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Infectious complications are a major cause of morbidity and mortality from dose-intensive cancer chemotherapy. In spite of the
importance of intestinal bacteria translocation in these infections, information about the effect of high-dose chemotherapy on gut
mucosal immunity is minimal. We studied prophylactic ciprofloxacin (Cipro) treatment on irinotecan (CPT-11) toxicity and host
immunity in rats bearing Ward colon tumour. Cipro abolished chemotherapy-related mortality, which was 45% in animals that were
not treated with Cipro. Although Cipro reduced body weight loss and muscle wasting, it was unable to prevent severe late-onset
diarrhoea. Seven days after CPT-11, splenocytes were unable to proliferate (stimulation index¼ 0.10±0.02) and produce
proliferative and inflammatory cytokines (i.e., Interleukin (IL)-2, interferon-g (IFN-g), tumour necrosis factor-a (TNF-a) IL-1b, IL-6) on
mitogen stimulation in vitro (Po0.05 vs controls), whereas mesenteric lymph node (MLN) cells showed a hyper-proliferative
response and a hyper-production of pro-inflammatory cytokines on mitogen stimulation. This suggests compartmentalised effects by
CPT-11 chemotherapy on systemic and intestinal immunity. Cipro normalised the hyper-responsiveness of MLN cells, and in the
spleen, it partially restored the proliferative response and normalised depressed production of IL-1b and IL-6. Taken together, Cipro
prevented infectious challenges associated with immune hypo-responsiveness in systemic immune compartments, and it may also
alleviate excessive pro-inflammatory responses mediating local gut injury.
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Irinotecan (CPT-11) is a water-soluble, semi-synthetic derivative of
camptothecin, an alkaloid isolated from Camptotheca acuminata.
CPT-11 has emerged as a first-line treatment for colon cancer and
has been shown to be effective against other malignancies
(Rothenberg, 2001); however, its use is limited by its gastro-
intestinal (GI) and haematological toxicities (Wiseman and
Markham, 1996; Hecht, 1998). Dose-intensive systemic chemother-
apy is a prevailing tactic used in oncology. However, it presents a
potentially fatal challenge to host immunity. Compromised host
immunity and infection is a major cause of chemotherapy
morbidity and mortality. CPT-11 based regimens consistently
compromise the integrity of the intestinal epithelial lining (Cao
et al, 1998; Gibson et al, 2003), which can lead to infection.
Intestinal surfaces and local specialised innate and adaptive
defences in GI lymphoid tissues (GALTs) are major defences
against invasion by pathogens present in the gut lumen. The
gastrointestinal lymphoid tissue comprises phenotypically and
functionally distinct B, T and accessory cell sub-populations

residing in the gut and in the adjacent mesenteric lymph nodes
(MLNs) (Hayday and Viney, 2000; Garside et al, 2004). Studies on
chemotherapy-related suppression and subsequent reconstitution
of immune function have been largely confined to immune
compartments in peripheral blood (Harris et al, 1976; Henon
et al, 1992; Busca et al, 2003). Although less studied, chemotherapy
effects on GALT may be of greater importance in response to
agents with a dose-limiting intestinal toxicity, such as CPT-11.
Antibiotic prophylaxis is a common strategy for preventing

infections in high-risk neutropenic patients receiving chemother-
apy, despite concerns over antibiotic resistance (Gafter-Gvili et al,
2005; Leibovici et al, 2006). An independent review panel,
following an excess number of deaths caused by GI toxicities,
recommended that CPT-11-treated patients who have persistent
loperamide-resistant diarrhoea be treated with fluoroquinolone
antibiotics for 7 days (Rothenberg et al, 2001). Fluoroquinolone
(i.e., ciprofloxacin, Cipro) prophylactic regimens have been shown
to be highly effective against chemotherapy-induced bacteremia
from gut-colonising bacteria (Gafter-Gvili et al, 2005; Leibovici
et al, 2006). Increasing evidence suggests that fluoroquinolones
may exert immunomodulating effects by altering cytokine
production of activated T lymphocytes and enhancing haemato-
poiesis (Riesbeck and Forsgren, 1994; Dalhoff and Shalit, 2003).
However, it remains largely unknown how antibiotic prophylaxis
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will affect the functional competency of systemic and gut
immunity during chemotherapy. In this study, we investigated
effects of CPT-11 on the gut and systemic immune competence
with and without Cipro. Specifically, we sought to isolate roles of
opportunistic bacterial infections in the overall toxicity profile of
CPT-11, and to study the effects of Cipro on systemic and
intestinal immunity.

