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NF-kB interferes with the effect of most anti-cancer drugs through induction of anti-apoptotic genes. Targeting NF-kB is therefore
expected to potentiate conventional treatments in adjuvant strategies. Here we used a pharmacological inhibitor of the IKK2 kinase
(AS602868) to block NF-kB activation. In human colon cancer cells, inhibition of NF-kB using 10 mM AS602868 induced a 30–50%
growth inhibitory effect and strongly enhanced the action of SN-38, the topoisomerase I inhibitor and CPT-11 active metabolite.
AS602868 also potentiated the cytotoxic effect of two other antineoplasic drugs: 5-fluorouracil and etoposide. In xenografts
experiments, inhibition of NF-kB potentiated the antitumoural effect of CPT-11 in a dose-dependent manner. Eighty-five and 75%
decreases in tumour size were observed when mice were treated with, respectively, 20 or 5mg kg�1 AS602868 associated with
30mg kg�1 CPT-11 compared to 47% with CPT-11 alone. Ex vivo tumour analyses as well as in vitro studies showed that AS602868
impaired CPT-11-induced NF-kB activation, and enhanced tumour cell cycle arrest and apoptosis. AS602868 also enhanced the
apoptotic potential of TNFa on HT-29 cells. This study is the first demonstration that a pharmacological inhibitor of the IKK2 kinase
can potentiate the therapeutic efficiency of antineoplasic drugs on solid tumours.
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Colorectal cancer (CRC) is the third commonest malignancy
worldwide with 954 000 new cases and 492 000 deaths in 2000
(Davies et al, 2005). These outcomes are largely due to the
poor clinical response of CRC to conventional drugs. CPT-11
(irinotecan) and its active metabolite, SN-38, are topoisomerase I
inhibitors that have shown efficacy in the treatment of advanced
and/or metastatic CRC (Wasserman et al, 2001). However, despite
the initial response, most patients treated with CPT-11 become
resistant and exhibit tumour progression (Calvo et al, 2002). CPT-
11 treatment has been shown to activate NF-kB (Xu and Villalona-
Calero, 2002; Janssens and Tschopp, 2006), which could be a
potential resistance mechanism in malignant cells (Wang et al,
1998; Baldwin, 2001; Nakanishi and Toi, 2005). Thus, reducing
NF-kB-mediated activation may help prevent CPT-11-induced
resistance to cell killing.
NF-kB complexes are composed of a variety of homo- or

heterodimers formed by five components: p50, p52, p65 (-RelA),
RelB, and c-Rel subunits. The p50–p65 complexes are the best-
characterized and most abundant dimers. In the absence of

stimulation, NF-kB is sequestered in the cytoplasm of most cells,
by binding to IkB inhibitory subunits. Upon stimulation,
IkB molecules are phosphorylated by the specific kinases
IKK(IkB kinase)1/a and IKK2/b, which together with NEMO
(NF-kB Essential Modulator) /IKKg form the IKK complex that
integrates signals for NF-kB activation. Serine phosphorylation is
followed by polyubiquitination, and subsequent degradation of
IkB by the proteasome reviewed in Karin (1999). Then, NF-kB
translocates into the nucleus where it controls the transcription of
numerous genes. Mechanisms by which topoisomerase-targeting
drugs induce IkB degradation to activate the NF-kB pathway have
to be elucidated. In response to DNA damage, NEMO appears to
translocate to the nucleus and undergo a series of post-
translational modifications. In the nucleus, NEMO establishes a
complex with p53-inducible protein with a death domain and
receptor interacting protein 1, allowing NEMO sumoylation
(Janssens and Tschopp, 2006). Then, sumo-NEMO is recognized
and phosphorylated by ATM (Ataxia Telangiectasia Mutated),
tagged by ubiquitination, which induces its release from ATM and
its cytoplasmic translocation allowing NF-kB activation (Wu et al,
2006). Thus, NEMO provides a means to link nuclear DNA damage
to the activation of the cytoplasmic IKK complex (Huang et al,
2003). Once activated, NF-kB promotes cell survival through
expression of genes coding for antiapoptotic proteins (c-IAP1,
c-IAP2, bfl-1, and Bcl-xl) and supports resistance of tumour cell to
treatments by inducing the expression of the multidrug resistance
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proteins (Pahl, 1999). Furthermore, NF-kB could largely partici-
pate to the tumorigenic process through expression of
genes coding for growth factors and cell cycle regulators (Van
Antwerp et al, 1996; Wang et al, 1996) as well as it could promote
metastasis through induction of extracellular matrix-degrading
enzymes and angiogenesis through vascular endothelial growth
factor expression (Yu et al, 2004). The inhibition of NF-kB could
therefore affect tumour cells at different steps of their pathological
process.
The aim of our study was to evaluate the effect of inhibiting

