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Mucin 4 (MUC4) is a high molecular weight transmembrane mucin that is overexpressed in many carcinomas and is a risk factor
associated with a poor prognosis. In this study, we show that the DNA methylation pattern is intimately correlated with MUC4
expression in breast, lung, pancreas and colon cancer cell lines. We mapped the DNA methylation status of 94 CpG sites from
�3622 to þ 29 using MassARRAY analysis that utilises base-specific cleavage of nucleic acids. MUC4-negative cancer cell lines and
those with low MUC4 expression (eg, A427) were highly methylated near the transcriptional start site, whereas MUC4-positive cell
lines (eg, NCI-H292) had low methylation levels. Moreover, 5-aza-20-deoxycytidine and trichostatin A treatment of MUC4-negative
cells or those with low MUC4 expression caused elevation of MUC4 mRNA. Our results suggest that DNA methylation in the 50

flanking region play an important role in MUC4 gene expression in carcinomas of various organs. An understanding of epigenetic
changes in MUC4 may contribute to the diagnosis of carcinogenic risk and prediction of outcome in patients with cancer.
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Mucins are high molecular weight glycoproteins that have
oligosaccharides attached through O-glycosidic linkages to serine
or threonine residues of the core protein. Many human mucin core
proteins (MUC1-MUC9, MUC11-13 and MUC15-20) have been
identified, (Lapensee et al, 1997; Yonezawa and Sato, 1997; Gum
et al, 2002; Pallesen et al, 2002; Yin et al, 2002) including MUC4, a
large transmembrane mucin with a very long glycosylated
extracellular domain that is expressed in various normal tissues
(Audie et al, 1993, 1995; Buisine et al, 1999; Gipson et al, 1999).
MUC4 is also often overexpressed in epithelial cancers and our
immunohistochemical studies have shown that aberrant expres-
sion of MUC4 is associated with invasive proliferation of tumours
and a poor outcome for patients (Shibahara et al, 2004; Saitou
et al, 2005; Tamada et al, 2006; Tsutsumida et al, 2007).
MUC4 also serves as a novel intramembrane ligand for the

receptor tyrosine kinase ErbB2, a transmembrane glycoprotein
with a tyrosine kinase domain that is encoded by the c-ErbB-2
proto-oncogene and is highly homologous with the epidermal
growth factor receptor (Yamamoto et al, 1986). Furthermore,
MUC4 plays an important role in cell proliferation and differentia-
tion of epithelial cells by inducing specific phosphorylation of
ErbB2 and enhancing the expression of p27 (Jepson et al, 2002), a
cyclin-dependent kinase inhibitor that regulates the G1 and S
phases of the cell cycle (Polyak et al, 1994).
We recently described the epigenetic regulation of the MUC1

gene (Yamada et al, 2008). Similarly to MUC1, MUC4 is a factor

associated with poor prognosis in several carcinomas (Shibahara
et al, 2004; Saitou et al, 2005; Tamada et al, 2006; Tsutsumida et al,
2007), and thus we hypothesised that MUC4 is also regulated by an
epigenetic mechanism. To investigate the possible epigenetic
regulation of MUC4 gene expression, we mapped the DNA
methylation status of the MUC4 promoter region using 10 cancer
cell lines derived from carcinomas of four different organs (breast,
lung, pancreas and colon). Methylation of cytosine in genomic
DNA plays an important role in gene regulation, and especially in
gene silencing (Bird, 1992), and generally the promoter region of a
transcribed gene is hypomethylated (Wolffe et al, 1999; Stirzaker
et al, 2004).
To examine the methylation profiles of 92 CpG sites in the

MUC4 promoter in the cancer cell lines, we performed a
MassARRAY methylation analysis (Ehrich et al, 2005). On the
basis of the results of this analysis, methylation-specific polymer-
ase chain reaction (PCR; MSP) primers were designed to ensure
that particular CpG sites were related to gene expression. MUC4-
negative cells or those with low MUC4 expression were also treated
with a DNA methylation inhibitor, 5-aza-20-deoxycytidine, and a
histone deacetylase inhibitor, trichostatin A (TSA), to confirm that
DNA methylation and histone modification suppressed the
expression of MUC4 mRNA. Using these results, we describe an
epigenetic mechanism through which MUC4 gene expression is
tightly linked to DNA methylation in several organs.

