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BACKGROUND: For over two decades, the Nottingham Prognostic Index (NPI) has been used in the United Kingdom to calculate risk
scores and inform management about breast cancer patients. It is derived using just three clinical variables – nodal involvement,
tumour size and grade. New scientific methods now make cost-effective measurement of many biological characteristics of tumour
tissue from breast cancer biopsy samples possible. However, the number of potential explanatory variables to be considered presents
a statistical challenge. The aim of this study was to investigate whether in ERþ tamoxifen-treated breast cancer patients, biological
variables can add value to NPI predictors, to provide improved prognostic stratification in terms of overall recurrence-free survival
(RFS) and also in terms of remaining recurrence free while on tamoxifen treatment (RFoT). A particular goal was to enable the
discrimination of patients with a very low risk of recurrence.
METHODS: Tissue samples of 401 cases were analysed by microarray technology, providing biomarker data for 72 variables in total,
from AKT, BAD, HER, MTOR, PgR, MAPK and RAS families. Only biomarkers screened as potentially informative (i.e., exhibiting
univariate association with recurrence) were offered to the multivariate model. The multiple imputation method was used to deal
with missing values, and bootstrap sampling was used to assess internal validity and refine the model.
RESULTS: Neither the RFS nor RFoT models derived included Grade, but both had better predictive and discrimination ability than NPI.
A slight difference was observed between models in terms of biomarkers included, and, in particular, the RFoT model alone included
HER2. The estimated 7-year RFS rates in the lowest-risk groups by RFS and RFoT models were 95 and 97%, respectively, whereas
the corresponding rate for the lowest-risk group of NPI was 89%.
CONCLUSION: The findings demonstrate considerable potential for improved prognostic modelling by incorporation of biological
variables into risk prediction. In particular, the ability to identify a low-risk group with minimal risk of recurrence is likely to have clinical
appeal. With larger data sets and longer follow-up, this modelling approach has the potential to enhance an understanding of the
interplay of biological characteristics, treatment and cancer recurrence.
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Endocrine-targeted therapy remains one of the most successful
systemic treatment options for the approximately 80% of patients
diagnosed with ER-positive early breast cancer (Miller et al, 2007;
Bartlett et al, 2007). However, it has been shown that many patients
relapse and die from breast cancer, despite the relative efficacy of
current endocrine treatment modalities (Abe et al, 2005). Recent
advances, including the third generation aromatase inhibitors, have
not dramatically altered this figure (Hughes-Davies et al, 2009).
Conversely, a significant proportion of women with ER positive
cancer are at a low risk of breast cancer relapse, even when not
treated with adjuvant endocrine therapy (Abe et al, 2005).
Currently, treatment selection for breast cancer is guided

predominantly by patient prognosis, using classical pathological

assessment of tumours to measure risk (Pinder et al, 1995; Elston
et al, 1999). Endocrine therapy is offered to the majority of patients
with ERa-positive breast cancers, with higher risk patients being
more likely to receive aromatase inhibitors and possibly chemo-
therapy. Two fundamental changes in the understanding of the
underlying biology of breast cancers challenge this approach. First,
the molecular differences that exist between breast cancers (Perou
et al, 2000; Pollack et al, 2002; Desmedt et al, 2004) support
treating different molecular subtypes on the basis of their biology
and pathology rather than on pathology alone. Second, clear
evidence that molecular subtypes of cancer respond differently to
different therapeutic options challenges the ‘one size fits all’
approach to chemotherapy in cancer (Hayes et al, 2007; Bartlett
et al, 2008, 2009a, b, 2010; Pritchard et al, 2008; Ellis et al, 2009).
Several different approaches have been applied to the

subclassification of breast cancers on the basis of genomic
(Pollack et al, 2002), transcriptomic (Perou et al, 2000) and
immunohistochemical (El Rehim et al, 2004) techniques. No clear
evidence has yet emerged as to the superiority of one approach
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over another. We are pursuing a functional approach for the
stratification of breast cancers, seeking to ‘translate’ current
knowledge of drug resistance pathways to the identification of
subgroups with low, moderate and high risk of relapse after
treatment with particular therapeutic agents.
The Nottingham Prognostic Index (NPI) combines information

