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BACKGROUND: MSMB, a gene coding for b-microseminoprotein, has been identified as a candidate susceptibility gene for prostate
cancer (PrCa) in two genome-wide association studies (GWAS). SNP rs10993994 is 2 bp upstream of the transcription initiation site
of MSMB and was identified as an associated PrCa risk variant. The MSMB protein is underexpressed in PrCa and it was previously
proposed to be an independent marker for the recurrence of cancer after radical prostatectomy.
METHODS: In this study, the coding region of this gene and 1500 bp upstream of the 50UTR has been sequenced in germline DNA in
192 PrCa patients with family history. To evaluate the possible effects of these variants we used in silico analysis.
RESULTS: No deleterious mutations were identified, however, nine new sequence variants were found, most of these in the promoter
and 50UTR region. In silico analysis suggests that four of these SNPs are likely to have some effect on gene expression either by
affecting ubiquitous or prostate-specific transcription factor (TF)-binding sites or modifying splicing efficiency.
INTERPRETATION: We conclude that MSMB is unlikely to be a familial PrCa gene and propose that the high-risk alleles of the SNPs in
the 50UTR effect PrCa risk by modifying MSMB gene expression in response to hormones in a tissue-specific manner.
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Prostate cancer (PrCa) is the most common cancer in men in the
western world, with 34 000 new cases every year and a lifetime risk
of 1 in 14 in the United Kingdom (Cancer Research UK Factsheets,
2008). However, its aetiology remains poorly understood. The
substantial worldwide variation in incidence rates suggests that
there are lifestyle risk factors, but none have been identified
definitively. Apart from demographic factors, the only well-
established risk factor for PrCa is family history. The risk of the
disease in first-degree relatives of cases is approximately twice that
of the general population (Carter et al, 1992; Goldgar et al, 1994;
Eeles, 1999; Hemminki and Czene, 2002; Gronberg, 2003; Edwards
and Eeles, 2004). Familial risk is four-fold greater amongst close
relatives of cases under 60-years old. Men with two or more
affected relatives are at even higher risk. Analyses of the Nordic
twin registries show higher risks in monozygotic compared with
dizygotic twins, thereby supporting the hypothesis that much
familial aggregation is due to genetic factors rather than shared
lifestyle factors (Lichtenstein et al, 2000). Epidemiological studies
consistently demonstrate aggregation of PrCa in families, consistent
with a multi-genetic origin.

To identify some of the multiple susceptibility loci we recently
carried out a genome-wide association study (GWAS) of B550000
single base pair genetic variants (SNPs) in 1854 PrCa cases and 1894
controls. Seven new susceptibility loci were validated in a further set
of 3650 PrCa cases and 3940 controls containing several plausible
candidate genes, one of which was on chromosome 10 (Eeles et al,
2008). Single base pair genetic variants rs10993994 and rs7920517
lie within an LD block of B100 kb on chromosome 10, containing
the b-microseminoprotein beta gene, MSMB. The most strongly
associated SNP, rs10993994, lies 2 bp upstream of the transcription
start site of MSMB. This association was also reported by the CGEM
study (Thomas et al, 2008). MSMB codes for PSP94, a prostatic
secretory protein, synthesised almost exclusively in the prostate
gland and it is the major constituent of seminal plasma. PSP94
functions in growth regulation and induction of apoptosis in PrCa
cells (Garde et al, 1999) and, as it leaks into the blood, its serum level
can be measured. There is a correlation between a reduced level of
PSP94 and PrCa progression (Reeves et al, 2006; Bjartell, 2007), after
radical prostatectomy. Thus, it is clear that the regulation of the
expression of MSMB is a key element in PrCa development and any
sequence variant, which has an effect on the level of MSMB gene
expression would be a good candidate for a causal variant.
The location of the rs10993994 and the strength of the

association (P¼ 10�17) raise the possibility that this SNP may be
causally related to disease risk, although this remains to be proven.
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However, GWAS are designed to tag common variants, and
associations mediated by rare variants may have been missed.
In order to establish the contribution of variants at this locus
to familial PrCa and to explore the possibility that there may
be additional disease-associated variants in the MSMB gene,
we re-sequenced the genomic sequence of the MSMB gene
including a B1500 bp region upstream of the transcription start
site in 192 PrCa cases with strong family history of the disease.