MATERIALS AND METHODS

Animal use

Animal use was approved by the Institutional Animal Care
Committee and conducted in accordance with the Guidelines of
the Canadian Council on Animal Care. Female Fisher 344 rats
(body weight, 150–180 g), 11–12 weeks of age were obtained from
Charles River (St Constant, QC, Canada). Rats were housed two per
cage in a temperature (221C) and light-controlled (12 h light)
room; water and food were available for ad libitum consumption.
One week before the experiment, CPT-11 rats were housed
individually in wire-bottom cages. The Ward colorectal carcinoma
was provided by Dr Y Rustum, Roswell Park Institute Buffalo, NY,
USA (Cao et al 1998). Non-necrotic tumour pieces (0.05 g) were
transplanted subcutaneously (s.c.) on the flank through trocar
under slight isoflurane anaesthesia. CPT-11 was provided by Pfizer
as a clinical formulation. Atropine (0.6 g l�1) was a clinical
formulation. Rats were fed a semi-purified diet as described
elsewhere (Xue et al, 2007).

Experimental design

Rats transplanted with tumour were randomised to receive Cipro
(n¼ 11) or not (n¼ 20). Cipro was started 1 week before starting
CPT-11 and continued throughout the study. All rats had an ad
libitum access to sterilised drinking water. Cipro was dissolved in
drinking water at 100mg l�1 to provide B10mg kg�1 per �day.
Cipro solutions were prepared every 2–3 days to ensure activity.
When tumour size reached B2 cm3, CPT-11 therapy was

initiated (daily intravenous injections of 150mg kg�1 per day, for
3 days) (Xue et al, 2007). Atropine (1mg kg�1 s.c.) was
administered before each CPT-11 dose to alleviate early-onset
cholinergic symptoms (Xue et al, 2007). The day of the first CPT-
11 dose was designated as day 0. Seven days after the last CPT-11
dose (day 9), rats were killed. An additional group (controls, n¼ 8)
of non-tumour-bearing rats that did not receive CPT-11 or Cipro
were killed on day 9.

Outcomes

Diarrhoea A clinically comparable three-point scale was used in
grading diarrhoea (Trifan et al, 2002); assessments were made by a
researcher blinded to study treatments. Grade 3 diarrhoea
incidence was calculated for each rat by counting observations of
a particular score(s) out of a total of eight observations between
day 3 and day 7 when diarrhoea developed to its full severity
(Trifan et al, 2002). The area under the curve of diarrhoea score
was calculated between day 3 and day 7 (Xue et al, 2007).
Rats were killed by CO2 asphyxiation. Caecal content, the spleen

and MLN were collected aseptically. Tibialis anterior and medial
gastrocnemius were collected and weighed. Whole blood har-
vested, respectively at days 0 (as baseline), 3 and 9 was used for a
complete blood count and differential white blood cell (WBC)
count performed using the Hemavet instrument (CDC Technolo-
gies, Oxford, CT, USA). The b-glucuronidase activity of caecal
contents was determined as described earlier (Xue et al, 2007).

The spleen and mesenteric lymph node cell phenotype Immune
cells were isolated from MLN as described earlier (Field et al,

2006). Isolated cells (200 000 cells per well) were used to determine
the cell phenotype using a two-colour direct immunofluorescence
(Field et al, 2000). Antibodies used were CD3, CD4, CD8, CD25,
CD28, CD62L, CD71, CD80, CD45RA (BD Bioscience, Mississauga,
ON, Canada) and OX12 (Cedarlane, Hornby, ON, Canada);
Streptavidin QR (Sigma, Oakville, ON, Canada) was added to all
biotin-labelled antibodies. The percentage of cells expressing each
antibody marker was determined by flow cytometry (FacScan,
Becton Dickinson, Sunnyvale, CA, USA) (Field et al, 2000). It was
not always possible to perform every phenotype assay on each rat
because of the variation in total yield of tissue; n for each assay is
indicated in result tables.

Mitogen-induced proliferation and cytokine production Cells
(1.25� 109 l�1) were incubated in a 96-well microtitre plate, in
triplicate, in the presence or absence of 5mg l�1 of Concanavalin A
(Con A) (ICN, Montreal, PQ, Canada) for 24 and 48 h. Eighteen
hours before harvesting, cells were pulsed with 0.5 mCi of
3H-thymidine (Amersham Life Sciences, Baie D’Urfe, PQ, Canada),
harvested on glass-fibre paper filters using a multi-well harvester
(Skatron, Lier, Norway) and counted in a b-counter (LS-5801
Beckman Mississauga, ON, Canada). Proliferation ability was
defined as a stimulation index (SI), calculated as 3H-thymidine
incorporation rates after incubation with Con A/3H-thymidine
incorporation rates in the absence of Con A.
Splenocytes and MLN cells (1.0� 109 cells l�1) were incubated

(48 h) in the presence or absence of lipopolysaccharide (LPS)
(100mg l�1) in a 5% v/v CO2 humidified atmosphere at 371C.
Supernatants were removed and stored at �701C until all samples
were collected. Interleukin (IL)-1 and -6, interferon-g (IFN-g),
tumour necrosis factor-a (TNF-a) and TGF-b (transforming
growth factor-b) levels were determined using ELISA kits (BD
Bioscience) according to the manufacturer’s specifications. Plates
were read at 450 nm (SpectraMax 190, Molecular Device,
Sunnyvale, CA, USA). Cytokines were assayed in duplicate and
variation (co-efficient of variance, CV) between replicates deter-
mined. If the CV between duplicates was 415%, samples were re-
analysed in duplicate. If a cytokine level was less than the lower
detection limit, the half-value of the lower detection limit was used
for analysis.