on nodal status, tumour grade and tumour size in untreated breast
cancer patients by means of a Cox regression model, to produce
an estimate of the risk of cancer recurrence that can be used to
classify patients into risk groups (Haybittle et al, 1982) for
treatment selection. This model has been widely validated and is
now central to the risk stratification of patients with breast cancer
across the United Kingdom. However, on the basis of analyses of
nearly 10 000 patients, it has been concluded that NPI is not
capable of identifying a low enough risk group to warrant a
recommendation of no treatment (Balslev et al, 1994). Therefore,
there is a need for additional prognostic factors to improve the
precision of prediction.
Similar models, notably ‘Adjuvant! Online’, were derived in an

analogous manner and are used across Europe and the United
States. These models, particularly Adjuvant! Online, have sought to
adapt to modern practice by integrating ERa with clinical trial data
to select appropriate therapies for patients. However, such
approaches tend to select only the single most powerful predictive
biomarker for inclusion within the model.
We have, over the past few years, carefully explored the role of a

large number of candidate predictive biomarkers in a selected
cohort of tamoxifen-treated ERa-positive breast cancer patients
(Kirkegaard et al, 2005, 2007; Tovey et al, 2005, 2006b; Naresh
et al, 2006; Cannings et al, 2007; McGlynn et al, 2009). In so doing,
we have mapped the expression of markers that appear
independently predictive of response to tamoxifen (Kirkegaard
et al, 2005, 2007; Tovey et al, 2005), including AIB1, HER2 and
AKT. In this way, we have identified a novel predictive biomarker
panel with the potential to improve selection of patients with ERa-
positive breast cancers who are likely to respond well to tamoxifen
and, potentially, to other endocrine therapies.
In this study, we explore the potential of combining biomarker

data and clinical variables to develop an enhanced prognostic
index for breast cancer recurrence.

MATERIALS AND METHODS

Patients

Study subjects comprised 401 ER-positive patients diagnosed
between 1983 and 1999 at the Glasgow Royal Infirmary (McGlynn
et al, 2009). The median follow-up time was 6.16 years and all
patients received tamoxifen with a median treatment duration of 5
years. All patients were treated by surgery with curative intent and
received tamoxifen after surgery; 73 (18%) were aged under 50
years at diagnosis. With regard to other adjuvant treatments, 74
(28%) patients received radiotherapy only, 61 (25%) received
chemotherapy only and 40 (10%) received both (chemotherapy
information was unknown for three patients, one of whom
received radiotherapy and is counted among the 74).
By the end of follow-up, there had been 74 deaths among the 112

recurrences, and 84 of the recurrences occurred while the patient
was still receiving tamoxifen treatment.

Variables

Data from previous analyses, quality assured by dual scoring
(Kirkegaard et al, 2005, 2006, 2007, 2008; Tovey et al, 2005,
2006a, b; Cannings et al, 2007), were considered for inclusion in
the model (72 variables relating to 41 biomarkers). Nuclear,
cytoplasmic and membrane expressions were scored according to

the observed cellular distribution of markers and were analysed
separately. Membrane expression was analysed for p118ERa,
p167ERa, EGFr, HER2, phosphoHER2, HER3 (m), HER4-ICD
(intracellular domain) and HER4 ECD (extracellular domain).
Cytoplasmic expression was analysed for ERa, ERb, p118ERa,
p167ERa, phosphoHER2, HER3, HER4-ICD, HER4 ECD, hRAS,
nRAS, kRAS, RAF1, p259-RAF1, p338-RAF1, rKip, TES, AKT1,
AKT2, AKT3, panAKT, p473AKT, p308AKT, mTOR, phospho-
mTOR, p389-p70S6k, Tace, Tacep, MAPK, phosphoMAPK, PTEN,
Bcl2, Bax, Bad, p112-Bad and Bcl-xl. Nuclear expression was
analysed for ERa, ERb, PgR, p118ERa, p167ERa, phosphoHER2,
HER3, HER4-ICD, HER4 ECD, hRAS, nRAS, kRAS, RAF1,
p259-RAF1, p338-RAF1, rKip, TES, AKT1, panAKT, p473AKT,
p308AKT, MAPK, phosphoMAPK, PTEN and AIB1. In addition,
gene amplification and copy number for HER2 and AIB1 and
TUNEL analysis of apoptosis were analysed. Four clinical variables
were also offered to the model, namely, nodal status, grade (Bloom
and Richardson), tumour size and age.