MATERIALS AND METHODS

Whole blood samples from PrCa cases were collected as part of
the UK Genetic Prostate Cancer Study (UKGPCS) at the Institute
of Cancer Research (http://www.icr.ac.uk). We have selected 192
families with three or more cases of PrCa. A sample from one
person per family was used for sequence analysis and wherever
possible this was the youngest family member affected with PrCa.
Control samples were from the ProtecT study; this is a national
study of community-based PSA testing and a randomised trial of
subsequent PrCa treatment (Donovan et al, 2003). Men between
the ages of 50 and 69 years are being recruited through general
practices in nine regions in the UK. DNA was extracted from their
peripheral blood using standard methods as described previously
(Eeles et al, 2008).
For the familial cases the full coding sequence of the MSMB

gene, exon–intron boundaries and a B1500 bp region of the
50UTR region was analysed by sequencing using the BigDye
Terminator Cycle Sequencing kit (v3.1) and a 3730xl DNA
Analyzer, (ABI Perkin Elmer, Foster City, CA, USA). Control
samples were sequenced only for the 50UTR region to assess the
allele distribution of the newly discovered promoter SNPs. One
new variant, rs12770171 was analysed by the 50nuclease assay
(Taqman) using the ABIPrism 7900HT sequence detection system
according to the manufacturer’s instructions. Primers and probes
were supplied directly by Applied Biosystems, Foster City, CA,
USA (http://www.appliedbiosystems.com/) as Assays-By-Design.
To identify the potential effects of sequence variants in the

promoter and intronic regions, 161 nucleotide sequences around
each SNP were taken from Ensembl (FASTA) and the alternative

alleles inserted. These sequences were submitted to Genomatix-
Suite MatInspector, which offers the most complete library
available for transcription factor (TF)-binding sites (Cartharius
et al, 2005) and we also applied a tissue filter specific for prostate.
Associations between SNP genotypes and PrCa risk were tested
using a Cochrane–Armitage trend test and genotype-specific risks
were estimated as odds ratios (ORs) with associated 95%
confidence interval (95% CI). For Hardy–Weinberg equilibrium
and Armitage trend testing, we used the public software developed
by Tim M Strom and Thomas F Wienker (http://ihg.gsf.de/cgi-bin/
hw/hwa1.pl). For the haplotype analysis we used Haploview
(Barrett et al, 2005) and Haplo.Stats (Schaid et al, 2002).

RESULTS

We have sequenced the MSMB gene and a 1500 bp 50UTR region in
192 blood DNA samples with strong family history (X3PrCa cases
in the family). No deleterious mutation was found in any of the
exons, but we identified nine new SNP sequence variants as well as
six other previously known SNPs in HapMap. The list of all the
SNPs in this region is shown in Table 1.
Four of the new variants are in the 50 UTR of the MSMB gene,

these were found in addition to six previously known SNPs in this
region. This region has been characterised previously as the
proximal promoter region for MSMB. In all, 10 out of 17 SNPs
identified lie in the promoter region. Of this region, 1500bp was
resequenced in 192 control samples to analyse the relative frequency
of the three commonly known SNPs in the 192 PrCa cases and 192
control samples (Table 2a). SNP2 (ENSSNP10237085), SNP8
(rs12770171) and SNP9, (rs1093994) all were significantly associated
with PrCa risk. Single base pair genetic variants was a previously
uncharacterised SNP (it was not genotyped in HapMap Phase 2). To
further investigate its association with PrCa risk, we genotyped
blood DNA from 3268 cases and 3366 controls. We found strong
evidence for an association between rs12770171 and PrCa risk
(P¼ 1.41� 10�12), however, this SNP is in LD with rs10993994
(r2¼ 0.32) and multiple logistic regression and haplotype analysis
revealed that there was no evidence for an independent association
with rs12770171 after adjustment for rs10993994 (Table 3).

