Sleep duration and the risk of prostate cancer: the Ohsaki Cohort Study

This article has been updated

Abstract

In a prospective study of prostate cancer incidence (127 cases), among 22 320 Japanese men, sleep duration was associated with lower risk; the multivariate hazard ratio of men who slept 9 h per day compared with those who slept less was 0.48 (95% confidence interval: 0.29–0.79, P for trend=0.02).

Main

Sleep duration is associated with various health outcomes (Youngstedt and Kripke, 2004) including three observational studies of sleep duration and breast cancer (Verkasalo et al, 2005; McElroy et al, 2006; Pinheiro et al, 2006). Melatonin, which is secreted mainly from the pineal gland and plays a role in sleep duration, is suggested as one of the candidates responsible for the association in breast cancer (Brzezinski, 1997; Schernhammer and Schulmeister, 2004) as it influences the synthesis and secretion of sex hormones by promoting the release of gonadotropin-releasing hormone (Martin and Klein, 1976; Aleandri et al, 1996).

In relation to melatonin, there have been several observational studies of night work, shift work or visual impairment, and sex hormone-related cancers such as prostate or breast (Feychting et al, 1998; Verkasalo et al, 1999; Kliukiene et al, 2001; Megdal et al, 2005; Kubo et al, 2006; Conlon et al, 2007; Schwartzbaum et al, 2007). However, there has been no study of sleep duration and prostate cancer risk, even though prostate cancer, like breast cancer, is also a sex hormone-related cancer.

We therefore examined the association between sleep duration and prostate cancer risk in a population of Japanese men, in whom the mortality of prostate cancer is increasing (Statistics and Information Department, Minister's Secretariat, Ministry of Health Labour and Welfare of Japan, 2007).

Materials and methods

Details of the Ohsaki National Health Insurance (NHI) Cohort Study have been described previously (Tsuji et al, 1998; Kuriyama et al, 2006). Briefly, this prospective cohort study was started in 1994 and included 26 481 men aged 40–79 years living in the 14 municipalities of Miyagi Prefecture, northeastern Japan. The response rate was 94.0% (N=24 895) for the questionnaire that was self-administered and included items about sleep duration and other health-related lifestyle factors. The study protocol was reviewed and approved by the ethics committee of Tohoku University School of Medicine.

After exclusion of subjects who had withdrawn from the NHI before follow-up, those who had a history of cancer, those who had omitted responses for sleep duration, and those who had reported sleep duration of less than 4 h or more than 12 h, 22 320 subjects remained. To follow-up participants for mortality and migration, we reviewed the NHI withdrawal history files for 1995–2001. Through the Miyagi Prefectural Cancer Registry, we identified 127 incident cases of prostate cancer. During the study period, there had been no mass screening programme for prostate cancer in this area. Clinical stage was classified according to the TNM system as localised (T1–T2), advanced (T3–T4), metastatic (N+ and/or M+), or unknown.

With regard to the sleep duration, participants answered the mean integer number of hours of sleep per day during the last year. Because of the small number who slept for less than 7 h and more than 8 h, we categorised sleep duration into three groups: 6, 7–8, and 9 h per day. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) of prostate cancer incidence according to sleep duration, using the Cox proportional hazards model, with adjustment for age and potential confounders. The continuous P for trend was calculated by treating sleep duration as a continuous variable, and the categorical P for trend by treating each category as a continuous variable. Interactions between the risk and all confounders were tested through the addition of cross-product terms to multivariate model.

All statistical analyses were performed using SAS statistical software, version 9.1 (SAS Institute Inc, Cary, NC, USA), and all those reported were two-sided; differences at P-values of <0.05 were accepted as significant.

Results

Table 1 shows the baseline characteristics of subjects according to sleep duration. Subjects who slept 9 h or more per day (long sleepers) were older, less likely to be employed and married, and more likely to have a history of disease. Those who slept 6 h or less per day (short sleepers) were more likely to have never smoked and less likely to walk more than 1 h per day.