Outcomes studied

The primary outcome was recurrence-free survival (RFS), with
secondary outcomes being overall survival (OS) and remaining
recurrence free while on tamoxifen treatment (RFoT), as
previously defined (Kirkegaard et al, 2005; Tovey et al, 2005,
2006a, b). Separate models were developed for RFS and RFoT.
Kaplan–Meier (K–M) curves are presented for RFS and RFoT in
relation to risk groups obtained from the models developed for
these end points, and also for OS in relation to the patient risk
groupings obtained from the RFS and RFoT models.

Statistical modelling

Regression risk modelling techniques perform best when there are
relatively large numbers of events and comprehensive data for all
biomarkers (Peduzzi et al, 1995). However, the number of events
in this cohort is not large (particularly for recurrence on
tamoxifen). By their nature, biomarkers are prone to missing
values, and it tends to be that the distribution of biomarker
expression is positively skewed (and hence relationship with
recurrence likely to be nonlinear) (Royston and Sauerbrei, 2008).
To address these challenges, we developed a four step modelling
approach (Figure 1).

Step 1: Screening and choice of risk function Our screening
process had two inter-linked aims: (i) to select variables to be
offered as candidate variables to the multivariate model, those
demonstrating univariate association with outcome (recurrence or
recurrence while on tamoxifen); and (ii) to identify the best form
of association with recurrence (linear, polynomial, threshold or
non-ordinal). To avoid screening of variables that are potentially
important in the final multivariate model, the screening P-value
threshold was set to the equivalent of P¼ 0.1 in a standard
univariate Cox model (i.e., P-value o0.1 in fractional polynomial
(FP) (explained in the next paragraph); o0.005 in the minimum
P-value method; or o0.025 in ‘non-ordinal quartile dichotomisa-
tion’ methods.)
For each biomarker in turn, we first applied second-degree FP

(FP2) regression to detect polynomial or linear associations. FP1
functions are power transformations modelling Xp rather than the
variable X (where P¼ �2, �1, 0, 0.5, 1, 2, 3), whereas the FP2 form
is an extension to b1X

p1þb2X
p2 (Royston and Altman, 1994). The

simpler FP1 or linear form was selected if it provided an adequate
fit. For any variable not included by the FP method, the existence
of a threshold effect (in which expression at or above a specified
level predicts outcome) was checked by a minimum P-value
method (Clark et al, 1993). Any variable remaining unselected was
then checked for non-ordinal effects by comparing cases with
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expression of the biomarker ranging between two neighbouring
quartiles vs the remaining cases; or middle two quartile ranges vs
the remaining; or first and third quartile ranges vs the remaining
(four comparisons for each biomarker).

Step 2: Data imputation and selection of bootstrap samples For all
candidate variables, we imputed missing data using MICE (multi-
variate imputations by chained equations), a probability-based
simulation technique that takes into account imputation un-
certainty (Schafer, 1999). This is an iterative process in which
missing data for a variable are estimated using its imputation
model and, in turn, these data are used in the estimation of missing
data for other variables. In accordance with usual practice, we
imputed 10 values for each missing value, thus creating 10 imputed
data sets. Any transformations needed to achieve optimum form,
as identified during screening in step 1, were then applied to
relevant variables in each of the 10 data sets. For subsequent
checking of stability/reliability, 100 bootstrap samples were drawn
from each imputed data set, resulting in 1000 ‘sample’ data sets.