Bacterial translocation Mesenteric lymph nodes were aseptically
homogenised in 5ml of sterile water, and 0.1ml of these samples
was inoculated with blood agar (for Gramþ bacteria) and
McConkey agar (for Gram– bacteria). Cultures were incubated
aerobically at 371C for 48 h and then colony-forming units on each
plate counted and corrected to the original tissue weight.

Statistics

Data are expressed as mean±s.e.m. Time effects on WBC counts
after CPT-11 were analysed through one-way repeated measures
analysis of variance (ANOVA) (SPSS 12.0, SPSS Inc., Chicago, IL,
USA). Treatment differences in immune phenotypes were analysed
using one-way ANOVA followed by post hoc Tukey’s test, unless
specified otherwise. All immune parameters were tested for normal
distribution. Values that were not normally distributed were log
transformed before statistical analysis. A probability of 0.05 was
considered significant.

RESULTS

Chemotherapy toxicity

CPT-11 had a 45% mortality rate (9/20) in non-Cipro-treated rats,
whereas all rats (11/11) administered Cipro survived. Cipro
strikingly improved the overall nutritional status by reducing
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body weight loss and muscle wasting (Table 1). CPT-11 resulted in
diarrhoea of high incidence and cumulative severity, but did not
significantly alter diarrhoea profiles (Table 1) or caecal
b-glucuronidase activity (not shown). CPT-11 resulted in sig-
nificant bacterial counts in MLN (Gramþ bacteria 3.6±0.7� 103

CFU per gram tissue and Gram� bacteria 3.5±1.1� 103 CFU per
gram tissue), whereas neither Gramþ nor Gram� bacteria could
be detected in the MLN of Cipro-treated rats.
White blood cell counts and spleen weight of CPT-11 alone led

to a transiently depleted peripheral WBC pool, with total WBC,
neutrophil and lymphocyte nadirs occurring 1–4 days after
completing CPT-11 (Figure 1A). There was a rebound-like
recovery of WBC 7 days after completing CPT-11, such that
WBC counts (total, neutrophils, lymphoyctes) at this time were
significantly higher than at day 0. However, a post-chemotherapy
‘overshoot’ of WBC counts on day 9 was abrogated with Cipro,
with no cell counts significantly different from control rats
(Figure 1B). Splenic hyperplasia also occurred 7 days after
completing CPT-11 and Cipro partially prevented this response
(Figure 1C).

Phenotypic distribution of the spleen and MLN cells

Non-Cipro-treated rats In rats that did not receive Cipro, CPT-11
treatment resulted in a pronounced alteration in the phenotypic
composition of immune cells in both the MLN and the spleen
(Table 2). Relative effects on T- and B-cell populations in the
spleen, with CPT-11, were for the most part similar to those
observed in MLN. CPT-11 led to a relative depletion of CD3þ T
cells in the spleen (because of a decrease in CD3þCD4þ and
CD3þCD8þ populations) and in MLN (because of a decrease in
the CD3þCD4þ population) with a relative increase in B-cell
proportions (OX12þ ). Proportions of total cells expressing
CD45RAþ (antigen naive marker) were lower in MLN and in
the spleen after CPT-11 for a larger percentage of B and CD8þ T
cells, but not CD4þ T cells, for which there was a relative increase
in antigen-mature (CD45RA�) cell proportions after CPT-11.
There was a marked change in the expression of activation
markers by T cells after CPT-11. In the spleen and MLN, there was
a striking increase (4–13 fold) in helper and suppressor T
populations that expressed the co-stimulatory molecule, CD28
(Po0.05). Within helper T populations in the spleen and MLN,
there were more cells expressing transferrin (CD71þ ) and IL-2
(CD25þ ) receptors but less cells expressing L-selectin (CD62Lþ ).

