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Recovery of phospho-ERK activity allows melanoma cells to
escape from BRAF inhibitor therapy
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BACKGROUND: Resistance to BRAF inhibitors is an emerging problem in the melanoma field. Strategies to prevent and overcome
resistance are urgently required.

METHODS: The dynamics of cell signalling, BrdU incorporation and cell-cycle entry after BRAF inhibition was measured using flow
cytometry and western blot. The ability of combined BRAF/MEK inhibition to prevent the emergence of resistance was demonstrated
by apoptosis and colony formation assays and in 3D organotypic cell culture.

RESULTS: BRAF inhibition led to a rapid recovery of phospho-ERK (pERK) signalling. Although most of the cells remained growth
arrested in the presence of drug, a minor population of cells retained their proliferative potential and escaped from BRAF inhibitor
therapy. A function for the rebound pERK signalling in therapy escape was demonstrated by the ability of combined BRAF/MEK
inhibition to enhance the levels of apoptosis and abrogate the onset of resistance.

CONCLUSION: Combined BRAF/MEK inhibition may be one strategy to prevent the emergence of drug resistance in BRAF-V600E-

mutated melanomas.
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The discovery that ~50% of human melanomas harbour
activating V600E mutations in the serine/threonine kinase BRAF
has raised the possibility that these tumours may be amenable to
targeted therapy (Davies et al, 2002; Smalley and Flaherty, 2009).
A large number of preclinical studies have now validated
mutated BRAF as a bona fide therapeutic target in melanoma
(Hingorani et al, 2003; Karasarides et al, 2004; Sharma et al,
2005). Mechanistically, mutated BRAF seems to exert most of its
oncogenic effects through the activation of the RAF/MEK/ERK
mitogen-activated protein kinase (MAPK) pathway (Karasarides
et al, 2004; Wellbrock et al, 2004b). The MAPK activity drives
the uncontrolled growth of melanoma cells by upregulating the
expression of cyclin D1 and through the suppression of the
cyclin-dependent kinase inhibitor p27¥""' (Smalley, 2003; Bhatt
et al, 2005).

A number of novel BRAF inhibitors have been described that
are now at various stages of clinical development (King et al,
2006; Montagut et al, 2008; Tsai et al, 2008; Flaherty et al, 2009).
Of these, PLX4032 and PLX4720 (Plexxikon/Roche, Nutley, NJ,
USA), have been exciting great interest, with recent studies from
our group and others showing these compounds to have excellent
anti-tumour activity in vitro and in vivo (Cartlidge et al, 2008; Sala

*Correspondence: Dr KSM Smalley; E-mail: keiran.smalley@moffitt.org
Received 29 April 2010; revised 6 May 2010; accepted 10 May 2010

et al, 2008; Tsai et al, 2008). PLX4032 has been recently evaluated
in a phase I clinical trial of melanoma patients harbouring the
BRAF-V600E mutation (Flaherty et al, 2009). Responses were
observed in an unprecedented 70% of patients, and there is now
hope that small molecule BRAF inhibitors could constitute a major
new melanoma therapy.

Although the clinical development of BRAF inhibitors is at an
early stage, it is already clear that the impressive levels of response
seen initially do not necessarily persist for extended periods of
time. These observations mirror the pattern of response seen
to targeted therapy in CML, GIST (Sawyers, 2004; Bauer et al,
2007) and most recently medulloblastoma (Rudin et al, 2009;
Yauch et al, 2009), where an initial period of tumour regression is
later followed by relapse. In this study, we have identified the
rebound activation of phospho-ERK (pERK) as being a mechanism
of early therapy escape and show that combined BRAF/MEK
inhibition can both enhance the levels of apoptosis and abrogate
the onset of resistance.

MATERIALS AND METHODS

Cell culture and growth inhibition

Melanoma cell lines were a gift from Dr Meenhard Herlyn
(The Wistar Institute) and were genotyped as described in
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Haass et al (2008). Cells were plated into a 96-well plate at a
density of 2.5 x 10* cells per ml and left to grow overnight before
being treated with increasing concentrations of PLX4720 in
triplicate; after 72 h, the levels of growth inhibition were examined
using the MTT assay (Smalley et al, 2007b). Data show the mean of
at least three independent experiments + the s.e. mean. In all cases,
* indicates statistical significance where P<0.05. PLX4720 was
dissolved in 100% DMSO and stored at —20°C as a 10 mM solution.
U0126 was from EMD Biosciences (Carlsbad, CA, USA) and was
prepared in a similar manner to PLX4720.