Step 3: Refinement of model to eliminate unreliable and unstable
predictors A stable effect/form was defined as one occurring in at
least 50% of the 1000 sample data sets. First, we checked stability of
threshold/non-ordinal effects. Stable threshold/non-ordinal vari-
ables, variables screened in step 1 as having linear/polynomial
association, and clinical variables were then subjected to predictive
model fitting using backward elimination, with the threshold for
removing variables P¼ 0.05. This was undertaken separately for each
of the 1000 sample data sets. An MFP (multivariate fractional
polynomial) multivariate modelling approach was used, which, after
fitting of linear factors, ascertains whether the model fit could be
improved by using a polynomial form for any of the linear variables
(Royston and Sauerbrei, 2008). For classification as unreliable
variables, the inclusion frequency of each variable across all 1000
models was checked, and if less than 50%, the variable was deemed

‘unreliable’, as per Sauerbrei’s algorithm (Sauerbrei and Schumacher,
1992), and excluded. Furthermore, for continuous biomarkers, if the
form of risk function was unstable across bootstrap sample models
(as defined above), the variable was dropped.

Step 4: Aggregation of results Using only the ‘stable’ and ‘reliable’
variables identified in the previous step, a final model was then
fitted to each of the 10 imputed data sets. Applying Rubin’s rule,
coefficients for these 10 models were then averaged across models,
and standard errors were combined (Rubin, 1976), and an
aggregate risk score was obtained for each patient by averaging
his/her risk scores across the models obtained for each of the 10
imputed data sets.
For the RFS model, four equally sized risk groups were created

by setting the cutoff points at three-quartiles of the distribution of
the corresponding aggregate patient risk scores. Given that the
RFoT model was based on fewer events, three risk groups were
created by applying two tertile cutoff points to the distribution of
corresponding aggregate patient risk scores.

Model performance

The final aggregated model(s) for RFS and RFoT were compared
with NPI in terms of its discrimination (C-index) and ability to
predict disease relapse (Nagelkerke R2) (Harrell et al, 1996). The
C-index is a generalisation of the area under the ROC curve and
quantifies the ability to distinguish low- and high-risk patients.
This statistic varies between 0.5 (no better than chance) and 1,
with values near 1 indicating high discrimination power. The
Nagelkerke R2 varies between 0 and 1, which indicates, respec-
tively, very poor and very high predictive ability (Harrell et al,
1996). Kaplan–Meier survival curves have been plotted to allow a
visual comparison of event-free survival curves within risk groups
for the models being compared.
We also assessed the extent to which each biomarker model

classified patients into more appropriate risk groups compared
with NPI (Pencina et al, 2008). For recurrence-free patients and in
those in whom disease recurred, the method separately considers
the joint distribution of patients into risk groups by the standard
and new models being compared, quantifying ‘improvement’ in
risk group classifications; for recurrence cases, the new model
classifies them as higher risk, and for recurrence-free cases, as
lower risk, compared with the standard model. As our RFS model
classified patients into four equally sized risk groups, a fair
application of this method required a comparable division of NPI
risk scores (splits at quartiles of NPI risk scores were therefore
used, i.e., 3.3, 4.2 and 4.8). A similar approach was used for the
RFoT model, using tertile-split patients.
For both models, the actuarial event-free rate in the lowest risk group

is reported for up to 3, 5, 7 and 10 years of follow-up. For comparisons
of model ability to identify low-risk patients, event-free rates at 7 years
are used, because follow-up data to 10 years are as yet sparse.

Software

Analyses were performed using SPSS (V.13) (SPSS, Chicago, IL,
USA) and R software using MFP (Ambler and Benner, 2008),
Maxstat (Horton, 2007), MICE (Van Buuren and Oudshoorn,
2007), Mitools (Lumley, 2008), Hmisc (Harrell, 2008b) and Design
libraries (Harrell, 2008a).

