

Fay JR, Steele V, Crowell JA (2009) Energy homeostasis and cancer
prevention: the AMP-activated protein kinase. Cancer Prev Res
(Philadelphia, PA) 2: 301–309

Fluge O, Gravdal K, Carlsen E, Vonen B, Kjellevold K, Refsum S, Lilleng R,
Eide TJ, Halvorsen TB, Tveit KM, Otte AP, Akslen LA, Dahl O (2009)
Expression of EZH2 and Ki-67 in colorectal cancer and associations with
treatment response and prognosis. Br J Cancer 101: 1282–1289

Gaber A, Johansson M, Stenman UH, Hotakainen K, Ponten F, Glimelius B,
Bjartell A, Jirstrom K, Birgisson H (2009) High expression of tumour-
associated trypsin inhibitor correlates with liver metastasis and poor
prognosis in colorectal cancer. Br J Cancer 100: 1540–1548

Hadad SM, Baker L, Quinlan PR, Robertson KE, Bray SE, Thomson G,
Kellock D, Jordan LB, Purdie CA, Hardie DG, Fleming S, Thompson AM
(2009) Histological evaluation of AMPK signalling in primary breast
cancer. BMC Cancer 9: 307

Hughes LA, van den Brandt PA, de Bruine AP, Wouters KA, Hulsmans S,
Spiertz A, Goldbohm RA, de Goeij AF, Herman JG, Weijenberg MP,
van Engeland M (2009) Early life exposure to famine and colorectal
cancer risk: a role for epigenetic mechanisms. PLoS One 4: e7951

Hwang JT, Kim YM, Surh YJ, Baik HW, Lee SK, Ha J, Park OJ (2006)
Selenium regulates cyclooxygenase-2 and extracellular signal-regulated
kinase signaling pathways by activating AMP-activated protein kinase in
colon cancer cells. Cancer Res 66: 10057–10063

Inoki K, Guan KL (2009) Tuberous sclerosis complex, implication from a
rare genetic disease to common cancer treatment. Hum Mol Genet 18:
R94–100

Irahara N, Nosho K, Baba Y, Shima K, Lindeman NI, Hazra A,
Schernhammer ES, Hunter DJ, Fuchs CS, Ogino S (2010) Precision of
pyrosequencing assay to measure LINE-1 methylation in colon cancer,
normal colonic mucosa, and peripheral blood cells. J Mol Diagn 12:
177–183

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics,
2009. CA Cancer J Clin 59: 225–249

Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C,
Wu MC, Shimamura T, Perera SA, Liang MC, Cai D, Naumov GN, Bao L,
Contreras CM, Li D, Chen L, Krishnamurthy J, Koivunen J, Chirieac LR,
Padera RF, Bronson RT, Lindeman NI, Christiani DC, Lin X, Shapiro GI,
Janne PA, Johnson BE, Meyerson M, Kwiatkowski DJ, Castrillon DH,
Bardeesy N, Sharpless NE, Wong KK (2007) LKB1 modulates lung cancer
differentiation and metastasis. Nature 448: 807–810

Jubb AM, Turley H, Moeller HC, Steers G, Han C, Li JL, Leek R, Tan EY,
Singh B, Mortensen NJ, Noguera-Troise I, Pezzella F, Gatter KC,
Thurston G, Fox SB, Harris AL (2009) Expression of delta-like ligand 4
(Dll4) and markers of hypoxia in colon cancer. Br J Cancer 101:
1749–1757

Kim HS, Hwang JT, Yun H, Chi SG, Lee SJ, Kang I, Yoon KS, Choe WJ,
Kim SS, Ha J (2008) Inhibition of AMP-activated protein kinase
sensitizes cancer cells to cisplatin-induced apoptosis via hyper-induction
of p53. J Biol Chem 283: 3731–3742

Kim J, Yoon MY, Choi SL, Kang I, Kim SS, Kim YS, Choi YK, Ha J (2001)
Effects of stimulation of AMP-activated protein kinase on insulin-like
growth factor 1- and epidermal growth factor-dependent extracellular
signal-regulated kinase pathway. J Biol Chem 276: 19102–19110

Kim MJ, Park IJ, Yun H, Kang I, Choe W, Kim SS, Ha J (2010) AMP-activated
protein kinase antagonizes pro-apoptotic extracellular signal-regulated
kinase activation by inducing dual-specificity protein phosphatases in
response to glucose deprivation in HCT116 carcinoma. J Biol Chem
285(19): 14617–14627

Kontos CK, Papadopoulos IN, Fragoulis EG, Scorilas A (2010) Quantitative
expression analysis and prognostic significance of L-DOPA decarboxy-
lase in colorectal adenocarcinoma. Br J Cancer 102: 1384–1390

Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, Masi G,
Stasi I, Canestrari E, Rulli E, Floriani I, Bencardino K, Galluccio N,
Catalano V, Tonini G, Magnani M, Fontanini G, Basolo F, Falcone A,
Graziano F (2009) KRAS codon 61, 146 and BRAF mutations predict
resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type
metastatic colorectal cancer. Br J Cancer 101: 715–721

Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005)
Phosphorylation and functional inactivation of TSC2 by Erk implications
for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193

Milde-Langosch K, Bamberger AM, Rieck G, Grund D, Hemminger G,
Muller V, Loning T (2005) Expression and prognostic relevance of
activated extracellular-regulated kinases (ERK1/2) in breast cancer.
Br J Cancer 92: 2206–2215

Nosho K, Irahara N, Shima K, Kure S, Kirkner GJ, Schernhammer ES,
Hazra A, Hunter DJ, Quackenbush J, Spiegelman D, Giovannucci EL,
Fuchs CS, Ogino S (2008a) Comprehensive biostatistical analysis of
CpG island methylator phenotype in colorectal cancer using a large
population-based sample. PLoS ONE 3: e3698

Nosho K, Kawasaki T, Ohnishi M, Suemoto Y, Kirkner GJ, Zepf D, Yan L,
Longtine JA, Fuchs CS, Ogino S (2008b) PIK3CA mutation in colorectal
cancer: relationship with genetic and epigenetic alterations. Neoplasia 10:
534–541

Nosho K, Shima K, Irahara N, Kure S, Firestein R, Baba Y, Toyoda S, Chen L,
Hazra A, Giovannucci EL, Fuchs CS, Ogino S (2009) SIRT1 histone
deacetylase expression is associated with microsatellite instability and CpG
island methylator phenotype in colorectal cancer. Mod Pathol 22: 922–932

Ogino S, Brahmandam M, Cantor M, Namgyal C, Kawasaki T, Kirkner G,
Meyerhardt JA, Loda M, Fuchs CS (2006a) Distinct molecular features of
colorectal carcinoma with signet ring cell component and colorectal
carcinoma with mucinous component. Mod Pathol 19: 59–68

Ogino S, Brahmandam M, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS
(2006b) Combined analysis of COX-2 and p53 expressions reveals
synergistic inverse correlations with microsatellite instability and CpG
island methylator phenotype in colorectal cancer. Neoplasia 8: 458–464

Ogino S, Cantor M, Kawasaki T, Brahmandam M, Kirkner GJ, Weisenberger
DJ, Campan M, Laird PW, Loda M, Fuchs CS (2006c) CpG island
methylator phenotype (CIMP) of colorectal cancer is best characterised by
quantitative DNA methylation analysis and prospective cohort studies.
Gut 55: 1000–1006

Ogino S, Goel A (2008) Molecular classification and correlates in colorectal
cancer. J Mol Diagn 10: 13–27

Ogino S, Kawasaki T, Brahmandam M, Yan L, Cantor M, Namgyal C,
Mino-Kenudson M, Lauwers GY, Loda M, Fuchs CS (2005) Sensitive
sequencing method for KRAS mutation detection by pyrosequencing.
J Mol Diagn 7: 413–421

Ogino S, Kawasaki T, Kirkner GJ, Kraft P, Loda M, Fuchs CS (2007) Evaluation
of markers for CpG island methylator phenotype (CIMP) in colorectal
cancer by a large population-based sample. J Mol Diagn 9: 305–314

Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS (2006d) CpG island
methylator phenotype-low (CIMP-low) in colorectal cancer: possible
associations with male sex and KRAS mutations. J Mol Diagn 8: 582–588

Ogino S, Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, Fuchs
CS (2008a) LINE-1 hypomethylation is inversely associated with
microsatellite instability and CpG island methylator phenotype in
colorectal cancer. Int J Cancer 122: 2767–2773

Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES,
Giovannucci EL, Fuchs CS (2008b) A cohort study of tumoral LINE-1

AMPK, MAPK3/1 and prognosis in colorectal cancer

Y Baba et al

1032

British Journal of Cancer (2010) 103(7), 1025 – 1033 & 2010 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
stic

s



hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 100:
1734–1738

Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M,
Giovannucci EL, Fuchs CS (2009) CpG island methylator phenotype,
microsatellite instability, BRAF mutation and clinical outcome in colon
cancer. Gut 58: 90–96

Ogino S, Nosho K, Meyerhardt JA, Kirkner GJ, Chan AT, Kawasaki T,
Giovannucci EL, Loda M, Fuchs CS (2008c) Cohort study of fatty acid
synthase expression and patient survival in colon cancer. J Clin Oncol 26:
5713–5720

Ogino S, Odze RD, Kawasaki T, Brahmandam M, Kirkner GJ, Laird PW,
Loda M, Fuchs CS (2006e) Correlation of pathologic features with CpG
island methylator phenotype (CIMP) by quantitative DNA methylation
analysis in colorectal carcinoma. Am J Surg Pathol 30: 1175–1183