Cipro-treated rats The overall phenotypic changes after CPT-11
were in a similar direction in rats receiving Cipro as compared
with that in non-Cipro-treated rats. Nevertheless, Cipro further
reduced proportions of CD3þ after CPT-11 in MLN, because of a
reduction in proportions of CD3þCD8þ cells. The percentage of

B cells was higher in Cipro-treated MLN. Cipro restored
proportions of CD8þCD45RAþ in the spleen to proportions
not different from that of control rats. In MLN, the lower
percentage of CD3þCD8þ cells after Cipro seemed to be because
of a lower number of CD8þCD45RA� (antigen mature) cells. As
for other T-cell activation markers, the most consistent finding was
that Cipro resulted in a strikingly higher number of helper and
suppressor T cells expressing IL-2 receptors in MLN (but not the
spleen). A higher proportion of total T cells expressing CD28þ
with CPT-11 remained unaffected (or even further enhanced in
suppressor T cells of MLN) with Cipro in both the MLN and the
spleen. In MLN and the spleen, Cipro was associated with a higher
proportion of suppressor T cells expressing CD71, but lowered the
proportion of CD71þ helper T cells after CPT-11 as compared
with non-Cipro-treated rats. Cipro lowered numbers of suppressor
T cells expressing L-selectin after CPT-11, as compared with non-
Cipro-treated rats.

Proliferative response to Con A

In CPT-11-treated rats, basal (unstimulated) rates of 3H-thymidine
uptake by MLN cells (24 and 48 h) and splenocytes (24 h) were
significantly higher than in control rats (Table 3). Cipro resulted in
an unstimulated rate of 3H-thymidine uptake that was comparable
or even below control rat levels. CPT-11 completely inhibited
splenocyte stimulation in response to Con A, but stimulated
responses to Con A in MLN (Table 3). Responses by cells from
Cipro-treated rats were not significantly different from controls in
MLN, but Cipro did not normalise responses in the spleen.

Mitogen-stimulated cytokine production of splenocytes
and MLN cells

In the absence of mitogen (unstimulated), a spontaneous
production of IL-10 and TNF-a by MLN cells, and IL-6, TNF-a
and IFN-g by splenocytes was below detection limits. Only control
splenocytes produced detectable amounts of IL-1b
(64±6� 10�9 g l�1) in the absence of mitogens. Splenocytes from
Cipro-treated rats produced IL-10 in the absence of mitogen
(610±30� 10�9 g l�1) producing significantly more (Po0.05) than
non-Cipro-treated rats (426±39� 10�9 g l�1, Po0.01) or controls
(472±39� 10�9 g l�1).
Table 4 summarises the effects of CPT-11 treatment with or

without Cipro on mitogen-stimulated cytokine production by
splenocytes and MLN cells.

(1) Proliferative cytokine, IL-2
Compared with the control group, CPT-11 suppressed IL-2
production by splenocytes in response to both Con A and
anti-CD3/CD28 (Po0.05), and these effects were not reversed

Table 1 Effects of Cipro treatment on toxicity profiles of the 3-day CPT-11 regimen at 150mg kg�1 per day� 3 days

Treatment

CPT-11 Cipro Na Mortalityb %

Incidence of
severe delayed
diarrhoea (%)c

Area under
curve of the

diarrhoea scored

Relative body
weight at day 6

(%)e

Tibialis muscle
gram per 1000 g
body weight at

day 9

Medial
gastroncnemius
muscle gram per
1000 g body weight

at day 9

None None 8 — — — 98.5±0.6f 1.80±0.05f 2.05±0.02f

Yes None 20 45 55.0±3.9 19.5±0.5 80.6±0.7g 1.60±0.03g 1.93±0.04g

Yes Yes 11 0 47.7±5.5 18.6±0.6 90.5±0.5h 1.74±0.02f 2.04±0.04f

aN, total animal number of each treatment group. bMortality represents percentage of dead rats at the end of the study. cIncidence of delayed diarrhoea was calculated for each
animal by counting observations of a particular score(s) out of the total eight observations between day 3 and day 7 when diarrhoea developed to its full severity. dArea under
curve of diarrhoea score was calculated from the diarrhoea score– time graph of each individual animal between day 3 and day 7. eRelative body weight at day 6 was calculated
by comparing with the body weight at day 0. fMeans within a column that do not share a common letter are significantly different (Po0.05). All data are presented as mean
±s.e.m. f,g,hMeans within a column that do not share a common letter are significantly different.
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by Cipro treatment. By contrast in MLN, the amount of IL-2
produced after Con A stimulation by the CPT-11 group was
higher than in controls (Po0.05), and this increase was
reversed by Cipro (i.e., Cipro lowered IL-2 production to levels
not significantly different from that of controls in MLN).

(2) Inflammatory cytokines (IL-1b, IL-6, TNF-a)
In splenocytes, CPT-11 lowered the production of IL-6
(with Con A) and TNF-a (with Con A and anti-CD3/CD28)
and of IL-1b (with LPS). In MLN, CPT-11 significantly
increased the production of TNF-a (with Con A) and IL-6
(with anti-CD3/28). In splenocytes, the production of IL-6
and IL-1b, but not that of TNF-a, was normalised to levels
not different from controls with Cipro; Cipro resulted in an
even higher production of TNF-a (with LPS). In MLN, an
increased production of TNF-a and IL-6 with CPT-11
was returned to levels not different from that of controls with
Cipro.