RESULTS

RFS modelling

Table 1 shows the 14 biological variables selected by univariate
screening (step 1); for nine variables, the relationship with
recurrence was linear, for two the best functional form was

1. Univariate variable screening step
(N=72 biomarkers)

2. Data preparation step
(N=14 candidate biomarkers + N= 3 clinical variables)

3. Model/data refinement step
(N=17 variables, 1000 samples)

4. Final calculation/aggregation of risk
scores

(N=8 variables remain to be offered to the model)

For all variables, check the prognostic reliability

For the remaining 10 variables check the stability of form

Develop a joint model on each of the imputed data sets,
and then, for each patient, aggregate the separate final
risk estimates across the 10 data sets

Impute  the missing data for variables (10 data sets);
apply transformations needed; and draw 100 bootstrap
samples from each data set

Screen for potentially predictive univariate effects and
optimise the form of relationship

58 biomarkers
screened out

7 ‘unreliable’ variables
excluded (1 clinical

variable, 6 biomarkers)

2 ‘unstable’ polynomial
biomarkers excluded

Figure 1 Process of development of RFS model.
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expressed by an FP2 model and a reciprocal square transformation
(FP1) was used for nuclear PTEN. For nuclear phospho-MAPK
(pMAPK), a threshold effect was identified (using a histoscore of
104) and for nuclear AKT1 (AKT1), a non-ordinal association was
detected (the group with value between the second and third
quartile, differing in recurrence from the rest). The frequency of

missing values for candidate variables ranged between 1.2 and
11%, with the average missing rate being 5.2%. In all, 262 patients
(65% of cases) had complete data on all selected biomarkers and
clinical variables.
The inclusion frequency for all 17 variables offered to multi-

variate RFS models is given in the first column in Table 2. The final

Table 1 Univariate screening step for RFS model: variables and form of risk function selected

Variable
Form of risk

function
Number (%) of cases
with available data

Univariate association
with recurrence P-value

Tissue marker variables
Nuclear staining for AKT1 histoscore Non-ordinal 396 (99) 0.003
Cytoplasmic staining for AKT2 histoscore Linear 387 (97) 0.06
mTOR histoscore Linear 379 (95) 0.06
Phospho mTOR histoscore Linear 390 (97) 0.02
PTEN nuclear histoscore Polynomial (FP1) 373 (93) 0.02
Phospho-MAPK nuclear IHC histoscore Threshold (Optimal split¼ 104) 381 (92) 0.003
Phospho Raf (ser338) nuclear histoscore Linear 357 (89) 0.002
Phospho Raf (ser338) cytoplasmic histoscore Linear 357 (89) 0.01
Mapk p42/44 cytoplasmic histoscore Linear 376 (94) 0.01
Cytoplasmic KRAS histoscore Polynomial (FP2) 387 (97) o0.001
PgR nuclear histoscore Linear 387 (97) 0.007
Tunel data Linear 362 (90) 0.07
Phospho HER2 nuclear histoscore Linear 376 (94) 0.07
Nuclear RKIP histoscore Polynomial (FP2) 387 (97) o0.001

Clinical variables
Pathological tumour size Linear 379 (95) o0.001
Bloom and Richardson Grade Linear 390 (97) o0.001
Nodal status Linear 368 (92) o0.001

Table 2 Multifactorial RFS and RFoT models; relative frequency of covariate inclusion (in 1000 bootstrap samples)

RFS model (112 events) Median
follow-up¼ 6.2 (IQR 4.4–8.8) years

RFoT model (84 events) Median
follow-up¼ 5.0 (IQR 4.0–6.0) years

Variable HRa (95% CI) P-value
Inclusion

frequency (%) HR (95% CI) P-value
Inclusion

frequency (%)

Nodal status 1.82 (1.38, 2.40) o0.001 98.0 2.17 (1.57, 2.99) o0.001 100
Tumour Size (cm) 1.21 (1.10, 1.31) 0.001 95.2 1.20 (1.10, 1.30) 0.001 87.0
Cytoplasmic kRASb 6.05 (2.23, 16.44) o0.001 81.6 b 66.0
Tunel 1.49 (1.23, 1.81) o0.001 85.1 c
Nuclear Akt1 0.54 (0.36, 0.82) o0.001 92.3 c
Phospho mTOR 0.33 (0.19, 0.59) o0.001 79.1 0.55 (0.33, 0.94) 0.03 72.0
Phospho Raf (ser338) cytoplasmic 2.12 (1.07, 4.02) 0.03 70.8 a 14.2
Phospho MAPK nuclear 2.80 (1.72, 4.57) o0.001 79.0 c
PgR nuclear a 44.0 a 15.4
PTEN Nuclear b 59.5 b 85.0
Nuclear rKIP b 55.5 a 13.5
Phospho Raf (ser338) nuclear a 15.6 2.43 (1.16, 5.13) 0.02 59.4
Grade a 22.0 a 10.3
mTOR a 18.4 a 12.6
Mapk p42/44 cytoplasmic a 8.6 a 12.0
Cytoplasmic AKT2 a 10.5 c
Phospho HER2 nuclear a 10.0 c
HER2 c 1.43 (1.04, 2.00) 0.03 57.0
Nuclear kRAS c a 47.9
Tescy c a 44.0
H4jrme c a 6.2
Nuclear Mapk c a 12.0
Bcl2 c a 20.7
Tace c a 31.8
Tacep c a 16.5