Western blotting

Proteins were extracted and blotted for as described in Smalley
et al (2005). After analysis, western blots were stripped once and
reprobed for f-actin or GAPDH to demonstrate even protein
loading. The antibodies to pERK, cleaved caspase-3, phospho-RB
protein, total-RB protein, PARP, CRAF, cyclin D1 and total-ERK
were from Cell Signaling Technology (Beverly, MA, USA) and
the antibody to p27 was from BD Biosciences (Franklin Lakes,
NJ, USA).

Flow cytometry

Cells were plated into 10-cm dishes at 60% confluency and left to
grow overnight before being treated with PLX4720 (0.3 and 3 um)
for 24 h. In other studies, cells were treated with PLX4720 (3 um) in
the absence or presence of U0126 (3 um) and harvested after 24 or
48h. Annexin-V labelling and propidium iodide staining were
performed as described in Smalley et al (2007a).

BrdU incorporation

Cells were seeded in 10 cm plates at a density of 100000 cells ml™*
and grown overnight before being treated with PLX4720 (3 um) for
72hor 1, 2, 3 and 4 weeks. For the 1-, 2-, 3- and 4-week treatments,
PLX4720 (3 um) was added twice per week. One hour before the
end of the drug treatment, BrdU (Sigma-Aldrich, St Louis, MO,
USA) was added to the cells to a final concentration of 20 um for
1 h. Cells were fixed and permeabilised with eBioscience’s fixation
and permeabilisation buffers. The BrdU epitopes were exposed
by incubating with DNase (Sigma-Aldrich) before staining with
anti-BrdU conjugated to FITC (eBioscience, San Diego, CA, USA).
In all, 7-AAD (BD Bioscience) was added to stain for DNA before
acquisition on a BD Facscalibur flow cytometer.

MEK]1 sequencing

Sequencing of MEK1 Exons 3 and 6 was performed as described
in Emery et al (2009).

3D spheroid assays

Melanoma spheroids were prepared using the liquid overlay
method (Smalley et al, 2006). Spheroids were treated with
0.03-30 um of PLX4720 or U0126, PLX4720 (both 3 um) and both
drugs in combination for 72 h before being washed (3 x in media)
and treated with calcein-AM, ethidium bromide (Molecular
Probes, Eugene, OR, USA) for 1h at 37°C, according to the manu-
facturer’s instructions. After this time, pictures of the invading
spheroids were taken using a Nikon-300 inverted fluorescence
microscope.

Colony formation

Cells (1 x10* per ml) were seeded out into six-well plates and
grown overnight before being treated with vehicle, PLX4720 (3 um),
U0126 (3 um) or the two drugs in combination. Cells were left to
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grow for 4 weeks with new drug added twice per week. Media was
aspirated, and plates were stained with crystal violet solution
(50% methanol + 50% H,0 + 0.5% crystal violet). Control plates
were grown for 1 week in the absence of any drug, until 100%
confluency was reached.

RESULTS

P1LX4720 has selective effects on BRAF-V600E-mutated
melanoma cell lines

Treatment of melanoma cells with increasing concentrations of
the BRAF inhibitor PLX4720 led to a dose-dependent reduction in
the growth of BRAF-V600E-mutated melanoma cell lines (WM35,
WM164 and 1205Lu) (Figure 1A). In contrast, cell lines that
harboured an NRAS mutation (WM1346, WM1361A and WM1366)
were more resistant (Figure 1A). Lower doses of PLX4720 (0.3 and
3 um) led to a profound Gl-phase cell-cycle arrest and a reduction
of 1205Lu cells entering into S-phase (Figure 1B). Increasing
concentrations of PLX4720 (1h) inhibited pERK signalling in three
BRAF-mutated melanoma cell lines (WM35, WM164 and 1205Lu),
but not an NRAS-mutated cell line (WM1346) (Figure 1C). It was
noted that PLX4720 also reduced pRB protein phosphorylation,
increased p27 expression, suppressed cyclin D1 expression and
induced cleavage of PARP only in melanoma cell lines harbouring
the BRAF-V600E mutation (Figure 1D).