NF-kB to potentiate the action of the topoisomerase poison
CPT-11 in colon cancer cells. We used a pharmacological inhibitor
of the IKK2 kinase (AS602868) that was previously shown to reveal
the apoptotic potential of TNF-a in Jurkat cells (Frelin et al, 2003)
and to induced apoptosis of primary human acute myeloid
leukaemia cells (Frelin et al, 2005). We show that both in vitro
and in vivo in HT-29 colon s.c. xenografts AS602868 potentiated
antitumour CPT-11 effectiveness by increasing CPT-11-induced
apoptosis of HT-29 tumour cells. This effect was associated with
decreased expression of antiapoptotic genes and a stimulation of
CPT-11 antiproliferative actions. The antitumoural effect of
AS602868 could also be due to its capacity to induce apoptosis
of HT-29 cells in the presence of TNFa whose intratumoural
concentration was increased upon CPT-11 treatment.

MATERIALS AND METHODS

Drugs and antibodies

AS602868 is an anilino-pyrimidine derivative and ATP competitor
selected for its inhibitory effect in vitro on IKKee, a constitutively
active version of IKK2. The compound is covered by the patent
application PCT WO 02/46171. AS602868 has an in vitro inhibitory
concentration of 50% (IC50) of 60 nM towards purified IKK2 and no
effect on IKK1 (IC50¼ 14 mM) or on a large panel of recombinant
kinases. It has some inhibitory effect on JNK2 (IC50¼ 600 nM).
AS602868 in sterile cyclodextrin solution was supplied by Merck-
Serono International SA (Geneva, Switzerland). CPT-11 was a gift
from Dr Pierre-Alain Vitte (Serono Pharmaceutical Research
Institute, Geneva, Switzerland). The pan caspase inhibitor z-VADfmk

(R&D Systems, Abington, UK) and SN-38 (a kind gift from Dr JL
Fischel, Antoine Lacassagne Oncology Center, Nice, France) were
prepared in DMSO and stock solutions were stored at �201C.
Recombinant hTNFa was from PeproTech (Rocky Hill, NJ, USA).
Anti-Parp-a and anti-phospho IkB was purchased from Cell
Signaling (Beverly, MA, USA); anti-HSP60, anti-p65 p50, anti-
IkB, and anti-TNFa from Santa Cruz Biotechnology (Santa Cruz,
CA, USA); anti-caspases 3, 8, and 9 from Medical & Biological
Laboratories (Woburn, MA, USA); and anti-Ki-67 from DAKO-
Cytomation (Glostrup, Denmark).

Cell lines and cell drug treatments

The human colon cancer cell lines HT-29, SW-480, and SW-620
were obtained from the ATCC (Bethesda, MD, USA). Aliquots of
5� 106 viable cells in 10ml of DMEM medium containing 10%
fetal calf serum were plated into tissue culture dishes (100mm
diameter) for 24 h, then stimulated for 72 h before harvesting.

