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Polymorphisms of inflammatory and metalloproteinase genes,
Helicobacter pylori infection and the risk of oesophageal
adenocarcinoma
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Helicobacter pylori (HP) infection appears protective against oesophageal adenocarcinoma (EA) risk. Matrix metalloproteinases
(MMPs) are released in the presence of HP infection. In MMP2 wild-type individuals, HP was significantly protective of EA risk
(adjusted odds ratio: 0.29; 95% confidence interval¼ 0.1–0.7). Matrix metalloproteinases may modulate the EA–HP relationship.
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The increasing incidence of oesophageal adenocarcinoma (EA)
(Younes et al, 2002) may be explained partly by the widespread
nature of chronic gastro-oesophageal reflux disease (GERD) and
Barrett’s oesophagus (Kim et al, 1997; Shaheen and Ransohoff,
2002). Epidemiologic studies suggest that Helicobacter pylori (HP)
infection protects against EA (Chow et al, 1998; de Martel et al,
2005) and GERD (Raghunath et al, 2003). A postulated mechanism
for the protective effect involves acid reflux reduction with
HP-mediated chronic atrophic gastritis (Sozzi et al, 1998).
A number of factors influence the chronic atrophic gastritis

severity. Myeloperoxidase (MPO) released from inflammatory cells
and manganese superoxide dismutase 2 (SOD2) enhance inflam-
mation and tissue damage, thereby increasing the severity of
chronic atrophic gastritis (Suzuki et al, 1995; Smoot et al, 2000). In
addition, the expression of matrix metalloproteinases (MMPs),
responsible for the degradation of extracellular matrix compo-
nents, is increased during HP infection, thereby enhancing chronic
atrophic gastritis (Bergin et al, 2004).
The Val allele of the SOD2 �Ala16Val polymorphism results in

decreased SOD2 enzyme transport into mitochondria (Shimoda-
Matsubayashi et al, 1996). Likewise, the A allele of MPO �463 G/A
is associated with lower MPO enzyme levels (Piedrafita et al, 1996).
The 2G allele of MMP1 �1607 1G/2G polymorphism is associated
with higher MMP1 expression levels (Rutter et al, 1998). The
T allele of MMP2 �1306C/T disrupts an Sp1 regulatory element

leading to lower promoter activity and decreasing MMP2
expression (Price et al, 2001). In contrast, the MMP3 1171 �6A/5A
polymorphism causes transcriptional elevation and modulates
expression of MMP3 (Ye et al, 1996). MMP12 �A82G A allele is
associated with a higher MMP12 promoter activity (Jormsjo et al,
2000).
We hypothesise that genetic variants associated with greater

inflammatory gene and higher MMP expression are associated
with a greater extent of chronic atrophic gastritis and greater
protection against the risk of EA.

MATERIALS AND METHODS

Study population

Local institutional review boards approved the study. All cases
gave written consent, were 418 years old and were diagnosed
within the last 6 months. All had histologically confirmed EA that
was deemed endoscopically (or at the time of resection) to have a
tumour centre located at or above the midpoint of the gastro-
oesophageal junction, with at least two-thirds of the tumour bulk
located in the oesophagus (Liu et al, 2007). The serum samples of
100 cases that were collected and processed in a uniform manner
were analysed. They had similar age, gender and disease
distribution as the 83 recruited cases that were not analysed due
to serum collection problems (P40.10 for each comparison). A
total of 101 age- and gender frequency-matched healthy controls
were composed of lifetime cancer-free, GERD-free, non-blood-
related family members (usually spouses) and friends of other
cancer/surgical patients. For all participants, a standardised
interviewer-administered questionnaire collected information on
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age, gender, race, body mass index, smoking status/history and HP
infection status. Body mass index in the third decade of life was
used as a surrogate of healthy adult weight decades prior to the
development of EA. Over 90% of the participants were born in the
United States.