PLX4720-mediated apoptosis induction is
BRAF-V600E-mutation specific

Concentrations of PLX4720 >3 um were required for apoptosis
induction across a panel of three BRAF-mutated melanoma cell
lines (WM35, WM164 and 1205Lu) (Figure 2A). The pro-apoptotic
effects of PLX4720 were found to be BRAF specific, with high levels
(>30%) of apoptosis only induced in the BRAF-V600E-mutated
melanoma cell line panel (WM35, WM164 and 1205Lu), and not
the NRAS-mutated melanoma cell lines (WM1346, WM1361A and
WM1366) (Supplementary Figure 1). The induction of apoptosis
was found to be time dependent with apoptosis observed only
>24h. Often, the pharmacological profile of drugs in 2D culture
is not predictive of response in 3D culture. Here, it was found
that the concentrations of PLX4720 required (>3 uM) to induce
apoptosis in 2D cell culture (Figure 2B) were equivalent to those
necessary for loss of spheroid viability (as shown by the reduction
of green staining and increased red staining) (Figure 2B).
Interestingly, some viable melanoma cells persisted even at the
highest concentrations of drug.

Some cells escape from PLX4720 treatment and become
resistant

We next asked whether BRAF-V600E-mutated melanoma cells
escaped from PLX4720 therapy and become drug resistant. Here,
melanoma cell lines (WM164 and 1205Lu) were treated with
PLX4720 (either 2 or 3 um) over a 2-month period with fresh drug
added twice per week. It was noted that after an initial round of cell
death, a limited number of viable cells remained and as treatment
progressed, these clones began to regrow (>28 days) and
eventually repopulated the whole culture (Figure 3A). The drug-
resistant phenotype of the surviving cells was demonstrated by the
ability of both cell lines to maintain their pERK signalling and
incorporate BrdU in the continuous presence of PLX4720 (3 um)
(Figure 3B and C). In contrast, PLX4720 treatment (3 uM) potently
inhibited BrdU incorporation in the PLX4720-naive WM164 and
1205Lu cell lines (Figure 3C). It was further shown that the
proliferation of the PLX4720-resistant WM164 and 1205Lu cell
lines was dependent on MAPK signalling, with MEK inhibitor
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Figure | PLX4720 inhibits the growth of melanoma cells harbouring the BRAF-V600E mutation. (A). Increasing concentrations of PLX4720 reduced the
growth of melanoma cell lines harbouring the BRAF-V600E mutation (WM35, 1205Lu and WM 164), whereas melanoma cell lines that were BRAF wild type
were relatively resistant (WM 1346, WMI1361A and WM 366). Cells were treated with drug (3 nM—30 umM) for 72 h, and cell numbers were quantified using
the MTT assay. Bars show s.e. mean. (B) Low doses of PLX4720 are cytostatic in melanoma cells harbouring the BRAF-V600E mutation. 1205Lu cells were
treated were either 0.3 or 3 uM PLX4720 for 24 h before being fixed, stained with propidium iodide and analysed by flow cytometry. (C) PLX4720 inhibits
MAPK signalling in BRAF-V600E-mutated melanoma cells. Cells were treated with increasing concentrations of PLX4720 (0.03—30 uMm, | h); proteins were
extracted and probed for expression of phospho-ERK (pERK). Blots were stripped once and reprobed for total-ERK to show even protein loading.
(D) PLX4720 induces a concentration-dependent reduction in the phosphorylation of the retinoblastoma protein (phospho-RB), induces the cleavage of
PARP, stabilises p27 and suppresses the expression of cyclin DI in WMI64 BRAF-V600E-mutated melanoma cells. Cells were treated with increasing
concentrations of PLX4720 (3nM—-30uMm) for 24h, after which time, protein was extracted and resolved by western blotting (C = vehicle control).
Blots were stripped once and probed for actin to show equal protein loading.