MATERIALS AND METHODS

Cells and treatment

Human breast cancer cell lines MCF-7 (MUC4þ /�), T-47D
(MUC4þ /�) and MDA-MB-453 (MUC4þ /�); human lung cancer
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cell lines NCI-H292 (MUC4þ ) and A427 (MUC4-); human
pancreatic carcinoma cell lines HPAFII (MUC4þ ), BxPC3
(MUC4þ ) and PANC1 (MUC4þ /�) and human colon adeno-
carcinoma cell lines LS174T (MUC4þ /�) and Caco2 (MUC4þ /�)
were obtained from American Type Culture Collection (Manassas,
VA, USA). MCF-7, A427, HPAFII, Caco2 and LS174T cells were
cultured in Eagle’s minimum essential medium (Sigma, St Louis,
MO, USA); PANC1 cells were cultured in D-MEM (Sigma); T-47D,
NCI-H292 and BxPC3 cells were cultured in RPMI-1640 medium
(Sigma) and MDA-MB-453 cells were cultured in Leibovitz’s L-15
medium (Invitrogen, Carlsbad, CA, USA). All media were
supplemented with 10% foetal bovine serum (Invitrogen) and
100Uml�1 penicillin 100 mgml�1 streptomycin (Sigma). MUC4-
negative cells or cells with low MUC4 expression were split 24 h
before treatment. MDA-MB-453, PANC1 and LS174T cells were
incubated with 100 mM 5-aza-20-deoxycytidine (5-AzadC; Sigma)
and/or 500 nM TSA(Sigma) for 5 days, MCF-7, T-47D and Caco2
cells were incubated with 100 mM 5-AzadC and/or 50 nM TSA for 5
days, and A427 cells were incubated with 1 mM 5-AzadC and/or
50 nM TSA for 5 days. Media were changed every 24 h.

Quantitative reverse transcription PCR (RT—PCR)
analysis

Messenger RNA from cells that had or had not been treated with 5-
AzadC, TSA or 5-AzadC/TSA in combination was purified with an
RNeasy Mini kit (Qiagen, Valencia, CA, USA). Of a total of 100 ml
of mRNA, 20ml was reverse transcribed with Random-Hexamers
(Applied Biosystems, Foster City, CA, USA). A 3.5-ml cDNA aliquot
was amplified in 25 ml of 2xTaqMan universal master mix, 2.5 ml of
20xTarget assay mix and 2.5 ml of 20x control assay mix (Applied
Biosystems) under the following PCR conditions: 2min at 501C,
10min at 951C, 45 cycles for 15 s at 951C and 1min at 601C. The
primers and probes were designed and synthesised by Applied
Biosystems. The Target assay mix used for MUC4 had the product
number Hs003666414. Human GAPDH (product number
4310884E) was used to calibrate the original concentration of
mRNA; that is, the concentration of mRNA in the cell was defined
as the ratio of target mRNA copies relative to GAPDH mRNA
copies. In this analysis, data from three separate experiments were
averaged.

MUC4 gene promoter sequencing

Genomic DNA was extracted from the 10 cell lines using a DNeasy
tissue system (Qiagen) according to the manufacturer’s instruc-
tions. DNA was PCR amplified using seven pairs of sense and
antisense primers (Table 1) for the full-length MUC4 promoter.
Polymerase chain reaction fragments were sequenced using a
single-strand sequencing method (Hokkaido System Science Co.,
Hokkaido, Japan). Sequences were analysed with an ABI Prism 310
Genetic Analyzer (PE Applied Biosystems).