Xenograft growth assay

Animal experiments were performed in accordance with the
regulations of our institution’s ethics commission and with the
United Kingdom Co-ordinating Committee on Cancer Research
Guidelines (1998). Forty-five NMRI female nude mice (6–8 weeks
of age) were inoculated s.c. with 1� 106 tumour cells. Mice were
then dispatched into nine groups of 5. Treatments lasted 10 weeks
and consisted of five orally administrations of AS602868 (5 or

20mg kg�1), 5 days a week. CPT-11 (10 or 30mg kg�1) was
administered i.p. twice a week. In combination treatments,
AS602868 was given 4 h before CPT-11 injections. Mice from
control group were administered with AS602868 vehicle (cyclo-
dextrin). Tumours were measured once a week with a caliper and
their volumes were calculated by the formula: (a� b2)/2, where ‘a’
and ‘b’ are, respectively, the larger and smaller diameter. At the
end of the treatments, the mice in each group have been killed with
CO2, 6 or 2 h after the last AS602868 or CPT-11 administration
respectively. Tumours were removed, minced, put into liquid
nitrogen or RNA later (Ambion, Huntingdon, UK), and stored at
�801C.

Statistical analysis

Statistical significance of in vivo drug treatment effectiveness on
tumour growth was calculated using ANOVA and the protective
least significant difference using Fisher test. A probability of less
than 0.05 was considered as significant. Additive or synergistic
effect of drug combinations in vitro was evaluated using a non-
constant ratio isobologram analysis with the CompuSyn software
(ComboSyn Inc., New York, NY, USA). The combination index
values were interpreted as follows: o1.0, synergism; 1.0, additive;
and 41.0 antagonism.

Cytotoxicity assay

Cytotoxic studies were carried out using an MTT assay (van de
Loosdrecht et al, 1994), representing the percentage of growth
inhibition induced by treatments. One thousand HT-29 cells were
plated per well in 96-well plates with medium and various
concentrations of AS602868±SN-38 for 5 days.

EMSA and gel mobility shift assays

Nucleic extracts of HT-29 cells and tumours were prepared
according to the method described by Dignam et al (1983). Briefly,
5� 106 cells were trypsinized, washed in PBS, and pelleted.
Tumours were crushed in 500 ml PBS and pelleted (1000 g, 5min,
41C). Cell pellets or tumours were then resuspended in 50–100 ml
of hypotonic buffer A. They were incubated for 10min on ice,
vortexed and centrifuged (10 000 g, 2min, 41C). Tumour
supernatants (cytosolic extracts) were collected, cell pellets and
tumours were suspended in 40–70 ml of buffer B and centrifuged
(13 000 g, 10min, 41C). Supernatants (nuclear extracts) were
collected and diluted in 50–80 ml of buffer C. EMSA were
performed as described previously. For supershift assays, anti-
bodies against p65 or p50 or rabbit IgG (4mg) were added 10min
before the labelled probe.

Apoptosis and cell proliferation assays

Apoptosis was measured after a 5-day stimulation of HT-29 cells,
plated as described for cytotoxicity assay using the cell death
detection ELISAplus Kit (Roche Diagnostics, Meylan, France). Cell
proliferation was measured using the ELISA BrdU Kit from
Roche Diagnostics. Assays were performed in triplicate following
manufacturer’s instructions.

Western blot analysis

Total HT-29 cell extracts were prepared in lysis buffer as described
previously (Frelin et al, 2003), incubated for 30min on ice and
centrifuged (10 000 g, 10min, 41C). HT-29 cell or tumour extracts
were separated by sodium dodecyl sulphate-polyacrylamide gel
electrophoresis on polyacrylamide gels and blotted on immobilon
membranes (Millipore, Bedford, MA, USA). Primary antibodies
were revealed with secondary peroxidase-conjugated antibody
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(DakoCytomation) followed by enhanced chemiluminescence
detection (Amersham Pharmacia, Saclay, France).

Reverse transcriptase-polymerase chain reaction

Total RNA from HT-29 cells or tumours was prepared in 2–4ml of
Trizol reagent (Invitrogen, Amsterdam, The Netherlands) accord-
ing to Chomczynski and Sacchi (1987). A total of 1 mg RNA was
reverse transcripted using SuperScript II reverse transcriptase
(Invitrogen) following manufacturer’s instructions and resus-
pended in 12ml final volume. Two microlitre of the reverse-
transcribed material were amplified by polymerase chain reaction
(PCR) in 20 ml reactions containing 0.5 ml sense and antisense

primers (Eurogentec, Angers, France); 0.6 ml dNTP (20mM); 2 ml of
Taq polymerase (New England Biolabs, Saint Quentin, France) at
5000Uml�1 of commercial buffer for a total of 30 cycles consisting
of 941C for 60 s, 551C for 60s, and 701C for 60 s. Ten microlitre
amplification products were analysed by electrophoresis in
ethidium bromide-stained agarose gels. Primer sequences are
available upon request.