A WM35 WM164 1205Lu

100 100 100
2 80 % & 80
£ £ <
§ 60 § §(:‘»O
<<‘:: 40 5: <c: 40
® 20 B ® 20

0
0 003 03 3 30um 0 0.03 03 3 30um 0 003 03 3 30um

B Control

Ly
E

Figure 2 PLX4720 induces apoptosis in BRAF-V600E-mutated melanoma cell lines. (A) PLX4720 induces apoptosis in three BRAF-mutated melanoma
cell lines. Cultures were treated with increasing concentrations of PLX4720 (0.03—30 um, 48 h), before staining for FITC-annexin-V and flow cytometry. Data
show mean of three experiments. (B) PLX4720 reduces viability and invasion of 1205Lu cells grown as 3D collagen-implanted spheroids. Preformed 1205Lu
spheroids were implanted into collagen and overlayed with media. Cells were treated with PLX4720 (0.3—30 uM for 72 h) before being treated with calcein-
AM and ethidium bromide. Green, viable cells; red, dead cells. Lack of green staining also indicates a loss of cell viability. Magnification x 0. *P<0.05,
Significant difference from control. The colour reproduction of this figure is available on the html full text version of the manuscript.

treatment (U0126; 3 and 10 um) preventing the incorporation of mutation in MEK1 (Emery et al, 2009). As BRAF and MEK
BrdU (Figure 3C). lie in the same signal transduction pathway, we sequenced

Earlier studies have suggested that acquired resistance to Exons 3 and 6 of MEK1 for both WM164 and 1205Lu cell lines.
the MEK inhibitor AZD6244 occurs as the result of an acquired It was found that neither of the PLX4720-resistant cell lines
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Figure 3 Melanoma cells escape PLX4720 and become resistant. (A) Representative photomicrograph of WM164 and 1205Lu melanoma cells treated
with PLX4720 (3 um) for either 14 or 28 days. (B) Western blot showing levels of pERK expression in PLX4720 naive (N) and resistant (R) (8 weeks, 3 uM)
WMI64 and 1205Lu cell lines. Note that the resistant cell lines were maintained continuously in the presence of PLX4720 (3 uMm). Total-ERK demonstrates
even protein loading. (C) Resistant 1205Lu and WM 164 cell lines continue to incorporate BrdU in the continual presence of PLX4720 (3 uM). Panel shows
either treatment-naive WM164 and 205Lu cell lines (control) or resistant (chronically treated with PLX4720 for 8 weeks) treated with either PLX4720
(3 um) or the MEK inhibitor U0126 (3 and 10 um). Cells were stained for BrdU (20 um, | h) uptake and the cell viability marker 7-AAD and were analysed by
flow cytometry. (D) Representative sequencing trace from Exon 3 of MEK| of 1205Lu cells chronically treated with PLX4720 for 8 weeks, arrow indicates

site of P124L mutation identified previously in Emery et al (2009).

acquired the P124L or Q56P mutations in MEK1 (Figure 3D and
data not shown).

Prolonged PLX4720 treatment leads to a recovery of pERK
signalling

Having shown the reliance of the PLX4720-resistant melanoma cell
lines on MAPK signalling, we next investigated the time course of
PERK signalling recovery. Treatment of drug-naive WM164 cells
with PLX4720 (3 um) showed the pathway to be rapidly inhibited,
with some recovery of signalling >24h (Figure 4A and B). The
recovery of pERK signalling observed was found to be insensitive
to repeated PLX4720 treatments (drug added every 24h)
(Figure 4A). To explain the apparent anomaly between the
recovery of pERK signalling >24h and the profound growth
arrest/apoptosis observed at 48 and 72h (Figures 1A and 2A), we
next investigated the cell cycle and signalling profile of cells treated
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with PLX4720 over a 72-h period. These studies showed that even
though pERK signalling recovered, the majority of the cells
remained growth arrested (Figure 4C), and that this was associated
with increased p27 expression and hypophosphorylation of the
pRB protein (Figure 4D). Interestingly, a minor population of cells
were identified that continued to proceed through S-phase
(Figure 4C). The existence of a minor proliferating subpopulation
was also confirmed by BrdU incorporation assays (1-4 weeks),
with studies showing that 2-4% of WMI164 and WM793 cells
continued to incorporate BrdU in the continuous presence of
PLX4720 (3 um) (Supplementary Figure 2).