(3) Regulatory cytokine, IL-10
In the spleen, the effects of CPT-11 on IL-10 production
seemed to be dependent on T-cell mitogen, with a lower Con
A-stimulated production (Po0.05 vs controls), but a trend for
enhancement (Po0.07 vs controls) with anti-CD3/CD28
stimulation. This effect was not altered by Cipro. In MLN,
IL-10 was produced with CPT-11, after Con A stimulation, but
below detection by both controls and Cipro-treated groups.

(4) IFN-g
In splenocytes, CPT-11 lowered the production of IFN-g in
response to all mitogens, whereas in MLN, IFN-g production
was markedly higher after CPT-11, compared with that in
controls (Po0.05). Cipro did not alter the lower production of
IFN-g in response to Con A and LPS, but resulted in an even
lower response to anti-CD3/CD28 than CPT-11 alone. In MLN,
Cipro resulted in IFN-g (with Con A) levels that were lower
than CPT-11 and not different from controls.

DISCUSSION

CPT-11 is preferentially cytotoxic to gastrointestinal (GI) mucosa,
and severe diarrhoea is the hallmark toxicity for chemotherapy
regimens based on this agent (Gibson et al, 2003; Xue et al, 2007).
Gastrointestinal infections are particularly problematic with CPT-
11, which is preferentially cytotoxic to GI mucosal cells and results
in prominent GI toxicities (Gibson et al, 2003; Xue et al, 2007) at
the time of profound myelosuppression. In our study, Cipro did
not alter the severity or course of diarrhoea but prevented CPT-11-
induced mortality. This suggests that bacteremia or septicemia
secondary to CPT-11 was the major contributor to mortality in
CPT-11-treated rats, and that Cipro was able to limit this by
reducing the total bacterial translocation or by its immunomodu-
latory activity.

Alterations of systemic and intestinal immune competence
associated with CPT-11 alone

At day 7 after CPT-11 treatment, a quantitative rebound was
observed in the peripheral immune compartments; blood counts of
various leukocyte lineages were restored and splenic hyperplasia
was present. We also observed a preponderance of activated T cells
(increased percentages of CD45RA�, CD71, CD25 and decreased
percentage of CD62L in CD4þ and CD8þ T cells) after CPT-11.
Antigen-naive T cells are characterised phenotypically by CD45RA
(high-molecular-weight isoform of CD45), and the peripheral
lymph node homing receptor, CD62L (L-selectin) (Fujii et al, 1992;
Bradley et al, 1994). When naive T cells are stimulated, their cell
surface phenotype undergoes a number of changes. First, the
expression of CD45RA is lost and CD45RO is expressed. There-
after, CD62L is shed from cell surfaces and other markers are
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Figure 1 Effects of CPT-11 treatment with or without Cipro on
peripheral WBC counts and spleen weight. (A) Time course of peripheral
WBC counts in rats receiving CPT-11 chemotherapy alone without Cipro.
Whole blood was harvested from tumour-bearing rats at the indicated
time points after CPT-11. Data (mean±s.e.m.) represent total WBC,
neutrophil and lymphocyte counts at corresponding time points.
Differences of total WBC, neutrophil and lymphocyte counts at different
time points after chemotherapy were analysed by one-way repeated
measures ANOVA followed by post hoc Tukey’s test. Means for a certain
count (total WBC, neutrophil or lymphocyte) that do not share a common
letter are different, Po0.05. (B) Differential WBC count in peripheral
blood 7 days after CPT-11. Data (mean±s.e.m.) represent total WBC,
neutrophil and lymphocyte counts. Means that do not share a common
letter are significantly different (Po0.05). (C) Effects of CPT-11 treatment
with or without Cipro on spleen weights. Relative spleen weights (y axis)
are accounted for the total body weight on day 9. Data are presented as
mean±s.e.m. Means that do not share a common letter are significantly
different (Po0.05).
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sequentially upregulated, including transferrin, CD71, (early) and
IL-2 receptors, CD25 (late) (Lum et al, 1986; Jackson et al, 1990;
Salmeron et al, 1995). Such a post-chemotherapy phenotypic
activation has been observed earlier (Mackall et al, 1994; Hakim
et al, 1997; Rutella et al, 2000; Wendelbo et al, 2004). Consistent
with the expression of activation markers, immune cells from CPT-
11-treated rats had increased 3H-thymidine uptake in the absence
of mitogens and higher proportions of cells expressing IL-2
receptors. This marked in vivo immune activation may have been
provoked by the translocation of pathogenic bacteria and their
products (i.e., endotoxin).