Flow cytometric analyses

Cell cycle analysis was performed by quantifying DNA content
using propidium iodide staining and analyzing by flow cytometry,
as described previously (Vindelov et al, 1983).
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Figure 1 In vitro effect of AS602868 combined with SN-38 on cell viability. (A, B) HT-29 cells, SW-480, and SW-620 cells were incubated for 5 days with
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TUNEL analyses

Frozen tumour sections (7 mm) were rehydrated in PBS, fixed for
20min at room temperature using 3.7% formaldehyde and then
permeabilized for 2min in 0.1% Triton X-100 in 0.1% sodium
citrate solution at 41C. They were mounted in Fluoromount-G
solution (Southern Biotechnology Associates Inc., Birmingham,
AL, USA) and processed following the protocol described in the In
Situ Cell Death Detection Kit (Roche Diagnostics). Analyses were
performed using an LSM 510 confocal laser-scanning microscope
(Carl Zeiss AG, Jena, Germany).

Histology

Tumour sections (3mM) were incubated with an anti-Ki-67 (clone
MIB-1) or anti-TNFa at room temperature for 30min. After washing
in PBS, a peroxydase-conjugated antibody was added for 30min at
room temperature and reaction developed using an AEC Kit
(DakoCytomation). After haematoxylin counterstaining, slides were
permanently mounted in an aqueous medium (Aquatex, Merck,
Darmstadt, Germany) and analysed for the presence and the
distribution of the immunostaining. For morphological studies,
sections were stained with haematoxylin/eosin/safran (HES).

RESULTS

Inhibition of HT-29 cell viability in vitro by AS602868 in
combination with SN-38

After 5 days incubation, increasing concentrations of AS602868 or
SN-38 resulted in a decrease in HT-29 cell viability (Figure 1A) in a
dose-dependent manner, with a maximal effect for 10 mM AS602868

and for 100 nM SN-38 (53 and 90% inhibition, respectively). As 3
and 10 ngml�1 SN-38 are sub-lethal doses for HT-29 cells, these
concentrations have been chosen in combined experiments. In the
presence of both AS602868 (3mM) and SN-38, an additive (SN-38,
3 nM) or synergistic (SN-38, 10 nM) cytotoxic effect could be
observed: 28 and 79% of cytotoxicity respectively. The IC50 for SN-
38 on HT-29 cells estimated at B25 nM decreased toB10 nM in the
presence of 3 mM AS602868. A different sequencing order of the two
drugs (AS602868 added 24 h before or after SN-38) had compar-
able effects on HT-29 cell viability to the simultaneous treatment
(not shown). The potentiating effect of AS602868 on SN-38-
mediated cytotoxicity was also observed on SW-480 and SW-620
tumour cells (Figure 1B). A synergistic cytotoxic effect was also
observed when HT-29 cells were incubated with AS602868 plus
5-fluorouracil (5-FU) or etoposide but not in the presence of
oxaliplatin (Figure 1C).

Dose-dependent potentiation of CPT-11 antitumour
activity by NF-jB inhibition with AS602868 in xenograft
experiments

Mice (5/group) were inoculated s.c. with HT-29 human colon
tumour cells. Treatments started when the mean tumour volume
was 150±44mm3. Clinically achievable concentrations of
AS602868 (5 or 20mg kg�1) was administered either alone, or in
combination with CPT-11 (10 or 30mg kg�1) (Figure 2). No signs
of visible toxicity (diarrhea, weight lost, apathy, hair or skin
problems, etc.) were observed with any of the treatments. After 6
weeks, no significant differences in tumour size were observed
between control mice and mice treated with 20 or 5mg kg�1