Abbreviations: CI¼ confidence interval; HR¼ hazard ratio; IQR¼ inter quartile range; RFS¼ recurrence-free survival; RfoT¼ recurrence free while on tamoxifen treatment.
Key: a: Excluded as ‘unreliable’ – inclusion frequency was o 50% samples; b: excluded as ‘unstable’ – form not apparent in X50% samples; c: screened out. aFor biomarkers with
linear or polynomial effect, reported HR shows the amount of increase in risk of recurrence per 100 unit changes in the independent variable. bBefore applying cubic
transformation to cytoplasmic kRAS, variable was divided by 100.
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multivariate model for RFS retained six biomarkers and two
clinical variables as shown in the first panel of Table 2, together
with aggregated hazard ratios (as described in Materials and
Methods section). It can be seen that the stability of threshold
effect for pMAPK and the non-ordinal effect for AKT1 were
confirmed across bootstrap samples. Kaplan–Meier curves for RFS
are presented in Figure 2A, using standard NPI risk groups, and in
Figure 2B using the four risk groups derived from our RFS
biomarker model. The main difference between the two plots is
that the lowest risk group using the RFS model displays less
recurrence than the lowest risk NPI group.

Modelling RFoT

Three patients with missing values on duration of tamoxifen
treatment could not be included in the analysis. Table 2 (right-
hand panel) presents the results for RFoT modelling. Univariate
screening with respect to RFoT selected 17 candidate variables, the
inclusion frequencies of which are reported. Only five of these were
included in the final model, and their estimated hazard ratios are
reported. Figure 2C shows K–M curves for risk groups derived
from our RFoT model, and it can be seen that there is very little
recurrence in the lowest risk group.

Overall survival by risk groupings of RFS and RFoT models

Kaplan–Meier curves for OS, using the RFS and RFoT model risk
groupings, are presented in Figures 2D and E, respectively. These

suggest that the RFS and RFoT models can discriminate patients
with a low and high risk of death.

Performance of models

The RFS biomarker model had a higher discrimination ability than
NPI (C-index 79 vs 72% for NPI). The corresponding figures for
the RFoT model were 78 and 75%, respectively. There was a similar
finding for predictive ability (R2: 27 vs 14% for RFS and 19 vs 17%
for RFoT).
Estimated 7-year RFS in the lowest risk group was 95% for the

RFS biomarker model (four-group stratification), whereas it was
89% for NPI (standard three groups). The corresponding rates at
10 years were 95 and 79%, respectively.
Recurrence free while on tamoxifen treatment rates were

compared at 5 years, because only a small proportion of patients
received tamoxifen for more than 5 years. Estimated 5-year RFoT
in the lowest risk group was 97% for the biomarker model (also
three groups) and 94% for NPI (standard grouping).
Furthermore, as shown in Figure 3, out of 63 patients with

standardised risk scores of one or less, only a single patient
recurred giving 7-year RFS of 98%, whereas out of 32 patients with
risk scores exceeding 1.5, 29 patients recurred, giving a 7-year RFS
of only 14%.
If we compare risk group classifications overall, for our RFS

model compared with NPI, then of 112 recurrent cases, 34 (30%)
were more appropriately classified by RFS (i.e., to a higher risk
group), whereas 18 (16%) were assigned to a less appropriate
group (lower), giving a net gain in classification appropriateness
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Figure 2 Kaplan–Meier curves for the following: RFS by NPI grouping (A top left); RFS by RFS biomarker model grouping (B top middle); RFoT by RFoT
biomarker model grouping (C top right); OS by RFS biomarker model grouping (D bottom left); and OS by RFoT biomarker model grouping (E bottom
right).
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of 14% by RFS (Po0.01). For the 289 recurrence-free cases, the
corresponding changes in classification were 90 (31%) and 78
(27%), giving a net gain in classification appropriateness of 4%
(P¼ 0.17). For the RFoT model, the net gains in classification
appropriateness in recurred and non-recurred subgroups were 7.1
and 1.3%, respectively (P40.05 for both).