Table 1 List of SNPs identified by re-sequencing of 192 familial prostate cancer cases

SNP NCBI 36 coordinates dbSNP ID
Designation (VEGA transcipt
OTTHUMG00000018212) Genotype No (of 192)

SNP 1 10: 51218441 New �1063 T4C CT 1
SNP 2 10: 51218461 rs61847070 �1043 T4C TC 34

CC 1
SNP3 10: 51218615 New �889 G4C GC 4
SNP4 10: 51219036 New �468 T4C TC 1
SNP5 10: 51219205 rs12247790 �299 T4G GG 1
SNP6 51219227^51219228 rs10669586 �276 indelCT 6
SNP7 10: 51219266 New �238 C4T TC 1
SNP8 10: 51219320 rs12770171 �184 C4T CT 72

TT 8
SNP9 10: 51219502 rs10993994 �2 T4C TC 91

TT 69
SNP10 10: 51219539 rs41274660 UTR �19 T4G TG 7

GG 1
SNP11 10: 51225699 New IVS1 �38 T4G TG 1
SNP12 10: 51225716 New IVS1 �21 T4C TC 1
SNP13 10: 51226117 rs2075894 IVS2 +275 T4C TC 51

CC 2
SNP14 10: 51226665 New IVS2 �92 G4T GT 2
SNP15 10: 51226682 New IVS2 �75 G4T GT 1
SNP16 10: 51226927 rs10994385 IVS3 +65 G4C GC 52

CC 1
SNP17 10: 51232109 New IVS3 �168 C4T CT 1
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Functional relevance of the sequence variants was assessed
in silico, by examining the regions around the 17 SNPs for
conservation and allele-specific splice factor or TF binding.
SNP8 lies in a biochemically characterised enhancer region of
the promoter (�275 to �206 upstream of the start ATG, Ochiai
et al, 1995) but no TF is predicted to bind across SNP8. SNPs 7, 8, 9
(the original best hit) and 10 are all in a 400bp region, ending in the
ATG transcription start site. Of the four SNPs, 8 and 9 lie in the best-
conserved sequence, with SNP8 being the best conserved SNP across
mammals (Supplementary Table 1). SNP9 (rs10993994) is predicted to
change the binding site for the ubiquitous CCAAT and Gli–Kreupel
TFs. SNPs 7 and 10 are predicted to have allele-specific TF binding in
prostate tissue. SNP7 is predicted to bind glucocorticoid receptor TFs,
including androgen and progesterone receptors, NR3C1&2 (nuclear
receptor subfamily 3, group C) and aldosterone-receptor TFs. The
rare allele of SNP7 (c.-238 C4T) increases predicted glucocorticoid
binding two-fold, and is predicted to displace binding of ubiquitous
E-box TFs (including Myc). The common allele of SNP10 (c.-19
T4G), is predicted to bind NKX homeobox domain TFs. The in-silico
data for SNPs7–10 are summarised in Figure 1.
Glucocorticoid TF-binding sites are also found across SNP15

and close to (within 50 bp of) SNP11/12, SNP14 and SNP16. Allele-
specific alterations in binding of splice factors SFp40, ASP/SF2 are
predicted for SNP12.
The two SNPs predicted to have prostate-tissue and allele-

specific effects on TF binding are rare sequence variants; SNP7 has
not been previously reported and we found it in only 1 out of 192
case samples (this variant was also present in a sibling with PrCa);
SNP10, rs41274660, is found at a frequency of 7 out of 192
heterozygotes and 1 out of 192 homozygotes in our familial cases
compared with 6 heterozygotes in 192 controls; therefore there is
no evidence that this SNP is associated with PrCa risk.