Quantitative methylation analysis

Quantitative methylation analysis of the MUC4 promoter was
performed using the MassARRAY compact system (Hitachi high
technologies corporation, Tokyo, Japan; Ehrich et al, 2005;
Yamada et al, 2008). DNA from the cell lines was extracted using
a DNeasy tissue system (Qiagen). A 1-mg sample of DNA was
converted with sodium bisulfite using an EZ DNA methylation kit
(Zymo research, Orange, CA, USA) and the modified DNA was
amplified by PCR. The target regions were amplified using the
primer pairs shown in Table 1. Each forward primer was tagged
with a 10mer (50-AGGAAGAGAG-30) to balance the PCR, and each
reverse primer had a T7-promoter tag (50-CAGTAATACGACT
CACTATAGGGAGAAGGCT-30) for in vitro transcription. Poly-
merase chain reaction amplification was performed with the

following parameters: hot start at 941C for 15min, followed by
denaturing at 941C for 20 s, annealing at 561C for 30 s, extension at
721C for 1min for 45 cycles and final incubation at 721C for 3min.
Unincorporated dNTPs were dephosphorylated by adding 2 ml
of premix including 0.3U shrimp alkaline phosphate (SAP;
Sequenom, San Diego, CA, USA). The reaction mixture was
incubated at 371C for 40min and SAP was then heat inactivated
for 5min at 851C. After SAP treatment, 2ml of the PCR products
were used as a template for in vitro transcription, and RNase A
cleavage was used for the reverse reaction, following the manu-
facturer’s instructions (Sequenom). The samples were conditioned
and spotted on a 384-pad Spectro-CHIP (Sequenom) using a
MassARRAY nanodispenser (Samsung, Irvine, CA, USA), followed
by spectral acquisition on a MassARRAY analyzer compact MALDI-
TOF MS (Sequenom). The resultant methylation calls were analysed
with EpiTyper software v1.0 (Sequenom) to generate quantitative
results for each CpG site or an aggregate of multiple CpG sites.

DNA extraction and DNA MSP analysis

DNA from the cell lines was extracted using a DNeasy tissue
system (Qiagen) according to the manufacturer’s instructions.
Bisulfite modification of the genomic DNA was carried out using a
Epitect Bisulfite Kit (Qiagen), and the modified DNA was amplified
by PCR using a AmpliTaq Gold Fast PCR Kit (Applied Biosystems).
The target regions were amplified using the primer pairs shown in
Table 1. The PCR conditions were 951C for 10min, 40 cycles at
961C for 3 s, 591C for 3 s and 681C for 3 s, with a final extension
reaction at 721C for 10 s. The amplified products were subjected to
1.5% agarose gel electrophoresis.

RESULTS

Effects of 5-AzadC and TSA on MUC4 mRNA expression

The expression levels of MUC4 mRNA in the human breast cancer
cell lines MCF-7, T-47D and MDA-MB-453, the human lung cancer
cell lines NCI-H292 and A427, the human pancreatic carcinoma
cell lines HPAFII, BxPC-3 and PANC1 and the human colon
adenocarcinoma cell lines LS174T and Caco2 were examined using
quantitative RT–PCR analysis (Figure 1A). NCI-H292, BxPC-3 and
HPAFII cells expressed MUC4 mRNA, but MCF-7, T-47D, MDA-
MB-453, A427, PANC1, LS174T and Caco2 cells did not do so. To
examine whether DNA methylation and histone modification
suppress the MUC4 mRNA expression level, MUC4-negative cells
or cells with low expression of MUC4 were treated with a DNA
demethylating agent, 5-AzadC, a histone deacetylase inhibitor,
TSA or 5-AzadC/TSA in combination (Figure 1B). Quantitative
RT–PCR analysis of MCF-7 breast cancer cells showed that
treatment with 5-AzadC or TSA gave a greater increase in MUC4
mRNA compared to treatment with 5-AzadC/TSA in combination
(38.9-, 30.9- and 6.03-fold increases, respectively). In contrast,
in T-47D cells, the combination treatment was more effective than
5-AzadC or TSA alone in increasingMUC4mRNA (61.7-, 6.92- and
2.69-fold increases, respectively). Following 5-AzadC or 5-AzadC/
TSA treatment of MDA-MB-453 cells, MUC4 mRNA expression
increased by 11.2- and 10.0-fold, respectively, but TSA alone had
no effect. Treatment of A427 cells with 5-AzadC or 5-AzadC/TSA
resulted in an increase in MUC4 mRNA of 12.0- to 24.5-fold,
whereas the level remained constant after treatment with TSA
alone. In PANC1, LS174T and Caco2 cells, treatment with 5-AzadC
or TSA increased the MUC4 mRNA levels and 5-AzadC/TSA in
combination further increased these levels (by 69.2-, 69.2- and
1,120-fold, respectively, in PANC1 cells; 11.5-, 11.7- and 64.6-fold,
respectively, in LS174T cells; and 8.32-, 8.51- and 72.4-fold,
respectively, in Caco2 cells). These results suggest that DNA