Genotyping and HP determination

DNA was extracted using the Puregene DNA Isolation Kit (Gentra
Systems, Minneapolis, MN, USA). TheMMP1 �1607 1G/2G,MMP2
�1306C/T, MMP3 �6A/5A and MMP12 �82A/G polymorphisms
were genotyped by 50-nuclease assay (TaqMan) using the ABI
Prism 7900HT Sequence Detection System (Applied Biosystems,
Foster City, CA, USA); conditions and primers are available upon
request. SOD2 Ala16Val and MPO �463 G/A genotyping was
performed as described previously (Liu et al, 2004).
Serum was processed within 1 h of collection and stored at

�701C, with no freeze–thaw cycles prior to analyses, and was run
in mixed blinded batches. Helicobacter pylori infection status and
CagA status were evaluated using Helicoblot 2.1 (Genelabs
Diagnosticss, Singapore City, Singapore and Redwood City,
CA, USA).
For quality control determinations of laboratory techniques,

positive and negative controls and blinded duplicate samples were
run. Alternative genotyping approaches (different primers, endo-
nucleases, techniques, conditions) to verify technical reliability
and accuracy were used as required. A second scientist checked all
laboratory interpretation independently, and a blinded third
scientist arbitrated discrepancies.

Statistical analysis

Univariate and bivariate explorations of the data were performed.
Case and control demographic data were compared using Fisher’s
exact and Student’s t-tests, where appropriate. If homozygous
variant genotype frequencies were very low, heterozygous and
homozygous variant genotypes were combined. Hardy–Weinberg
equilibrium was tested using the w2 test. Using standardised kit
criteria, we defined four different categories of HP infection status
based on the antibodies detected with the Helicoblot 2.1 kit: ever
infection, current infection, infection with CagA or infection with
VacA strains (Monteiro et al, 2001; Hoang et al, 2006).
Analyses of associations between the different genetic poly-

morphisms, HP infection status and EA risk were based on logistic
regression models (SAS, version 9.1, SAS Institute Inc., Cary, NC,
USA). Where appropriate, crude and adjusted odds ratios (AOR)
and 95% confidence intervals (CI) for the risk of EA were
calculated. For adjusted analyses, we included adult body mass
index, smoking status, age and gender. To test for a gene–HP
interaction, an interaction term was added to the logistic
regression model (likelihood ratio tests). The SAS macro HAPPY
was used for haplotype determination and D0 calculation.

RESULTS

Baseline demographics are shown in Table 1. The recruitment rate
was 485% for cases and controls. Cases had the following stages: I
(n¼ 9), IIA (n¼ 18), IIB (n¼ 17), III (n¼ 22), IVA (n¼ 5) and IVB
(n¼ 29). The proportions of cases and controls treated for HP
infection were 16 and 12%, respectively (P40.30). There were no
overall associations between each polymorphism and the EA risk.
The overall AOR between HP infection and EA was 0.71 (95%
CI¼ 0.4–1.0). Duplicate genotyping was performed for at least
30% of subjects for each polymorphism with 100% concordance.
Serologic analysis had 99% concordance of 100% duplicates.
The strongest and most consistent association was found

between the MMP2 �1306 polymorphism and HP infection: in

58 cases/56 controls carrying the MMP2 �1306C/C wild-type
genotype, having HP infection at any time in their life was strongly
protective against EA (AOR 0.29, 95% CI¼ 0.1–0.7). In contrast, in
35 cases/43 controls carrying MMP2 C/T or T/T (associated with
lower promoter activity), this protective effect was lost (AOR 1.76;
95% CI¼ 0.06–5.2; for ever infection with HP). When we
specifically analysed different definitions of HP status such as
current, VacAþ or CagAþ infections for their HP–EA risk
association, the protective effect of HP remained significant in the
wild-type genotype of MMP2 �1306C/C (AOR ranged from 0.16
to 0.35) and abrogated in patients carrying any variant allele.
The corresponding interaction model and interaction term were
statistically significant (Po0.001). When using several other
definitions of HP infection status, the MMP2–HP interaction
terms were similarly significant: MMP2 and CagAþ infection
(interaction term, P¼ 0.03), and MMP2 and current HP infection
(interaction term, P¼ 0.005). Thus, both stratified analysis and
interaction models point to an MMP2–HP relationship.
When evaluating other MMP polymorphisms, ever infection

with HP was also associated with a significantly decreased EA risk
in the subset of patients who carried the wild-type genotypes,
MMP3 �1171 6A/6A (AOR 0.04, 95% CI¼ 0.002–0.9, P¼ 0.04; 27
cases/29 controls) and MMP12 �82 A/A (AOR 0.44, 95% CI¼ 0.2–
0.8, P¼ 0.02; 75 cases/79 controls), but not for their corresponding
variant genotypes. The MMP1 �1607, MMP3 �6A/5A and MMP12
�82A/G polymorphisms are in linkage disequilibrium (D0 ¼ 0.5
for MMP1-MMP3; D0 ¼ 0.8 for both MMP1-MMP12 and MMP3-
MMP12), but none of the evaluated polymorphisms are linked
with the MMP2 �1306 C/T polymorphism (D0o0.15 for all
comparisons). Haplotype analyses of the MMP1-MMP3-MMP12