DISCUSSION

We present the resequencing results of the MSMB gene and its
50UTR region in familial PrCa cases and controls. Recently, two
GWAS identified MSMB as a PrCa susceptibility locus. Both
studies found that SNP rs10993994 is associated with PrCa risk,
with a per allele OR of 1.25, P¼ 10�13 to �29.
Resequencing germline DNA from 192 familial PrCa cases did

not find any deleterious mutations in the coding region of MSMB,
hence it is unlikely that this gene is altered by rare deleterious
coding mutations in familial PrCa. We have identified nine new
sequence variants and using bioinformatics tools, have assessed
their predicted effect on MSMB gene expression/regulation. The
MSMB gene consists of four exons and is located on chromosome
10q11.2. In the upstream region of MSMB there are many putative
transcription regulatory elements and it has been shown that the
proximal promoter regions, �275–207 and �186–128, function
in a prostate-specific manner. We have identified several new
sequence variants in the non-coding intronic and promoter
regions. SNP8, rs12770171, a previously uncharacterised SNP
was found to be strongly associated with PrCa in our familial
set, however, this association could be explained by the correla-
tion between this SNP and rs10994993 and therefore it is not
independently associated. In silico analysis revealed that SNP8
(rs12770171) lies within a known enhancer region and we propose
that it might have an effect on gene regulation. The most strongly
associated SNP, SNP9 (rs10993994) is predicted to change the
binding site for the ubiquitous CCAAT and Gli–Kreupel TFs.
In vitro studies by Buckland et al (2005) showed that both SNPs 8
and 9 have a substantial effect on the function of MSMB, reducing
its activity by 60–70%. Some of the other SNPs are, however, also
predicted to affect the expression level of MSMB, in particular,
the very rare, high-risk allele of SNP7 amplifies the binding site
for androgen and progesterone receptor in prostate tissue at the
expense of a ubiquitous cell cycle/growth TF. As a result, a subtle
alteration in the control of MSMB expression, changing ubiquitous
cell-cycle/growth regulation to hormone regulation is predicted in
the presence of the high-risk allele. As we found this alteration in
only 1 out of 192 PrCa families, this variant could be a rare mutation
predisposing to PrCa. SNP10 is predicted to bind NKX homeobox
domain TFs and this would lead to allele-specific tissue specificity
as well as hormonal regulation. Altogether as SNPs 7–10 are all
predicted to influence the regulation of gene expression, their
additive effects could result in a large variation in MSMB expression.
Yeager et al (2009), have reported the resequence analysis of

a 97 kb region containing the MSMB gene using DNA from

Table 2 (a) Common SNPs with significant difference in the frequency of alleles in 192 familial cases and 192 controls and (b) Haplotype analysis of the
three common SNPs in the promoter region in 192 familial cases and 192 controls

(a)

SNP
NCBI 36

coordinates SNP ID Associated allele
Frequency
in cases

Frequency
in controls P-value

SNP2 10: 51218461 ENSSNP10237085 C 0.094 0.048 0.0172

SNP8 10: 51219320 rs12770171 T 0.236 0.151 0.0036

SNP9 10: 51219502 rs10993994 T 0.453 0.352 0.0052

(b)

Haplotype Frequency
Case, control
ratio counts

Case, control
frequencies v2 P-value

SNP 2,8 and 9
TCC 0.597 210.5 : 173.5, 234.6 : 127.4 0.548, 0.648 7.721 0.0055
TCT 0.209 83.2 : 300.8, 72.9 : 289.1 0.217, 0.201 0.259 0.6111
TTT 0.122 54.4 : 329.6, 36.4 : 325.6 0.142, 0.101 2.934 0.0868
CTT 0.073 36.0 : 348.0, 18.1 : 343.9 0.094, 0.050 5.287 0.0215

Table 3 Haplotype analysis of SNP 8 rs1277017 and SNP 9
rs10,993,994 using our data from stage1 and 2 genome-wide association
study (GWAS) adjusted for strata (Eeles et al, 2008)

Haplotype

Na rs10993994 rs1277017 P-value Freqb Odds ratioc (OR)