Hypo-responsive and anergic state of splenocytes

Quantitative changes of various cell subsets have been reported in
studies on the effects of chemotherapy on the immune system;
however, these changes may not reflect the functional competence
of the cells. Our results show a striking discordance in phenotype

and function of splenocytes after CPT-11 treatment. Despite the
overall quantitative recovery and phenotypic activation of immune
cells in peripheral blood and the spleen, splenocytes were unable to
proliferate in response to Con A stimulation in vitro, and had
depressed inflammatory cytokine responses to multiple mitogens.
Depressed IL-2 production in response to mitogen by splenocytes
is concordant with their inability to proliferate, as IL-2 production
is essential for lymphocyte clonal expansion after antigen
simulation. INF-g, IL-1, TNF-a and IL-6 are also instrumental in
mounting an effective inflammatory response against infection.
IFN-g is a pivotal cytokine initiating antimicrobial Th1 responses
and plays a key role in activating macrophages and natural killer
cells, whereas IL-1, IL-6 and TNF-a acting together are key to
leukocyte transmigration, stimulating macrophage phagocytosis
and evoking acute phase responses (Bendtzen, 1988; Urbaschek
and Urbaschek, 1990; Van der Meide and Schellekens, 1996; Reddy
et al, 2004). Splenocytes showed a profound inability to produce
these key proliferative/inflammatory cytokines on mitogen

Table 2 Effects of CPT-11 treatment and Cipro on phenotypic distribution of immune cells in MLN and spleen

MLN Spleen

Antibody
Healthy

controls n¼ 8
CPT-11 alone

n¼9
CPT-11+Cipro

n¼6
Healthy

controls n¼ 8
CPT-11 alone

n¼9
CPT-11 + Cipro

n¼6

B cell+(OX12) (% of total cells) 13.0±0.6a 19.8±1.8b 27.3±1.9c 29.1±0.4a 36.4±1.8b 36.9±1.1b

% OX12+CD45RA� 1.5±0.3a 5.3±0.6b 5.0±1.7b 7.5±0.8a 28.7±3.0b 8.3±0.9a

% OX12+CD45RA+ 98.5±0.3a 94.7±0.6b 95.0±1.7b 92.5±0.8a 71.3±3.0b 91.7±0.9a

% OX12+CD80+ 0.7±0.1a 1.5±0.5a,b 2.6±1.1b 2.8±0.4 3.9±0.7 2.5±0.3
CD3+(% of total cells) 70.8±1.2a 66.4±1.4b 57.5±1.2c 55.4±0.6a 46.4±2.1b 49.6±0.8b

CD3+CD8+(% of total cells) 22.2±0.8a 23.0±0.6a 17.9±0.5b 31.9±0.9a 21.0±0.9b 23.9±1.1b

% CD8+CD71+ 9.2±1.2a 10.5±1.0a 19.3±2.6b 25.6±0.8a 23.9±1.2a 28.8±1.3b

% CD8+CD28+ 4.0±0.6a 50.8±4.5b 75.2±2.9c 10.0±0.5a 52.3±6.3b 44.5±9.3b

% CD8+CD25+ 9.3±0.3a 9.4±1.0a 40.2±9.1b 8.6±0.8a 16.4±3.7b 14.0±1.2b

% CD8+CD62 L+ 38.0±2.0a 42.8±3.1a 30.1±2.4b 33.8±0.9a 34.7±3.1a 15.7±0.6b

% CD8+CD45RA� 62.4±1.7a 76.7±6.5b 38.4±2.5c 31.8±1.2a 45.9±4.6b 28.1±1.5a

% CD8+CD45RA+ 37.6±1.7a 23.3±6.5b 61.6±2.5c 68.2±1.2a 54.1±4.6b 71.9±1.5a

CD3+CD4+(% of total cells) 48.7±0.7a 43.3±1.4b 40.7±1.2b 32.4±0.5a 22.2±1.0b 20.4±1.7b

% CD4+CD71+ 6.5±0.7a 9.2±1.2b 4.4±0.9a 22.1±1.1a 39.9±3.8b 26.7±2.1c

% CD4+CD28+ 5.5±0.3a 73.9±5.1b 85.2±2.2b 15.2±0.9a 60.7±10.4b 77.6±2.5b

% CD4+CD25+ 7.5±0.4a 9.8±0.7b 37.3±11.9c 9.4±0.4a 15.4±2.2b 10.8±0.9a,b

% CD4+CD62L+ 74.7±4.2a 53.3±6.5b 59.4±4.4b 67.8±2.1a 36.1±4.7b 28.4±1.0b

% CD4+CD45RA� 93.8±0.7a 91.9±3.4a 90.6±0.5b 80.2±0.5a 79.9±2.0a,b 83.4±1.3b

% CD4+CD45RA+ 6.2±0.7a 8.1±3.4a,b 9.4±0.5b 19.8±0.5a 20.1±2.0a,b 16.6±1.3b

CD3+CD4+/CD3+CD8+ 2.2±0.1a 1.9±0.0b 2.3±0.1a 1.0±0.0a 1.1±0.0a 0.9±0.1b

CD71 (% of total cells) 15.8±0.7a 12.8±0.9b 14.6±0.6a,b 23.5±0.8a 33.5±2.6b 22.6±2.1a