Cell counting experiments were performed to better understand
how PLX4720-induced apoptosis, cell-cycle arrest and therapy
escape impacted on the population as a whole (Figure 4E). It was
observed that after an initial drop in cell numbers, the population
remained relatively stable, suggesting that the recovery of pERK
signalling attenuated the anti-melanoma activity of PLX4720.
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Figure 4 pERK signalling recovers after PLX4720 treatment. (A) Naive WMI164 melanoma cells were treated with PLX4720 (3 um, every 24h) for
increasing periods of time (0—48h) and probed for pERK and total-ERK (tERK). (B) Recovery of pERK is observed in three naive BRAF-V600E-mutated
melanoma cell lines. Cells were treated with PLX4720 for O, 8, 24, 48h (3 uM) and analysed as in (A). (€) Most cells remain growth arrested even
when pERK recovers. WM793 cells were treated with PLX4720 (3 um) for 0—72h. Cells were harvested, fixed and stained with propidium iodide before
being analysed by flow cytometry. (D) p27 expression levels remain high even when pERK signalling recovers. WM793 cells were treated with PLX4720 as
for (C); protein lysates were probed for expression of pERK, total-ERK (tERK), phospho-RB (p-pRB), total retinoblastoma protein (t-RB) and p27. Equal
protein loading was confirmed by stripping the blot once and probing for GAPDH expression. (E) PLX4720 treatment leads to a drop in cell numbers
followed by stabilisation of the population. WM793, 1205Lu and WM 164 melanoma cells were treated with PLX4720 (3 uM) for 0—120h. At each time
point, the cells were removed from the plate and counted. Data show the mean % s.emean of three independent experiments.

Rebound pERK treatment allows for escape from
PLX4720-mediated apoptosis

Having demonstrated that pERK signalling recovered after
PLX4720 treatment, we next determined whether dual BRAF/
MEK inhibition led to enhanced cytotoxicity. It was noted that
although the recovery of pERK signalling was insensitive to
repeated PLX4720 treatments (Figure 4A), rebound pERK signal-
ling was sensitive to the MEK inhibitor U0126 (3 um) (Figure 5A
and B). Combined treatment of drug-naive WM164 cells with both
PLX4720 and U0126 was found to decrease the expression of cyclin
D1 (Figure 5C) and enhance the level of PLX4720-induced PARP
and caspase-3 cleavage (Figure 5C). In contrast, expression of p27,
a protein relatively sensitive to BRAF/MEK inhibition, was little
enhanced when PLX4720 and U0126 were combined. The western
blotting results were also mirrored in apoptosis assays, with the
addition of U0126 (3 um) significantly enhancing the pro-apoptotic
activity of low-dose PLX4720 (3 um) in drug-naive WM164 cells
at both 24 and 48h (Figure 5D).

Combined BRAF/MEK inhibitor treatment prevents the
acquisition of resistance

In a final series of experiments, we explored whether dual
BRAF/MEK inhibition blocked the MAPK-dependent escape
from PLX4720 therapy and asked whether this prevented the
onset of resistance. Here, WM164, WM793 and 1205Lu cells
were treated with PLX4720 (3 um), U0126 (3 um) or the two
inhibitors in combination for 4 weeks. It was noted that
although PLX4720 was more effective at reducing colony formation
than U0126 (Figure 6A), a number of clones did remain.
In contrast, treatment with U0126 and PLX4720 in combination
completely inhibited the formation of all colonies. A thorough

British Journal of Cancer (2010) 102(12), 17241730

microscopic examination of the plates revealed that no cells
remained (Figure 6A, see inset). Examination of the vehicle
control plates showed the cells to be highly confluent.
It was further found that the combination of PLX4720 and
U0126 (both 3 um) also reduced the growth and survival of
melanoma cell lines grown as 3D collagen-implanted spheroid
cultures (Figure 6B).

DISCUSSION

The past 30 years have seen little improvement in the treatment of
disseminated melanoma. After the recent success of targeted
therapy agents such as imatinib mesylate in chronic myeloid
leukemia, there is now hope that melanoma may be amenable to
similar strategies. A recent phase I clinical trial of the BRAF
inhibitor PLX4032 has validated this concept and showed that
most patients whose melanomas harboured the BRAF V600E
respond well to this treatment (Flaherty et al, 2009). Although
long-term follow-up data are not currently available, early
indications suggest that most PLX4032-treated patients eventually
become resistant. In this study, we have focused on the
earliest stages of therapy escape after treatment with the BRAF
inhibitor PLX4720. Through an initial series of experiments,
we confirmed that PLX4720 had good selectivity for BRAF-
mutated melanoma cell lines over those harbouring NRAS
mutations and also demonstrated that PLX4720 was able to induce
significant levels of apoptosis. The induction of apoptosis induced
was slow in onset (>24h), but very BRAF specific, with very
little apoptosis observed in melanoma cell lines that were BRAF
wild type.