1 1 C 1 C 0.580 1
2 1 C 2 T 0.35 0.0021 1.38 (0.71–2.04)
3 2 T 1 C 7.0� 10�18 0.210 1.35 (1.28–1.42)
4 2 T 2 T 3.7� 10�19 0.208 1.37 (1.30–1.44)

aHaplotype number. bHaplotype frequencies. cOdds ratio and 95% confidence interval.
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70 individuals (36 PrCa cases and 28 controls). They identified
348 SNPs, of which 157 were new. Similarly for us, they did not
discover any SNPs in perfect LD with rs10993994 or any coding
SNPs in MSMB. As they only list the common SNPs (MAF45%),
which are catalogued in dbSNP we are unable to make a
comparison with the less common SNPs or rare variants reported
here. Considering the difference between the sample sets, it is
likely that the rare variants found by us were not identified in the
study of Yeager et al (2009).
In a recent functional study it was shown that the risk allele of

SNP9, rs10993994, had only 13% of the promoter activity of the wild-
type allele in the PrCa model LNCaP cell line and there was a dose–
dependant increase in MSMB promoter activity in the wild-type
allele with the synthetic androgen R1881 (Chang et al, 2009). In
addition, Lou et al (2009) have also shown a significant effect of the
risk allele on gene expression in vitro and that the non-risk allele
preferentially binds to the CREB TF. This provides further evidence
that rs10993994 (SNP9) is likely to be the strongest causative variant.
However, the functional effects of all the above described variants on
gene expression will need to be tested in vivo on samples whose DNA
has been genotyped for all these SNPs. It is possible that allele-
specific alterations in splicing are combined with effects on
transcriptional levels. A SNP lying within a known, biologically
active element is most likely to have an effect, so the in silico
predictions for SNP9 agree with the laboratory observations.
Although a SNP within a biologically validated TF-binding site is

a good indicator for the possible functional effect on transcription,
it is known that a large proportion of functional SNPs do not lie
within the known consensus of TF-binding sites. Functional SNPs
may exert their effect by other mechanisms, such as changing the
structure of the DNA or by affecting splicing. Ultimately one would
need direct evidence of functionality from in vitro/in vivo models,
but the collection of expression and segregation analysis data
would also be helpful in this assessment.
The protein product of MSMB is PSP94, a small cysteine-rich

protein. It is abundantly expressed in seminal fluid, possibly
coating the sperm, and is also found in blood and mucus. Protein
expression is reduced in PrCa, so its gradual loss is associated
with the development of PrCa. Its expression is regulated by the

polycomb group protein EZH2, and the expression of MSMB can
be silenced by trimethylation. PSP94 has roles in growth regulation
and the induction of apoptosis in PrCa cells and as it leaks into
the blood, its serum level can be measured. As there is a tight
correlation between the level of PSP94 and PrCa progression
(Reeves et al, 2006; Bjartell, 2007), PSP94 is believed to be an
independent predictor of recurrence of cancer after radical
prostatectomy. Based on these observations it is clear that the
regulation of the expression of MSMB is a key element in PrCa
development and any sequence variant that has an effect on the
level of gene expression is a good candidate for a causal variant.
In summary, we have not found any deleterious mutations in the

coding sequences of MSMB in familial PrCa. This study has a 90%
power to detect a rare mutation with a frequency of 41%. Based
on this and other recent studies it is likely that SNP9, rs10993994,
is the causative variant in the association of MSMB with PrCa risk.
However, through resequencing, we have identified several new
SNPs in the promoter region, which are also predicted to have
some effect on splicing/transcription of the MSMB gene. A very
rare new variant, whose effect cannot be statistically validated
and rs41274660, a previously described variant are predicted to
have a direct effect on prostate-specific TF-binding sites, one
of which include androgen/progesterone/aldosterone receptors.
Further functional studies are needed to fully establish the signif-
icance of these sequence variants individually or in combination
in PrCa predisposition.

ACKNOWLEDGEMENTS

This study was funded by CR-UK grant C5047/A8385. We
acknowledge NHS support to the NIHR Biomedical Research
Centre at The Royal Marsden NHS Foundation Trust and The
Institute of Cancer Research.