Epigenetic control of MUC4

N Yamada et al

345

British Journal of Cancer (2009) 100(2), 344 – 351& 2009 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



methylation and/or histone modification influence MUC4 gene
expression.

DNA sequencing of the human MUC4 mucin gene
promoter

To investigate whether MUC4 gene expression is regulated by
SNPs, sequencing primers were designed to target different regions
of the MUC4 promoter (Table 1) based on the published sequence
(Perrais et al, 2001). We sequenced a 3.6-kb promoter region of the
human MUC4 from 10 cell lines (Figure 2) and found that bases at
some positions differed among the 10 cell lines. However, there
was no correlation between these sequence differences and MUC4
gene expression.

Quantitative MassARRAY methylation analysis of the
MUC4 gene promoter in 10 cancer cell lines

Quantification of promoter DNA methylation levels was performed
using the MassARRAY compact system, with mapping of
the resulting data (Figure 3A). Samples were analysed by
matrix-assisted laser desorption ionisation time-of-flight mass
spectrometry (MALDI-TOF-MS), which permits high-throughput
identification of methylation sites and semiquantitative measure-
ment at single or multiple CpG sites. The raw spectrum data for
CpG sites 108–112 in NCI-H292 and A427 lung cancer cells are

shown in Figure 3B. In the vicinity of the transcriptional start site,
MUC4-negative cells or cells with low expression of MUC4 showed
high methylation (MCF-7, T-47D, MDA-MB-453, A427, PANC1
and Caco2) compared with MUC4-positive cell lines (NCI-H292,
BxPC-3 and HPAFII). In contrast, the MUC4 promoter CpG sites
were mostly hypomethylated in LS174T cells, which showed low
expression of MUC4. In the 10 cancer cell lines, methylation of
CpG sites 108–112 was inversely correlated with MUC4 gene
expression, whereas methylation of sites 1–107 was almost
unrelated to gene expression. These results indicate that the CpG
methylation status near to the MUC4 transcriptional start site may
play an important role in gene expression of MUC4.

Methylation-specific PCR analysis of MUC4 promoter
methylation in 10 cancer cell lines

Methylation-specific PCR primers were designed to target CpG
sites in the 50 flanking region of the MUC4 promoter (Table 1)
based on the results of MassARRAY analysis. The five CpG sites
(Nos. 108–112) included in the MSP primer showed 4–39%
methylation in MUC4-positive cells and 63–100% methylation in
all MUC4-negative/low cells, except for LS174T cells. The LS174T
cells showed 5–19% methylation at the five sites. To confirm the
reliability of the MSP primer, MSP analysis was performed on the
10 cell lines (Figure 4). An unmethylated band (lanes indicated by
U in Figure 4) was obtained in MUC4-positive NCI-H292 and

Table 1 Synthetic oligonucleotides used in the study

Name Primer sequence Position

MUC4 promoter sequencing primers
MUC4-S1L AGGCAGAACAGAGCTCAAATTC �3647 to �3626
MUC4-S1R ACAAAATGAGTGGCTTCTCTAGTTC �2970 to �2946
MUC4-S2L ACTTACACCTGACTTCAGACTCCTG �3047 to �3023
MUC4-S2R TTCCTCGTTCACCTGTAAAATG �2,410 to �2389
MUC4-S3L AACCAGGTGTCGTAACAACAAG �2523 to �2504
MUC4-S3R ACCATCTCAGCTCACTGCAAG �1846 to �1826
MUC4-S4L AAGAGCTGACAGAAAAATGACCAC �2,092 to �2,069
MUC4-S4R TGTAGCTCTCTGCAAAGGAAAAC �1236 to �1214
MUC4-S5L CCATGAACAGACTTTCAGCTTCTAG �1521 to �1497
MUC4-S5R CCAGATGGTGGACTTCTTCTTTC �958 to �936
MUC4-S6L CCTACCGAGGTTTTGCCTTC �1063 to �1044
MUC4-S6R CTAATCACCCTTTTCTCTCCTCAG �194 to �171
MUC4-S7F CATACAGTGCATTTCTGTTCCTG �557 to �535
MUC4-S7R ATCACTTACCTGGGACCACATG +70 to +91