AS602868 (Figure 2A–D respectively). These mice had to be killed
for ethical reasons. After 10 weeks, CPT-11 (30mg kg�1) strongly
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Figure 2 In vivo effect of AS602868 combined with CPT-11 on the development of s.c. HT-29 xenografts. (A–D) Evolution of HT-29 tumour volume.
Nude mice received daily oral injections of AS602868, 5 days a week ( ), and ( )/or ( ) CPT-11 i.p. injections twice a week, or vehicle buffer
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delayed tumour development (Po0.0001) (Figure 2A and C) and
appeared 50% less efficient (Po0.0051) when administrated at
10mg kg�1 (Figure 2B and D). Addition of AS602868 20mg kg�1

(Figure 2A) or 5mg kg�1 (Figure 2C) significantly potentiated the
effect of 30mg kg�1 CPT-11 (Po0.0053 and 0.0386 respectively).
When CPT-11 was injected at 10mg kg�1, AS602868 significantly
improved (Figure 2B) CPT-11 antitumour effect at 20mg kg�1

(Po0.0083) but not at 5mg kg�1 (Figure 2D). The combination of
CPT-11 (10mg kg�1) plus AS602868 (20mg kg�1) was as efficient
as 30mg kg�1 CPT-11. Potentiation of CPT-11 antitumour activity
by AS602868 was also observed in two other colon xenograft
models using SW-480 and SW-620 cell lines (not shown).

Inhibition of CPT-11/SN-38-induced NF-jB pathway
activation by AS602868 in vitro and in vivo

Western blotting experiments (Figure 3A) performed on HT-29
cells (left panel) or tumours (right panel) showed that IkB-a
phosphorylation was increased (upper row) while total levels were

reduced (intermediate row) upon CPT-11 stimulation (lanes 3 and
30 compared, respectively, to lanes 1 and 10). IkB-a phosphoryla-
tion was reduced and total IkB-a enhanced when AS602868 was
added (lanes 4 and 40 compared, respectively, to lines 3 and 30). As
a control, we checked that no changes in Hsp60 levels were
observed (lower row). Subsequent NF-kB DNA-binding activity
was then studied.
As shown by EMSA (Figure 3B), 1 h in vitro stimulation of HT-

29 cells with SN-38 (3 and 10 nM) induced NF-kB activation in a
dose-dependent manner (lanes 4 and 6 compared to lane 2). This
was dramatically decreased after incubation with AS602868 (3 mM)
(lanes 4 and 6 compared, respectively, to lanes 5 and 7). AS602868
also inhibited the weak constitutive activity of NF-kB observed in
HT-29 cells (lane 3 compared to 2). SN38 had less of an affect on
NF-kB activation compared to PMA (lane 6 vs 1). Similar results
were observed in tumours (Figure 3C, left panel). The specificity of
the NF-kB DNA-binding activity was demonstrated by competitive
inhibition in the presence of a 100 ng excess of unlabelled
probe (not shown). When EMSAs were performed in the presence
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Figure 3 In vitro and in vivo effect of AS602868 combined with CPT-11/SN-38 on the NF-kB pathway. (A) IkB-a phosphorylation levels were studied by
western blotting either on lysates of HT-29 cells that were stimulated 30min with indicated concentrations of AS602868 and SN-38 or in tumours from
mice treated as indicated. HSP60 was used as loading control. (B–C) NF-kB activation was visualized by EMSA. HT-29 cells were treated with indicated
concentrations of AS602868, 30min before stimulation with SN-38 (3 and 10 nM) for 1 h or with PMA (10 ngml�1) for 1 h as positive control. These results
correspond to one representative experiment from 3. In supershift experiments, nuclear protein extracts of tumours from CPT-11 and AS602868±CPT-
11-treated mice were incubated with anti-p50 and anti-p65 antibodies or rabbit IgG as negative control.
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of anti-p52, c-Rel, Rel-B, p50, and p65 antibodies in tumour
extracts from mice treated with CPT-11 or CPT-11 plus AS602868,
supershifts were obtained only in the presence of anti-p50 and
anti-p65 antibodies (Figure 3C, right panel). Therefore, CPT-11
appears to mobilize classical p50–p65 NF-kB complexes.