CD25 (% of total cells) 4.3±0.2a 5.7±0.4b 27.1±7.5c 5.5±0.5a 10.2±1.9b 6.5±0.6a,b

CD28 (% of total cells) 3.4±0.2a 44.8±3.2b 55.4±1.9c 7.4±0.5a 29.3±2.9b 38.5±3.5b

CD62 L (% of total cells) 48.2±2.8a 46.7±2.5a 35.3±1.1b 39.3±1.2a 31.4±1.4b 15.3±0.5c

CD45RA+(% of total cells) 36.3±1.3a 24.8±1.7b 35.0±1.6a 56.3±0.5a 36.4±3.2b 52.0±1.1c

aData presented as cell population percentage mean±s.e.m.; means within a row for a given cell type (splenocytes, mesenteric lymph node (MLN) cells) that do not share a
common letter are significantly different (Po0.05). a,b,cMeans within a column that do not share a common letter are significantly different.

Table 3 Effects of CPT-11 treatment and Cipro on in vitro proliferation in response to Con A by immune cells in MLN and spleen

MLN Spleen

Mitogen Unit Healthy controls CPT-11 alone CPT-11+Cipro Healthy controls CPT-11 alone CPT-11+Cipro

24 hours
None DPM 668±51 (8)a 1359±143 (9)b 482±65 (8)c 2954±75 (8)a 11204±1046 (9)b 3498±348 (8)a

48 hours after mitogen stimulation
None DPM 317±53 (8)a 1023±128 (5)b 251±57 (7)a 5001±588 (8)a 5603±840 (9)a 3789±778 (8)a

CON A SI 35±10 (8)a 104±16 (5)b 29±11 (7)a 8.70±1.50 (8)a 0.10±0.02 (9)b 1.05±0.33 (8)c

SI¼ stimulation index. aData are presented as mean±s.e.m. (number of rats), means within a row for a given cell type (splenocytes, mesenteric lymph node (MLN) cells) that do
not share a common letter are significantly different (Po0.05). bSimulation index. a,b,cMeans within a column that do not share a common letter are significantly different.
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stimulation, in addition to lacking a proliferative response,
suggesting that systemic immunity (rather than local intestinal
immunity) was in a state of anergy (Powell, 2006). Suppressed
cell-mediated immunity could enhance the susceptibility to
secondary opportunistic infection and contribute to the
high mortality caused by post-chemotherapy sepsis (Ayala et al,
1994; O’Sullivan et al, 1995).
Hakim et al (1997) found that an in vivo phenotypic activation

of T cells by chemotherapy was associated with a heightened
susceptibility to activation-induced apoptosis on mitogen stimula-
tion in vitro. Although apoptosis was not measured here, a SI with
a numerical value o1.0, suggests that splenocytes were dying
during the in vitro assay. The hypo-reactivity of spleen cells after
chemotherapy could also be related to systemic infection. A similar
state of hypo-responsiveness and anergy of circulating leucocytes,
a phase also named as compensatory anti-inflammatory response
syndrome, has been described in septic patients (Bone et al, 1997;
Oberholzer et al, 2001; Hotchkiss and Karl, 2003). Taken together,
we suggest that the hypo-reactivity of spleen cells after CPT-11
treatment may result from both direct immunosuppressive effects
and as a consequence of systemic infection, which was likely to
have been present in our animals.

Hyper-responsive state of MLN cells

In contrast to splenocytes, cells of MLNs, a GALT compartment,
showed upregulated proliferation and cytokine (i.e., IL-2, IFN-g,
TNF-a, IL-6) response to T-cell mitogens in vitro. Thus, the effects
of CPT-11 were compartmentalised with a primed local intestinal
immunity and concomitantly suppressed systemic immunity. Our
results are consistent with earlier findings (de Koning et al, 2006)
that innate and adaptive immune responses of GALT cells were
intact or even primed after high-dose methotrexate. CPT-11
has been consistently shown to disrupt GI integrity, and this
may expose GALT cells to bacterial antigens and LPS.
Hyper-responsiveness of intestinal local immune cells is

considered to contribute to chemotherapy-induced gut injury
(de Koning et al, 2006). Antigen-driven T-cell expansion in GALT
may support the homeostasis of T-cell pools after depletion by
chemotherapy (Dulude et al, 1997). Immune hypo-reactivity in
sepsis is essentially observed in peripheral blood and in the spleen
(Ayala et al, 1993a, b; Cavaillon, 2002), whereas lymphocytes
derived from inflamed tissues or infectious foci are activated,
primed and responsive to in intro mitogen stimulation (Wang
et al, 1998; Nussler et al, 2001). Localisation of inflammatory
response to the gut, may serve as an important strategy for
preventing systemic inflammation and ignition of new inflamma-
tory foci (Munford and Pugin, 2001).