10mer-tagged or T7-tagged primersa

MUC4-1L aggaagagagTGTGTGGTTTAGAAGGTTGTAATTG �3611 to �3587
MUC4-1R cagtaatacgactcactatagggagaaggctACCCAAATAAAAATCCCTAATTTTT �3233 to �3208
MUC4-2L aggaagagagTGGGAGAATTTTATGATTTTATTTTTGTT �3134 to �3106
MUC4-2R cagtaatacgactcactatagggagaaggctATTTCCAAACCCAAATCTTTCCTAC �2671 to �2647
MUC4-3L aggaagagagGTAGGAAAGATTTGGGTTTGGAAAT �2671 to �2647
MUC4-3R cagtaatacgactcactatagggagaaggctAACATCCAAATAAAACCAAACTAAAC �2204 to �2179
MUC4-4L aggaagagagTGTGTGTTTTTGGTTTTTTTGGTAT �2274 to �2250
MUC4-4R cagtaatacgactcactatagggagaaggctACACCATCTCAACTCACTACAAACTC �1849 to �1824
MUC4-5L aggaagagagTAGTTTTTTGTTTTGGAAAGAAGAAGTTTA �973 to �944
MUC4-5R cagtaatacgactcactatagggagaaggctAACAAACCCCAAAAAATTAAAAAAC �512 to �488
MUC4-6L aggaagagagGGTTTGTTATGTGTTTGGGATTTG �793 to �770
MUC4-6R cagtaatacgactcactatagggagaaggctAAAATAAATAAACCACCCTCCTAAC �344 to �320
MUC4-7Lb aggaagagagTAGGGATATTTAGGGGATTTTTTTT +18 to +42
MUC4-7Rb cagtaatacgactcactatagggagaaggctTTCCCAACAACCCAAAACTCTAATA �415 to �391

MSP primers
MSP-ULc GGTGATTAGTGTGGGGTTTTG �179 to �159
MSP-UR CCAAACCAAATACATTTCTCCAA �122 to �100
MSP-MLd GGTGATTAGCGTGGGGTTTC �179 to �160
MSP-MR CGAACCAAATACGTTTCTCCG �121 to �101

aL¼ (aggaagagag) + (gene-specific sequence), R¼ (cagtaatacgactcactatagggagaaggct) + (gene-specific sequence). bMUC4-7L and MUC4-7R primers were designed for the
antisense strand because PCR amplification was not obtained in the forward direction. cU indicates the primer for unmethylated alleles. dM indicates the primer for methylated
alleles.
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BxPC-3 cells, whereas a methylation band (lanes indicated by M in
Figure 4) was observed in MUC4-negative/low MCF-7, MDA-MB-
453, A427 and PANC1 cells. The MSP data were almost consistent
with the results of MassARRAY analysis of the methylation status
of the cell lines. Therefore, our results suggest that the 50 flanking
region of the promoter, and especially CpG sites 108–112, may
play an important role in methylation-related gene silencing of
MUC4.