DISCUSSION

Endocrine therapy, using either tamoxifen or aromatase inhibitors,
remains the most successful systemic treatment of early breast
cancer. Significant improvements in recurrence-free and OS are
achieved by treating women with hormone receptor-positive
disease with ER-targeted therapies for 5–10 years (Abe et al,
2005). However, many women do not require endocrine therapy,
achieving sufficient disease control from surgery and local
radiotherapy (Abe et al, 2005). A further group may derive
minimal additional benefit over that achieved with tamoxifen
treatment if treated with aromatase inhibitors and/or chemotherapy
(Abe et al, 2005; Miller et al, 2007; Hughes-Davies et al, 2009). The
challenge is to devise prospective diagnostic approaches to stratify
women for appropriate adjuvant management, including identifi-
cation of those women who require no adjuvant hormonal or
chemotherapy.
Using retrospective statistical modelling of molecular analysis of

intracellular signalling pathways, we developed an algorithm that
allows the calculation of risk of recurrence for early breast cancers
treated with tamoxifen. Individual risk scores were calculated
using a simple panel of six immunohistochemical markers (in
addition to tumour size and nodal status), and when patients were
stratified by risk into four quartiles, marked differences in group
relapse rates were observed.
Among patients in the lowest risk group by the RFS model, the

estimated 7-year RFS rate was 95%, whereas in the highest risk
group, it was only 40% (Figure 2). When we moved the cutoffs to
create risk groups that mirrored the numbers of patients in NPI
risk groups for our cohort (133 lowest-risk, 199 intermediate-risk
and 69 highest-risk group), the estimated 7-year RFS remained
well separated, at 95% (95% CI: 91, 99%) and 34% (95% CI: 22,
46%) in the lowest and highest risk groups, respectively.
Low-risk patients could potentially avoid systemic treatment,

perhaps those with risk scores no greater than one, with a 98% RFS
rate at 7 years. Conversely, higher risk patients might well be
candidates for additional treatment, including chemotherapy or
other adjuvant treatment options. The application of individual
risk scores such as those that have been derived in our models
might become a strong driver for the implementation of biological
risk prediction.

The advantage of our biomarker model in the stratification of a
group with a low risk of recurrence seems to increase with
duration of follow up: the RFS rate at 5-year follow-up was 98% (vs
94% by NPI grouping) and at 7 years was 95% (vs 89%). This is
similar to the prediction achieved by complex multigene PCR-
based assay systems (Paik et al, 2004). However, an important
difference is that immunohistochemical assays are more readily
applied to routine pathological assessments than complex multi-
gene panels, and are also potentially significantly more cost-
effective (Paik et al, 2004).
The model developed provides a significant improvement over

conventional prognostic models such as NPI. The limitations of
NPI have been recognised for some time and novel modelling
approaches, including Adjuvant ! Online, have sought to
incorporate biological (ERa) and clinical risk markers. However,
such biological modelling is incomplete and further attempts at
refining the integration of biological and clinical risk markers are
required. One of the limitations of the current approach is the use
of a tamoxifen-treated cohort; hence, a further analysis of
untreated patient cohorts is required to fully validate the model.
Use of historical cohorts is often criticised because improvements
in screening, surgery and radiotherapy have improved prognosis
in recent years, and this might affect prognosis differentially by
patient factors. However, there is a conflict between the use of
cohorts of patients who have received first-line treatment reflecting
contemporary practice in surgical and radiotherapy techniques,
but which are relatively recent cases and will thus have a short
follow-up, and historical data sets with a longer follow-up. Neither
approach truly investigates the natural history of the disease, and
both approaches accept the interpretative compromises that are
integral to the study population used.
Although the NPI model is very useful, it was developed using a