Pelloski CE, Lin E, Zhang L, Yung WK, Colman H, Liu JL, Woo SY,
Heimberger AB, Suki D, Prados M, Chang S, Barker III FG, Fuller GN,
Aldape KD (2006) Prognostic associations of activated mitogen-activated
protein kinase and Akt pathways in glioblastoma. Clin Cancer Res 12:
3935–3941

Pollak M (2008) Insulin and insulin-like growth factor signalling in
neoplasia. Nat Rev Cancer 8: 915–928

Rasheed S, Harris AL, Tekkis PP, Turley H, Silver A, McDonald PJ,
Talbot IC, Glynne-Jones R, Northover JM, Guenther T (2009) Hypoxia-
inducible factor-1alpha and -2alpha are expressed in most rectal cancers
but only hypoxia-inducible factor-1alpha is associated with prognosis.
Br J Cancer 100: 1666–1673

Rego RL, Foster NR, Smyrk TC, Le M, O’Connell MJ, Sargent DJ,
Windschitl H, Sinicrope FA (2010) Prognostic effect of activated EGFR
expression in human colon carcinomas: comparison with EGFR status.
Br J Cancer 102: 165–172

Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, Dietrich D,
Biesmans B, Bodoky G, Barone C, Aranda E, Nordlinger B, Cisar L,
Labianca R, Cunningham D, Van Cutsem E, Bosman F (2010) Prognostic
role of KRAS and BRAF in stage II and III resected colon cancer: results
of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00
trial. J Clin Oncol 28: 466–474

Schmitz KJ, Wohlschlaeger J, Alakus H, Bohr J, Stauder MA, Worm K,
Winde G, Schmid KW, Baba HA (2007) Activation of extracellular

regulated kinases (ERK1/2) but not AKT predicts poor prognosis in
colorectal carcinoma and is associated with k-ras mutations. Virchows
Arch 450: 151–159

Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental
disorders and cancer. Nat Rev Cancer 7: 295–308

Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism
and growth control in tumour suppression. Nat Rev Cancer 9: 563–575

Slattery ML, Curtin K, Wolff RK, Herrick JS, Caan BJ, Samowitz W (2010)
Diet, physical activity, and body size associations with rectal tumor
mutations and epigenetic changes. Cancer Causes Contr 21(8):
1237–1245

Vazquez-Martin A, Lopez-Bonet E, Oliveras-Ferraros C, Perez-Martinez
MC, Bernado L, Menendez JA (2009) Mitotic kinase dynamics of the
active form of AMPK (phospho-AMPKalphaThr172) in human cancer
cells. Cell Cycle 8: 788–791

Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA,
Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L,
Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J,
Haile R, Laird PW (2006) CpG island methylator phenotype underlies
sporadic microsatellite instability and is tightly associated with BRAF
mutation in colorectal cancer. Nat Genet 38: 787–793

Yeh JJ, Routh ED, Rubinas T, Peacock J, Martin TD, Shen XJ, Sandler RS,
Kim HJ, Keku TO, Der CJ (2009) KRAS/BRAF mutation status and ERK1/
2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal
cancer. Mol Cancer Ther 8: 834–843

Zakikhani M, Dowling RJ, Sonenberg N, Pollak MN (2008) The effects of
adiponectin and metformin on prostate and colon neoplasia involve
activation of AMP-activated protein kinase. Cancer Prev Res (Philadel-
phia, PA) 1: 369–375

Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L, Cantley LC
(2009) Oncogenic B-RAF negatively regulates the tumor suppressor
LKB1 to promote melanoma cell proliferation. Mol Cell 33: 237–247

Zlobec I, Molinari F, Kovac M, Bihl MP, Altermatt HJ, Diebold J, Frick H,
Germer M, Horcic M, Montani M, Singer G, Yurtsever H, Zettl A,
Terracciano L, Mazzucchelli L, Saletti P, Frattini M, Heinimann K,
Lugli A (2010) Prognostic and predictive value of TOPK stratified by
KRAS and BRAF gene alterations in sporadic, hereditary and metastatic
colorectal cancer patients. Br J Cancer 102: 151–161

AMPK, MAPK3/1 and prognosis in colorectal cancer

Y Baba et al

1033

British Journal of Cancer (2010) 103(7), 1025 – 1033& 2010 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s


	Prognostic significance of AMP-activated protein kinase expression and modifying effect of MAPK3/1 in colorectal cancer
	Main
	Materials and methods
	Study group
	Sequencing of KRAS, BRAF and PIK3CA and MSI analysis
	Methylation analyses for CpG islands and LINE-1
	Immunohistochemistry
	Statistical analysis

	Results
	AMPK expression in colorectal cancer
	AMPK expression and prognosis in colorectal cancer
	Modifying effect of p-MAPK3/1 expression on p-AMPK expression in survival analysis
	Prognostic effect of p-MAPK3/1 expression in strata of p-AMPK status
	Stratified analysis of p-AMPK expression and mortality

	Discussion
	Acknowledgements
	References