Table 1 Baseline characteristics of the subjects according to sleep duration

We found an inverse association between sleep duration and risk. The HR of prostate cancer in short sleepers was 1.34 (95% CI: 0.83–2.17) and the HR for long sleepers was 0.48 (95% CI: 0.29–0.79) (P for trend=0.02). This result did not change substantially when subjects whose event occurred within 3 years of baseline (N=46) were excluded and analysis of each clinical stage (localised or advanced/metastatic) was examined (Table 2).

Table 2 Cox proportional hazard ratios (HRs) for prostate cancer incidence by sleep duration in Japanese men

In addition, we examined in detail, confounding and effect modification by age and other covariates on the associations with sleep duration. No significant interaction was observed between sleep duration and other confounding factors for risk on a multiplicative scale (data not shown).

Discussion

In the first study to address the question, we found an inverse association between sleep duration and the risk of prostate cancer in Japanese men. There have, however, been three observational studies of sleep duration and breast cancer risk (McElroy et al, 2006; Pinheiro et al, 2006). Among these, one reported a decreased risk in long sleepers (Verkasalo et al, 2005), the second reported no association (Pinheiro et al, 2006), whereas the third reported an increased risk in long sleepers (McElroy et al, 2006). Among possible reasons for these differences from our findings (apart from the site of cancer), McElroy et al (2006) conducted a case–control study while Pinheiro et al (2006) studied residential nurses in the United States with rotating shift work and varying timing of sleep so that generalising from their results may be inappropriate.

Melatonin may be a factor in these inverse associations with sex hormone-related cancers (Brzezinski, 1997; Schernhammer and Schulmeister, 2004; Shiu, 2007). A decreased sleep duration results in a shorter duration of nocturnal melatonin secretion (Wehr, 1991). Melatonin may have an inhibitory effect on gonadal function, including the synthesis and secretion of sex hormones, by promoting the release of gonadotropin-releasing hormone (Martin and Klein, 1976; Aleandri et al, 1996). It also exerts an antiproliferative effect on prostate and breast cancer cell lines (Shiu, 2007).

Strengths of the present study include its prospective nature and its base in the general population. In addition, the Miyagi Prefectural Cancer Registry is one of the earliest and most accurate population-based cancer registries in Japan (Takano and Okuno, 1997); so our data on cancer incidence are considered sufficiently reliable.

Methodological limitations include the fact that sleep duration was self-reported. Second, we had no information about sleep quality, the timing of sleep, the use of sleep medication, the presence of sleeping disorders or rotating shift work. Such factors influence sleep duration and thereby might affect the findings.

In conclusion, we have found a significant inverse association between sleep duration and the risk of prostate cancer incidence in Japanese men.

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  1. Aleandri V, Spina V, Morini A (1996) The pineal gland and reproduction. Hum Reprod Update 2: 225–235

    CAS  Article  Google Scholar 

  2. Brzezinski A (1997) Melatonin in humans. N Engl J Med 336: 186–195

    CAS  Article  Google Scholar 

  3. Conlon M, Lightfoot N, Kreiger N (2007) Rotating shift work and risk of prostate cancer. Epidemiology 18: 182–183

    Article  Google Scholar 

  4. Feychting M, Osterlund B, Ahlbom A (1998) Reduced cancer incidence among the blind. Epidemiology 9: 490–494

    CAS  Article  Google Scholar 

  5. Kliukiene J, Tynes T, Andersen A (2001) Risk of breast cancer among Norwegian women with visual impairment. Br J Cancer 84: 397–399

    CAS  Article  Google Scholar 

  6. Kubo T, Ozasa K, Mikami K, Wakai K, Fujino Y, Watanabe Y, Miki T, Nakao M, Hayashi K, Suzuki K, Mori M, Washio M, Sakauchi F, Ito Y, Yoshimura T, Tamakoshi A (2006) Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan collaborative cohort study. Am J Epidemiol 164: 549–555