DISCUSSION

We have previously examined the expression profiles of MUC4
in primary tumours of patients with intrahepatic cholangio-
carcinoma-mass forming type (n¼ 27; Shibahara et al, 2004),
pancreatic adenocarcinoma (n¼ 135) (Shibahara et al, 2004; Saitou
et al, 2005; Tamada et al, 2006; Tsutsumida et al, 2007),
extrahepatic bile duct carcinoma (n¼ 70; Tamada et al, 2006)
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Figure 1 Quantitative RT–PCR analysis of 10 cancer cell lines before and after treatment. (A) Expression of MUC4 mRNA examined by quantitative
RT–PCR. The bar graphs show gene expression levels relative to those in MCF-7 cells. NCI-H292, BxPC-3 and HPAFII cells showed high expression of
MUC4 mRNA, whereas MCF-7, T-47D, MDA-MB-453, A427, PANC1, LS174T and Caco2 cells had no or low levels of MUC4 mRNA. (B) Quantitative
analysis of MUC4 mRNA in cells with little or no MUC4 expression after treatment with 5-AzadC, TSA and 5-AzadC/TSA in combination. The bar graphs
show gene expression levels as log10 values relative to those in untreated cells. After 5-AzadC or TSA treatment, MCF-7 cells showed significant restoration
of MUC4 mRNA expression. In T-47D cells, 5-AzadC/TSA treatment was most effective in restoring expression. MUC4 mRNA levels were markedly
restored in MDA-MB-453 and A427 cells after treatment with 5-AzadC or 5-AzadC/TSA. In PANC1, LS174T and Caco2 cells, 5-AzadC/TSA treatment was
more effective in restoring expression compared to treatment with 5-AzadC or TSA alone.
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and small-sized lung adenocarcinoma (less than 3 cm; n¼ 185;
Tsutsumida et al, 2007) and compared MUC4 expression with the
survival of the patients. In the four series, survival in MUC4-
positive or high-expression cases was significantly worse than that
for MUC4-negative or low-expression cases, and multivariate
analyses showed that MUC4 expression in the carcinomas was a
risk factor for a poor prognosis (Shibahara et al, 2004; Saitou et al,
2005; Tamada et al, 2006; Tsutsumida et al, 2007).
The regulatory mechanism of the MUC4 gene is unclear.

Initially, to examine the possible epigenetic regulation of MUC4
expression, we treated MUC4-negative or low-expression cancer
cell lines with 5-AzadC and/or TSA (Figure 1B). In four of seven

cells (T-47D, PANC1, LS174T and Caco2), treatment with 5-AzadC/
TSA significantly restored the MUC4 mRNA expression, compared
to the treatment with 5-AzadC or TSA alone. In MCF-7 cells,
however, the restoration level of MUC4 mRNA decreased in 5-
AzadC/TSA treatments rather than in treatment with 5-AzadC or
TSA alone. Yet, it is unclear whether 5-AzadC and TSA caused an
antagonistic effect in MCF-7 cells. We showed that treatment with
TSA did not restore the MUC4 mRNA in MDA-MB-453 and A427
cells. Kondo et al (2003) showed that 5-AzadC or a combination of
5-AzadC and TSA, but not TSA alone, reactivates tumour
suppressor gene expression at silenced loci (eg, p16). Our results
in MDA-MB-453 and A427 cells are in good agreement with their

Figure 2 The human MUC4 gene promoter sequence, which spans positions �3,622 to þ 29 with respect to the transcription start site. The numbers of
CpG sites and the transcriptional start site þ 1 (arrow) are shown. CpG sites 53–76 were undetectable by MassARRAY analysis in the 10 cell lines.
Between bases �833 to �648, sequence variation was observed among the 10 cell lines.
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observation. Although there were differences in the restoration
level of MUC4 mRNA among treated cell lines, our overall results
suggested the possibility that MUC4 expression is regulated by
epigenetic mechanisms.

Next, to rule out the contribution of SNPs in control of MUC4
expression, the sequences of the MUC4 promoter were verified in
all the cells used in the study using primers based on the published
sequence (Perrais et al, 2001). In Figure 2, the sequence of part of
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Figure 3 Summary of the CpG methylation status of the MUC4 gene promoter region in 10 cancer cell lines. (A) Quantitative methylation analysis of
CpG sites located in the MUC4 promoter using a MassARRAY compact system. Different colours display relative methylation changes in 10% increments
(green¼ 0%, red¼ 100% methylated). CpG sites that correlated well with MUC4 expression are boxed in red. (B) Raw spectrum data for CpG sites
108–112 in lung cancer cell lines. Non-methylated and methylated CpG sites generate status-specific mass signals. Methylation status (%) is calculated
as (intensity of methylated CpG (red dotted line)/(intensity of methylated CpG (red dotted line)þ intensity of unmethylated CpG (green dotted line))).
w Indicates methylation in one of the two CpG sites (eg, 109 or 110). z Indicates methylation of both CpG sites (eg, 109 and 110). Asterisks indicate MUC4-
positive cell lines.