Supplementary Information accompanies the paper on British
Journal of Cancer website (http://www.nature.com/bjc)

1

2

8

Exon1 = 34bp Exon2 = 105bp Exon3 = 105bp
in first transcript

Exon4 = 319bp

LINELTR

13

11

12

SINE

14

15

16 1710

9

3
4 7

5

6

Repeat
Element

Exon

3’ UTR

Quadruplex
5x GGGA

Prostate SNP

Functional
Enhancer 

GRE

Legend

MSMB isoform b precursor 

MSMB isoform a precursor

Exon 1
(34bp)

Exon 2
(105bp)

Exon 3
(105bp)

Exon 4
(319bp)

Figure 1 Physical disposition along chromosome 10 of new SNPs from prostate cancer (PrCa) patients, showing previously characterised glucocorticoid-
responsive elements and enhancers, transcripts and repetitive elements. In silico analysis showed that SNP7 is predicted to alter the response to
glucocorticoid transcription factors (TFs) in prostate tissue; SNP8 is the most conserved and falls within an enhancer; SNP9 (rs10993994) is predicted to
change the binding site for the ubiquitous CCAAT and Gli –Kreupel TFs, whereas only the common allele of SNP10 is predicted to bind homeobox TFs.
SNPs 13 and 14 are also highly conserved; binding of splice factors is predicted to be altered by SNP14 alleles.

Sequencing MSMB and its promoter region

Z Kote-Jarai et al

417

British Journal of Cancer (2010) 102(2), 414 – 418& 2010 Cancer Research UK

G
e
n
e
ti
c
s
a
n
d
G
e
n
o
m
ic
s

http://www.nature.com/bjc


REFERENCES

Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and
visualization of LD and haplotype maps. Bioinformatics 21: 263–265

Bjartell A (2007) PSA and prostate cancer screening: the challenge of the
new millennium. Eur Urol 52: 1284–1286

Buckland PR, Hoogendoorn B, Coleman SL, Guy CA, Smith SK, O’Donovan MC
(2005) Strong bias in the location of functional promoter polymor-
phisms. Hum Mutat 26: 214–223

Cancer Research UK, Statistical Information Team (2008) CancerStats
Prostate 2008 [internet]. Cancer Research UK: London http://
publications.cancerresearchuk.org/WebRoot/crukstoredb/CRUK_PDFs/
CSPRO08.pdf

Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC (1992) Mendelian
inheritance of familial prostate cancer. Proc Natl Acad Sci USA 89:
3367–3371

Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A,
Frisch M, Bayerlein M, Werner T (2005) Matlnspector and beyond:
promoter analysis based on transcription factor binding sites.
Bioinformatics 21: 2933–2942

Chang BL, Cramer SD, Wiklund F, Isaacs SD, Stevens VL, Sun J, Smith S,
Pruett K, Romero LM, Wiley KE, Kim ST, Zhu Y, Zhang Z, Hsu FC,
Turner AR, Adolfsson J, Liu W, Kim JW, Duggan D, Carpten J, Zheng SL,
Rodriguez C, Isaacs WB, Gronberg H, Xu J (2009) Fine mapping association
study and functional analysis implicate a SNP in MSMB at 10q11 as a causal
variant for prostate cancer risk. Hum Mol Genet 18: 1368–1375

Donovan J, Hamdy F, Neal D, Peters T, Oliver S, Brindle L, Jewell D,
Powell P, Gillatt D, Dedman D, Mills N, Smith M, Noble S, Lane A (2003)
Prostate Testing for Cancer and Treatment (ProtecT) feasibility study.
Health Technol Assess 7: 1–88

Edwards SM, Eeles RA (2004) Unravelling the genetics of prostate cancer.
Am J Med Genet C Semin Med Genet 129C: 65–73

Eeles RA (1999) Genetic predisposition to prostate cancer. Prostate Cancer
Prostatic Dis 2: 9–15

Eeles RA, Kote-Jarai Z, Giles GG, Al Olama AA, Guy M, Jugurnauth SK,
Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, Field HI,
Southey MC, Severi G, Donovan JL, Hamdy FC, Dearnaley DP, Muir KR,
Smith C, Bagnato M, rdern-Jones AT, Hall AL, O’Brien LT, Gehr-Swain
BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz
M, Lophatananon A, Bryant SL, Horwich A, Huddart RA, Khoo VS,
Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Fisher
C, Jamieson C, Cooper CS, English DR, Hopper JL, Neal DE, Easton DF
(2008) Multiple newly identified loci associated with prostate cancer
susceptibility. Nat Genet 40: 316–321