Induction and potentiation of SN-38-mediated apoptosis of
HT-29 colon tumour cells by AS602868

Quantification by ELISA (Figure 4A) of mono- and oligonucleo-
somes showed that AS602868 (3 mM) or SN-38 (3 and 10 nM) alone
induced HT-29 cell apoptosis. A higher effect was produced by
combining the two drugs: 3 mM AS602868 (two-fold medium OD), 3
and 10 nM SN-38 (1.5 and 2-fold medium OD, respectively),
compared to (three-fold medium OD) obtained with 3 mM
AS602868þ 3 nM SN-38 and (3.2-fold) with 3 mM AS602868þ 10 nM
SN-38. Similar results were obtained in vivo (Figure 4B). TUNEL
experiments revealed nearly no apotosis in tumours from mice of
the control group, and an increasing level in tumours from mice
treated with AS602868, CPT-11, and with the combined treatment.
Figure 4C indicates that the cytotoxic effect of AS602868 and

SN-38 is only partly caspase-dependent since z-VADfmk (a pan
caspase inhibitor) could only prevent the decrease in viability by
40% on average. Thus, the induction of apoptosis cannot
completely explain AS602868 and SN-38 cytotoxic effect.

Induction and potentiation of SN-38-mediated pro-caspase
cleavage in HT-29 cells and tumours by AS602868

In HT-29 cells, AS602868 induced a dose-dependent cleavage of
pro-caspases 3 and 8, had a slight effect on pro-caspase 9, and no
effect on the caspase substrate Parp-a (Figure 5A: lanes 2 and 3).
SN-38 (10 nM) induced cleavage of Parp-a and pro-caspase 9 and
had a weak effect on pro-caspase 8 (lanes 4 and 5). Combining

AS602868 with SN-38 resulted in a higher proteolysis of pro-
capases 3, 8, and 9 and of Parp-a (lane 6). Overall, results were
comparable to those found in tumour extracts (lanes 10 –40), but
for unknown reasons it has not been possible to detect Parp-a in
tumour extracts, whatever the protocol used. Thus, in vivo and in
vitro inhibition of NF-kB activity using AS602868 allowed the
potentiation of the processing of pro-caspases 3, 8, and 9.

AS602868 inhibits expression of NF-jB anti-apoptotic
target genes in vitro and in vivo

In HT-29 cells, AS602868 decreased the expression of Bcl-xl,
c-IAP1, and survivin but not that of c-IAP2 (Figure 5B: lane 2
compared to lane 1). SN-38 had nearly no effect on the expression
of theses genes except a slight increase in survivin gene expression
(lane 3). However, combining AS602868 with SN-38 further
decreased Bcl-xl expression and to a lesser extent that of c-IAP1
and survivin (lane 3 compared to lane 4). In tumours (Figure 5B:
lanes 10 –40), each compound alone had minor effect on expression
of these genes except a strong increase in Bcl-xl expression was
observed after CPT-11 treatment. The combination therapy
dramatically decreased CPT-11-induced Bcl-xl expression, below
baseline level. The levels of c-IAP1 and 2 and survivin were also
decreased (lane 40).

Inhibition of necrosis, tumour cell proliferation, and cell
cycle progression in HT-29 cells and tumours by AS602868

Histological examination of HT-29 xenografts (Figure 6A) revealed
an extensive necrosis in tumours (HES staining) from control and
AS602868 groups that decreased by two-fold in tumours from
the CPT-11 group and by four-fold in tumours from the
AS602868þCPT-11 group. Ki-67 staining revealed a two-fold
decrease in tumour cell proliferation in the AS602868þCPT-11
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group compared to the other groups. BrdU incorporation
(Figure 6B) showed that the combination of suboptimal doses of
AS602868 (1 and 3 mM) and SN-38 (3 and 10 nM) had additive effect
to inhibit cell proliferation with a maximum of 85% inhibition with
3 mM AS602868 plus 10 nM SN-38.
Cell cycle analysis (Figure 6C) revealed that AS602868 or SN-38