Effects of Cipro on alterations of immune competence after
CPT-11

Antibiotics do not act solely as antimicrobial agents but also
modulate innate or adaptive immune responses (Riesbeck and
Forsgren, 1994; Dalhoff and Shalit, 2003). Our work is the first to
systematically investigate the immunomodulatory effects of Cipro
in high-dose chemotherapy, in multiple dimensions, including cell
phenotype and functional competence and within distinct
compartments (the spleen vs MLN). Overall, Cipro tended to
correct splenocyte hypo-responsiveness, which may mitigate post-
chemotherapy immunological anergy and favour appropriate
defences against translocated pathogens; Cipro also suppressed
pro-inflammatory responses occurring locally in the gut and
thereby, may have a limited mucosal inflammatory injury.
A differential effect of Cipro treatment occurred in two immune

tissues studied. In the spleen, Cipro did not enable a proliferative
response to Con A, nor did it improve IL-2 production, but it may
have prevented activation-induced cell death after CPT-11 (SI of
mitogen-stimulated proliferation was raised to 1). Whether this
would allow a sufficient response to blood-borne pathogens is
questionable as defence against rapidly growing viral and bacterial

Table 4 Effects of CPT-11 treatment with our without Cipro on mitogen-stimulated cytokine production by splenocytes and MLN cells

Mitogen Cytokine (� 10�9 g l�1) Healthy controls CPT-11 alone CPT-11+ Cipro

Spleen
Con A IL-2 5020±76 (4)a 2646±234 (9)b 2398±475 (6)b

IL-6 620±19 (4)a 329±24 (9)b 535±32 (6)a

IL-10 581±38 (4)a 194±19 (9)b 181±29 (6)b

TNF-a 930±23 (4)a 257±26 (9)b 197±20 (5)b

IFN-g 3637±190 (4)a 1663±157 (9)b 1185±260 (6)b

Anti-CD3/28 IL-2 502±37 (4)a 227±21 (9)b 199±73 (5)b

IL-6 514±140 (4)a,b 303±45 (7)b 449±25 (5)a

IL-10 129±60 (4)b 248±31 (9)a,b 355±60 (5)a

TNF-a 210±12 (4)a 95±14 (9)b 100±28 (5)b

IFN-g 1972±386 (4)c 683±128 (9)a 149±50 (5)b

LPS IL-1b 252±24 (4)a 134±11 (9)b 196±19 (7)a

IL-6 880±82 (4)a,b 868±87 (9)b 1247±157 (7)a

TNF-a 372±16 (4)b 437±56 (9)a,b 577±64 (7)a

IFN-g 1958±160 (4)a 244±75 (9)b 127±42 (7)b

MLN
Con A IL-2 908±113 (4)b 2882±364 (6)a 1381±264 (6)b

IL-6 137±10 (4) 129±28 (8) 117±16 (7)
IL-10 —* 67±22 (6) —*
TNF-a 68±11 (4)b 592±83 (8)a 138±26 (6)b

IFN-g 371±51 (4)b 2551±506 (7)a 404±131 (6)b

Anti-CD3/28 IL-6 23±4 (2)b 176±19 (8)a 39±9 (5)b

IL-10 94±34 (3) 66±16 (8) —*

*— below detection limit. aData are presented as mean±s.e.m. (number of rats), means within a row that do not share a common letter are significantly different (Po0.05).
a,bMeans within a column that do not share a common letter are significantly different.
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infections requires an immediate and adequate response to limit
pathogen growth and dissemination (Murtaugh and Foss, 2002).
Immunomodulatory actions of fluroquinolones rely on their

ability to modify cytokine production (Dalhoff, 2005). Cipro was
unable to restore IFN-g production, but significantly upregulated
LPS-stimulated splenocyte production of TNF-a, IL-1b and IL-6
compared with either non-Cipro-treated rats or controls. This is
consistent with earlier findings with various quinolones at
therapeutic levels (De Simone et al, 1986; Gollapudi et al, 1986;
Bailly et al, 1991; Riesbeck and Forsgren, 1994; Katsuno et al,
2006). Cipro showed a consistent upregulation of IL-6 production
of splenocytes in response to B- or T-cell mitogens, and this may
be of benefit in chemotherapy-related sepsis as low Il-6 production
from systemic immune compartments correlates with sepsis
mortality (Adamik et al, 1997).

In contrast, Cipro downregulated the production of IL-2 and
inflammatory cytokines by MLN cells after CPT-11 treatment, to
levels observed in control rats and this is potentially important for
intestinal injury. The activation and hyper-responsiveness of
GALT cells contributes to the pathogenesis of chemotherapy-
induced gut injury (de Koning et al, 2006). Excessive intestinal
production of inflammatory cytokines (e.g., IL-1b, TNF-a, IFN-g)
is critical for developing CPT-11-related GI toxicity (Zhao et al,
2004).
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