Garde SV, Basrur VS, Li L, Finkelman MA, Krishan A, Wellham L,
Ben-Josef E, Haddad M, Taylor JD, Porter AT, Tang DG (1999)
Prostate secretory protein (PSP94) suppresses the growth of androgen-
independent prostate cancer cell line (PC3) and xenografts by inducing
apoptosis. Prostate 38: 118–125

Goldgar DE, Easton DF, Cannonalbright LA, Skolnick MH (1994)
Systematic population-based assessment of cancer risk in
first-degree relatives of cancer probands. J Natl Cancer Inst 86:
1600–1608

Gronberg H (2003) Prostate cancer epidemiology. Lancet 361: 859–864
Hemminki K, Czene K (2002) Age specific and attributable risks of
familial prostate carcinoma from the family-cancer database. Cancer 95:
1346–1353

Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M,
Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable
factors in the causation of cancer – analyses of cohorts of twins from
Sweden, Denmark, and Finland. N Engl J Med 343: 78–85

Lou H, Yeager M, Li H, Bosquet JG, Hayes RB, Orr N, Yu K, Hutchinson A,
Jacobs KB, Kraft P, Wacholder S, Chatterjee N, Feigelson HS, Thun MJ,
Diver WR, Albanes D, Virtamo J, Weinstein S, Ma J, Gaziano JM,
Stampfer M, Schumacher FR, Giovannucci E, Cancel-Tassin G, Cussenot
O, Valeri A, Andriole GL, Crawford ED, Anderson SK, Tucker M, Hoover
RN, Fraumeni Jr JF, Thomas G, Hunter DJ, Dean M, Chanock SJ (2009)
Fine mapping and functional analysis of a common variant in MSMB
on chromosome 10q11.2 associated with prostate cancer susceptibility.
Proc Natl Acad Sci USA 106: 7933–7938

Ochiai Y, Inazawa J, Ueyama H, Ohkubo I (1995) Human gene for beta-
microseminoprotein: its promoter structure and chromosomal localiza-
tion. J Biochem 117: 346–352

Reeves JR, Dulude H, Panchal C, Daigneault L, Ramnani DM (2006)
Prognostic value of prostate secretory protein of 94 amino acids and
its binding protein after radical prostatectomy. Clin Cancer Res 12:
6018–6022

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score
tests for association between traits and haplotypes when linkage phase is
ambiguous. Am J Hum Genet 70: 425–434

Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K,
Chatterjee N, Welch R, Hutchinson A, Crenshaw A, Cancel-Tassin G,
Staats BJ, Wang Z, Gonzalez-Bosquet J, Fang J, Deng X, Berndt SI, Calle
EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J,
Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cussenot O,
Valeri A, Andriole GL, Crawford ED, Tucker M, Gerhard DS, Fraumeni
JF, Hoover R, Hayes RB, Hunter DJ, Chanock SJ (2008) Multiple loci
identified in a genome-wide association study of prostate cancer.
Nat Genet 40: 310–315

Yeager M, Deng Z, Boland J, Matthews C, Bacior J, Lonsberry V,
Hutchinson A, Burdett L, Qi L, Jacobs K, Gonzalez-Bosquet J, Berndt
S, Hayes R, Hoover R, Thomas G, Hunter D, Dean M, Chanock S (2009)
Comprehensive resequence analysis of a 97 kb region of chromosome
10q11.2 containing the MSMB gene associated with prostate cancer.
Hum Genet 2009 Jul 31. E-pub ahead of print. doi: 10.1007/s00439-009-
0723-9

Sequencing MSMB and its promoter region

Z Kote-Jarai et al

418

British Journal of Cancer (2010) 102(2), 414 – 418 & 2010 Cancer Research UK

G
e
n
e
tic

s
a
n
d
G
e
n
o
m
ic
s


	Mutation analysis of the MSMB gene in familial prostate cancer
	Main
	Materials and methods
	Results
	Discussion
	Acknowledgements
	Note
	References