alone induced a slight increase in the number of cells in S phase
(6.8 and 8.4, respectively, compared to 4.6%). SN-38 also strongly
blocked HT-29 cells in G2/M (37.6 compared to 12.9%).
Combining AS602868 (3mM) with SN-38 (10 nM) resulted in a
synergistic blockade in S phase (29.7%) and an additive blockade
in G2/M phase (46.9%). The number of cells in S phase was
increased by 6.5-fold compared with 1.5- or 1.8-fold with AS602868
or SN-38 alone, respectively.

Increase of TNFa concentration by CPT-11 in HT-29
tumours and induction of TNFa apoptosis potential in
HT-29 cells by AS602868

Histological examination of HT-29 xenografts (Figure 7A) revealed
the presence of low concentrations of TNFa in tumours from

control mice and AS602868-treated groups. The CPT-11 treatment
induced a three-fold increase in intratumoural TNFa concentra-
tion, which was decreased to two-fold upon co-treatment with
AS602868.
NF-kB is known to inhibit apoptosis induced by TNFa. Alone,

TNFa (10 ngml�1) induced a minimal (5%) decrease in viability of
HT-29 cells (Figure 7B). However, addition of AS602868 at 3mM
(18% cytotoxicity) had an additive effect (30.8%) while at 10mM
(40% toxicity) it produced a synergistic effect with TNFa (65%).
A comparable synergistic effect was observed when 10 nM SN-38
was added to 10 ngml�1 TNFa (31.7 compared to 51.7%
cytotoxicity) or in the presence of the three compounds (83% of
cytotoxicity). TNFa induced a small decrease in Parp-a and
pro-caspase 3 but not in HSP60 levels (Figure 7C, lane 3).
AS602868, which had no effect by itself (lane 2), increased the
cleavage of Parp-a and pro-caspase 3 by TNFa (lane 4 vs lane 3). As
showed by EMSA (Figure 7D), AS602868 inhibited TNFa-induced
NF-kB activation in a dose-dependent manner (lanes 5, 6
compared to 4).

DISCUSSION

NF-kB activation by antineoplastic drugs is one of the mechanisms
for tumour resistance to chemotherapy (Baldwin, 2001; Nakanishi
and Toi, 2005). In the present study, we show that pharmacological
inhibition of the NF-kB pathway by the IKK2 inhibitor AS602868
potentiates the antitumoural effect of CPT-11 in vivo and that of
its active metabolite SN-38 in vitro. Interestingly, in xenograft
experiments, the combined treatment allowed a three-fold decrease
in CPT-11 concentration without any loss in efficiency. Inhibition
of NF-kB was also observed to reveal an apoptotic action of TNFa
on HT-29 cells, whose intratumoural concentrations were in-
creased upon CPT-11 treatment. Furthermore, in agreement with
previous data (Wang et al, 2003; Voboril et al, 2004), inhibition of
NF-kB also augmented sensitivity of HT-29 tumour cells to 5-FU,
the most common antimetabolite used for the treatment of CRC
and other types of solid tumours.
In haematopoietic malignancies, inhibition of abnormal con-