    Article  Google Scholar 

  7. Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 296: 1255–1265

    CAS  Article  Google Scholar 

  8. Martin JE, Klein DC (1976) Melatonin inhibition of the neonatal pituitary response to luteinizing hormone-releasing factor. Science 191: 301–302

    CAS  Article  Google Scholar 

  9. McElroy JA, Newcomb PA, Titus-Ernstoff L, Trentham-Dietz A, Hampton JM, Egan KM (2006) Duration of sleep and breast cancer risk in a large population-based case-control study. J Sleep Res 15: 241–249

    Article  Google Scholar 

  10. Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES (2005) Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer 41: 2023–2032

    Article  Google Scholar 

  11. Pinheiro SP, Schernhammer ES, Tworoger SS, Michels KB (2006) A prospective study on habitual duration of sleep and incidence of breast cancer in a large cohort of women. Cancer Res 66: 5521–5525

    CAS  Article  Google Scholar 

  12. Schernhammer ES, Schulmeister K (2004) Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br J Cancer 90: 941–943

    CAS  Article  Google Scholar 

  13. Schwartzbaum J, Ahlbom A, Feychting M (2007) Cohort study of cancer risk among male and female shift workers. Scand J Work Environ Health 33: 336–343

    Article  Google Scholar 

  14. Shiu SY (2007) Towards rational and evidence-based use of melatonin in prostate cancer prevention and treatment. J Pineal Res 43: 1–9

    CAS  Article  Google Scholar 

  15. Statistics and Information Department, Minister′s Secretariat, Ministry of Health Labour and Welfare of Japan (2007) Vital Statistics of Japan, 2005. Tokyo (in Japanese): Health and Welfare Statistics Association

  16. Takano A, Okuno Y (1997) Japan, Miyagi Prefecture. In: International Agency for Research on Cancer Parkin D, Whelan S, Ferlay J, Raymond L,Young J (eds), Vol. 17, pp 386–389. Lyon: IARC

    Google Scholar 

  17. Tsuji I, Nishino Y, Ohkubo T, Kuwahara A, Ogawa K, Watanabe Y, Tsubono Y, Bando T, Kanemura S, Izumi Y, Sasaki A, Fukao A, Nishikori M, Hisamichi S (1998) A prospective cohort study on National Health Insurance beneficiaries in Ohsaki, Miyagi Prefecture, Japan: study design, profiles of the subjects and medical cost during the first year. J Epidemiol 8: 258–263

    CAS  Article  Google Scholar 

  18. Verkasalo PK, Lillberg K, Stevens RG, Hublin C, Partinen M, Koskenvuo M, Kaprio J (2005) Sleep duration and breast cancer: a prospective cohort study. Cancer Res 65: 9595–9600

    CAS  Article  Google Scholar 

  19. Verkasalo PK, Pukkala E, Stevens RG, Ojamo M, Rudanko SL (1999) Inverse association between breast cancer incidence and degree of visual impairment in Finland. Br J Cancer 80: 1459–1460

    CAS  Article  Google Scholar 

  20. Wehr TA (1991) The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J Clin Endocrinol Metab 73: 1276–1280

    CAS  Article  Google Scholar 

  21. Youngstedt SD, Kripke DF (2004) Long sleep and mortality: rationale for sleep restriction. Sleep Med Rev 8: 159–174

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant-in-aid for Cancer Research and for the Third Term Comprehensive Ten-Year Strategy for Cancer Control (H18-3jigan-ippan-001), Ministry of Health, Labour and Welfare, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M Kakizaki.

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and Permissions

About this article

Cite this article

Kakizaki, M., Inoue, K., Kuriyama, S. et al. Sleep duration and the risk of prostate cancer: the Ohsaki Cohort Study. Br J Cancer 99, 176–178 (2008). https://doi.org/10.1038/sj.bjc.6604425

Download citation

Keywords

  • sleep duration
  • prostate cancer
  • incidence
  • Japanese
  • prospective cohort study

Further reading

Search