Currently, very little is known about the mechanism of early
therapy escape after BRAF inhibition. In non-melanoma systems,

© 2010 Cancer Research UK
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Figure 5 The function of rebound pERK signalling in the escape from PLX4720 treatment. (A) UOI26 blocks the rebound increase in pERK after
PLX4720 treatment. Melanoma cells were either treated with vehicle (0), PLX4720 (3 um) or PLX4720 + UO0126 (both 3 um) for 48 h, protein was then
probed for expression of pERK and tERK. (B) Melanoma cells were treated with increasing concentrations of UO126 for | h before being probed for pERK
and tERK expression. (€) Cells were treated with increasing concentrations of PLX4720 (30 nM—30 um) for 24 h in the absence or presence of U0126
(3 um), after which time, protein was extracted and resolved by western blotting and probed for either cleaved PARP (cl-PARP), phospho-ERK (pERK), cyclin
D1 (Cyclin DI), p27 or cleaved caspase-3 (cl-casp-3). Blots were stripped once and probed for actin to show equal protein loading. (D) Combined BRAF
and MEK inhibition leads to enhanced apoptosis. WM |64 cells were treated with either vehicle, U0126 (3 um, 3U0), PLX4720 (3PLX, 3 um) or the two
inhibitors in combination for 48 h. Levels of apoptosis were measured by annexin-V staining and flow cytometry. Data show the mean of three experiments.

*P <0.05.
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Figure 6 Dual BRAF/MEK inhibition prevents escape from PLX4720
therapy. (A) WMI 64, WM793 and 1205Lu melanoma cells were treated
with vehicle (I week), PLX4720 (3 um), UO126 (3 um) or the two inhibitors
in combination (both 3 uM) for 4 weeks. After this time, colonies were fixed
and stained with crystal violet. Photographs are representative of three
independent experiments. Photomicrographs show the detail of one
colony each on the WM793 plate (x 4). (B) Combined PLX4720 and
U0126 treatment reduce growth of melanoma cells and enhance cell death
in a 3D spheroid model. WM 64 spheroids were implanted in collagen and
treated with PLX4720 (3um), UOI26 (3um) or the two drugs in
combination for 72 h. After this time, plates were washed and cells were
stained with a cell viability kit. Red =dead cells, green=live cells. The
colour reproduction of this figure is available on the html full text version of
the manuscript.

© 2010 Cancer Research UK

chronic treatment with the MEK inhibitor CI-1040 leads to
resistance associated with increased KRAS and MEK expression
(Wang et al, 2005). In melanoma, it has been shown that both
growth factors and cytokines rescue cells from apoptosis after
siRNA-induced knockdown of BRAF (Christensen and Guldberg,
2005; Gray-Schopfer et al, 2007). Recent work has also suggested
that resistance of melanoma patients to the MEK inhibitor
AZD6244 is associated with mutations in MEK1 (Emery et al,
2009). Other studies have shown that acquired BRAF inhibitor
resistance after long-term drug treatment is associated with
pathway switching, where MAPK signalling is routed from BRAF
to CRAF (Montagut et al, 2008).

This study makes the unexpected observation that combined
BRAF and MEK inhibitor treatment enhances the levels of
apoptosis before resistance to BRAF inhibition is even acquired,
suggesting that the recovery of melanoma signalling occurs
much earlier than previously suspected. The observation that dual
MEK/BRAF inhibition blocks colony formation also argues that
rebound MAPK signalling observed has a key function in the
escape from therapy. Although targeting the same pathway at
two points seems redundant, it is likely that dual inhibition
may be a good strategy to counteract the feedback inhibition
loops that are relieved after pathway blockade at a single point
(Pratilas et al, 2009). Intriguingly, the possibility also exists that
MEK and BRAF inhibitors may hit subtly different cellular targets.
There is already evidence that both ARAF and CRAF affect
pathways other than MEK, and although not well characterised,
it is possible that other BRAF targets may exist (Wellbrock et al,
2004a).

The finding that dual BRAF/MEK inhibition prevents the onset
of resistance in our in vitro melanoma models suggests that MEK
inhibitors may be of use in managing resistance to BRAF
inhibitors and may delay or even prevent the onset of resistance
in some cases. These findings provide a strong rationale for the
testing of combined BRAF and MEK inhibitors in the clinical
setting.
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