Epigenetic control of MUC4

N Yamada et al

349

British Journal of Cancer (2009) 100(2), 344 – 351& 2009 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



the promoter (�833 to �647) could not be determined by single-
strand sequencing, and we were also unable to obtain reliable
results for one promoter region (�1822 to �973) using the
MassARRAY compact system. Moreover, we found that bases at
some positions differed among the 10 cell lines in a 3.6-kb MUC4
promoter region. However, we found no correlation between these
sequence differences and MUC4 expression, and therefore we
examined the DNA methylation status of theMUC4 promoter in 10
cancer cell lines.
In this study, we used MassARRAY analysis to examine the

methylation status of 92 CpG sites in the promoter of the MUC4
gene. Methylation at CpG sites 108–112 (�170 to �102) was
associated with the expression of MUC4 in all cell lines except for
LS174T. MUC4-negative cell lines were hypermethylated at these
five CpG sites, whereas MUC4-positive cell lines showed hypo-
methylation at the same sites. We recently reported that MUC1
expression in pancreatic, breast and colon cancer cells is regulated
by DNA methylation and histone H3-K9 modification in the 50

flanking region, also using a MassARRAY compact system.
Methylation of CpG near the transcriptional start site (�100 to
100) was inversely correlated withMUC1 gene expression (Yamada
et al, 2008). Similarly, MUC4 expression was also regulated by
methylation of CpG sites near the transcriptional start site (�170
to �102).
On the other hand, the methylation status of upstream regions

clearly differed between MUC1 and MUC4. In MUC1, most CpG
sites except for the regulatory region were unmethylated (Yamada
et al, 2008); in contrast, in MUC4, almost all CpG sites of the
upstream region (until CpG site 100) were methylated (Figure 3A).

The reason for the different global methylation levels of these
similar transmembrane mucins requires further investigation.
We were unable to show a relationship between DNA

methylation status and expression of the MUC4 gene in the
LS174T colon cancer cell line, similarly to our results for MUC1
(Yamada et al, 2008). However, expression ofMUC4 in Caco2 cells,
which are derived from cancer cells of the same organ, was related
to the DNA methylation status. This indicates that the regulation of
expression by DNA methylation is not organ-specific, but varies in
individual cell lines.
Recently, Vincent et al (2008) reported that MUC4 expression is

regulated epigenetically through DNA methylation and histone
modification in pancreatic and gastric epithelial cancer cell lines,
and that CpG sites 110–114 (�121 to �81) were associated with
expression of MUC4 in these cells (Vincent et al, 2008). However,
in our study, CpG 113 (�93) and 114 (�81) were hypomethylated
in all cell lines and unrelated to the expression of MUC4 gene,
whereas sites 108 and 109 were associated with MUC4 gene
expression. These differences might be due to different methods of
detection, and it also possible that these CpG sites (108, 109, 113
and 114) may be sensitive and unstable. This issue may be resolved
by the use of different analytical methods in future studies.
MUC4 is a factor associated with a poor prognosis in various

carcinomas and particularly in intractable carcinomas, such as
pancreatobiliary and lung carcinomas (Saitou et al, 2005; Tamada
et al, 2006; Tsutsumida et al, 2007). This study shows that MUC4
expression is regulated by DNA methylation in the promoter
region, and we have also shown that MUC1, another prognostic
indicator, is regulated by a similar epigenetic mechanism (Yamada
et al, 2008). These results indicate that MassARRAY is a powerful
tool for detection of methylation of CpG sites, and screening of the
DNA methylation status of MUC1 and MUC4 genes by MassAR-
RAY analysis of discharged fluids, such as pancreatic juice, bile or
sputum is likely to be of value for early detection of pancreato-
biliary and lung carcinomas.
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