Table 1 Demographic information by case–control status

Characteristics Controls (n¼101) Cases (n¼ 100) P-value

Gendera

Female 13 (13%) 12 (12%) 0.9
Male 88 (87%) 88 (88%)

Age (years)b 63±8 64±8 0.4

Race
Caucasian 101 (100%) 100 (100%) NA

Smoking statusa

Non-smokers 27 (27%) 16 (16%) 0.07
Ex-smoker 54 (53%) 67 (67%)
Current smoker 20 (20%) 17 (17%)

Packyearsc 37±31 42±36 0.5

BMI (kgm�2)
BMI at diagnosisb 28±5 26±5 0.004
BMI in healthy adultd 22±4 23±4 0.4

HP infection statusa

HP ever infected 43 (43%) 36 (36%) 0.4
HP never infected 58 (57%) 64 (64%)

CagA strains
Positive 30 (30%) 29 (29%) 0.8
Negative 71 (70%) 71 (71%)

VacA strains
Positive 20 (20%) 15 (15%) 0.4
Negative 81 (80%) 85 (85%)

BMI¼ body mass index; HP¼Helicobacter pylori; NA¼ not applicable. aCases and
controls were compared using Fisher’s exact tests. bData are reported as mean (s.d.),
and compared using Student’s t-tests. cIn ever smokers only. dBMI in the third decade
of life (twenties).
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polymorphisms resulted in weaker associations when compared
with the analyses of individual polymorphisms (data not shown).
No significant protective effects of HP infection on the EA risk

were found with any genotype subsets of MPO �463 G/A or with
SOD2 Ala16Val.

DISCUSSION

To our knowledge, the question of gene–HP interaction in EA risk
has not been addressed. The protective effects of HP infection on
the risk of developing EA have been postulated, based on a number
of epidemiologic studies (Chow et al, 1998; de Martel et al, 2005).
This protection is believed to result mainly from decreased acid
reflux following HP-mediated chronic atrophic gastritis (Sozzi
et al, 1998). As only one in 200 individuals with Barrett’s
oesophagus develop EA annually, gene–environment factors may
hold the key to understanding EA risk. Yet few studies have
examined gene–environment interactions in oesophageal cancer;
most were conducted in Asia, evaluating squamous cell carcinoma
of the oesophagus, genetic polymorphisms and either smoking or
alcohol consumption (Lee et al, 2001; Yu et al, 2004; Lin et al, 2006;
Hiyama et al, 2007). We compared a set of EA cases with
frequency-matched controls.
The most significant finding of our study was the increased

protection against the risk of developing EA by HP infection in
individuals carrying the wild-type MMP2 �1306 C/C genotype,
whereas no protective effect could be detected among the variant
genotypes. MMP2 is part of the MMP family, a group of enzymes
responsible for the degradation of extracellular matrix compo-
nents. MMP2 levels were increased in the presence of HP infection
and contributed to tissue damage in HP-associated gastritis
(Bergin et al, 2004). The wild-type genotype is associated with
higher promoter activity and MMP2 expression (Price et al, 2001).
Higher MMP2 expression may lead to increased severity of chronic
atrophic gastritis and subsequently less acid reflux and decreased

EA risk (Sozzi et al, 1998; Raghunath et al, 2003; Bergin et al,
2004). Our results are therefore consistent with this mechanism.
This protective effect against EA risk was maintained even when
different definitions of the HP infection status were evaluated. Our
examination of polymorphisms of two other MMPs led to similar
results.
Our results should be interpreted cautiously, given the modest

sample size and multiple comparisons, although even a Bonferroni
correction would still leave the primary gene–HP interaction and
stratified wild-type models statistically significant. In addition, the
serologic evaluation of prior HP infection over time is imperfect,
and may be affected by antibiotic treatment. Nonetheless, because
not just one but several MMP polymorphisms were associated
independently with gene–HP interactions, this is a novel finding
that warrants further exploration.
In conclusion, we were able to demonstrate for the first time a

modulation of the protective effect of HP on EA risk by several
polymorphisms in the MMP pathway. These intriguing results will
need confirmation in a larger prospective setting, particularly one
that also explores the relationships between Barrett’s oesophagus,
GERD and EA prognosis.
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