limited range of risk factors. New biological developments allow us
to measure functional features of tumours, so that we have a rich
array of biomarkers with potential relevance to cancer progression.
To circumvent the risk of an overfitted model, which can arise
when there are excess potential explanatory variables, as is often
the case with biomarkers, we have used bootstrap sampling to
refine the models by excluding variables with an unstable form or
those that are unreliably included as necessary for prediction.
Recent methodological developments also allow modelling gains
through detection of an optimum form of association, and provide
powerful multiple imputation methods to salvage as much
predictive information as possible from cases with missing data.
Our biomarker-based predictive tool has the potential for future
application in the selection of patients for conservative vs
aggressive adjuvant treatment. In addition, the results and models
reported here can contribute to the generation of hypotheses with
regard to the mechanisms that might underlie the differences in
recurrences observed.
In the case of the RFoT model, there was a smaller number of

events in the analysis (84 vs 112); hence, the power was lower
compared with the RFS model. This, together with the very limited
number of patients with tamoxifen treatment exceeding 8 years,
and the potential bias inherent in decisions to proceed or not with
tamoxifen therapy (biased censoring), signifies that, at this stage,
caution is required if interpreting the model beyond 5 years.
Although we applied stringent checks on internal validity of
models, the lower power of the model might explain some
differences in biomarker selection, compared with other published
research. Of variables previously identified as predicting recur-
rence while on tamoxifen (AIB1, HER2 and AKT) (Kirkegaard
et al, 2005, 2007; Tovey et al, 2005), only HER2 was included in our
RFoT multivariate model. This may reflect the fact that HER2
remains the dominant driver in endocrine resistance, and may also
reflect the relatively small number of events (84).
One of the interesting differences between the RFS and RFoT

models developed on the basis of our data is the inclusion of HER2
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as a risk factor only in the latter model. This may reflect the
relationship between HER2 overexpression and increased risk of
early relapse, or a specific interaction with tamoxifen therapy
(resistance). Alternatively, the greater power of the RFS analysis
(112 events relative to 84 for RFoT) might have enabled the
identification/retention of some other variable(s), which together
could provide a better predictive information than HER2, and
retained these in the RFS model in place of HER2. Perhaps the
RFoT model, without this additional power, had to manage with
one variable, which was HER2. Further work using larger sample
sizes will be required before the explanation can be clarified.
Several different approaches have been taken for the develop-

ment of ‘risk’ signatures in early breast cancer. The Mammostrat
(Ring et al, 2006) panel is based on a functional expression array
analysis of different pathways involved in breast cancer recurrence
in the absence of adjuvant treatment, which uses five immuno-
histochemical markers to generate a risk score. The Oncotype Dx
test (Paik et al, 2004) and MammaPrint are multigene signature-
seeking tests, derived in a similar manner and aiming to predict
outcome during tamoxifen therapy. Further studies on this marker
panel suggest that it may be broadly prognostic, rather than

predictive. Our approach has been to use functional markers of key
molecular pathways of tamoxifen resistance to seek to identify a
panel that can select patients who may either derive sufficient
benefit from treatment with tamoxifen alone, or for whom
withdrawal of adjuvant therapy, which is moderately toxic, may
pose minimal risk. As with all approaches, this has limitations and
therefore future analyses should explore additional markers,
including perhaps markers of proliferation in addition to those
suggested above. A further validation of our current approach is
also required and during such a process, direct comparison with
similar panels, such as Mammostrat, Oncotype Dx and Mamma-
Print, would be of value.
NPI is the recognised tool for risk prediction in the United

Kingdom. In this study, we showed that TMA variables can add
value to clinical predictors. Our model demonstrated significantly
better risk group classification performance than NPI, particularly
for patients who will go on to experience recurrence. In particular,
the lowest risk group identified, comprising a quarter of all
patients, showed a high recurrence-free rate (95% at 7 years). This
has clinical potential, in that it suggests that such patients might be
spared additional treatments without undue risk of recurrence.
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