stitutive NF-kB activity frequently results in the death of leukaemic
cells (Frelin et al, 2005; Garcia et al, 2005). In solid tumours like
CRC, however, a combined therapy with antineoplastic drugs
appears necessary to get similar results. Inhibition of NF-kB
through the intratumoural adenoviral delivery of a super repressor
form of IkBa, in combination with CPT-11, led to a considerable
growth suppression of Lovo colon tumours associated with an
enhanced apoptotic response (Wang et al, 1999). In the same
tumour model, i.v. administration of the proteasome inhibitor
PS-341 prior to CPT-11 inhibited NF-kB activation, resulting in a
marked decrease in tumour size (Cusack et al, 2001). The level of
apoptosis reached 80–90% in the group receiving combined
treatments compared with 10% in tumours treated with single
agents. Recently, the new proteasome inhibitor NPI-0052 has also
been demonstrated to significantly improve the tumouricidal
response of chemotherapy when orally administered in Lovo
xenograft-bearing mice, by increasing apoptosis and shifting cells
towards G2 cell cycle arrest (Cusack et al, 2006). NPI-0052 effects
resulted in a 1.8-fold increase in response to CPT-11, 5-FU, and
leucovorin triple drug combination; a 1.5-fold increase in response
to the oxaliplatin, 5-FU, and leucovorin triple drug combination;
and a 2.3-fold greater response to the CPT-11, 5-FU, leucovorin,
and Avastin regimen. Reduction of endogenous p65 by siRNA
treatment in HCT-116 colon cancer cells significantly impaired
CPT-11-mediated NF-kB activation, enhanced apoptosis, de-
creased colony formation in soft agar and when administered in
vivo, reduced HCT-116 tumour formation in the presence but not
in the absence of CPT-11 (Guo et al, 2004). Our results appear
consistent with these studies and show that the inhibition of NF-kB
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Figure 5 Effect of AS602868 combined with CPT-11/SN-38 on pro-
caspase cleavage and anti-apoptotic gene expression in HT-29 cells and
tumours. (A) Cleavage of Parp-a and pro-caspases was demonstrated by
western blotting either on lysates of HT-29 cells incubated for 72 h with
indicated concentrations of AS602868±SN-38 or in cytoplasmic protein
extracts of HT-29 tumours from mice treated as indicated. HSP60 was
used as loading control. (B) Anti-apoptotic gene expression was studied by
RT-PCR analysis on RNA extracted either from HT-29 cells stimulated for
72 h with indicated concentrations of AS602868±SN-38 or from HT-29
tumours. Experiments were performed on 1mg RNA and amplification of
cDNA was of 30 cycles. Actin was used as an invariant control.
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by AS602868, easy to use, can potentiate chemotherapeutic drug
efficiency in CRC.
The potentiating effect of AS602868 on HT-29 tumours

appears to be partly due to enhanced CPT-11-induced apoptosis.
AS602868 alone had moderate effects on apoptosis by itself but
activation of caspases 3, 8, and 9 could be easily detected when
the inhibitor was combined with CPT-11 or SN-38. Thus, the two
cellular apoptotic pathways appeared mobilized by combined
treatments. A decrease in the transcription of several anti-
apoptotic NF-kB target genes such as Bcl-xl, survivin, and to a
lesser extent c-IAP1 and c-IAP2 was observed which could reflect
an overall decrease in survival influences preceding caspase
activation. AS602868 has been previously shown to induce
apoptosis of human acute myeloid leukaemia cells (Frelin et al,
2005), effects that were associated with disruption of the
mitochondrial potential and by activation of pro-caspases 9 and
3. It has been demonstrated that p65 siRNA enhanced CPT-11-
mediated apoptosis by increasing caspase 3 activity and lowering
c-IAP 1 and c-IAP 2 protein levels (Guo et al, 2004). Moreover,
antisense Bcl-xl downregulation in HCT-11 colon cancer cells
switched the response to topoisomerase 1 inhibition from
senescence to apoptosis, enhancing global cytotoxicity (Hayward
et al, 2003). These results suggest that NF-kB likely supports cell
survival by different means depending on cell types and/or
underlying oncogenic mechanisms.
The level of necrosis in HT-29 tumours was inversely propor-

tional to tumour size indicating that necrosis cannot account for
AS602868/CPT-11 effects. On the other hand, autophagy could be a
possible mechanism of action for AS602868 since it has recently
been shown that a direct cross-talk exists between autophagy and
NF-kB reviewed in Xiao (2007). The combined treatment also

reduced tumour cell proliferation. In agreement with previous data
(Ohwada et al, 1996; Xu and Villalona-Calero, 2002), we found
that SN-38 alone markedly inhibited HT-29 cell proliferation by
arresting cells mainly at the G2/M phase and, to a lesser extent, at
the S phase. AS602868 for its part only induced a modest arrest at
the S phase, but in combination with SN38 increased the number
of cells in both S and G2/M phases. Thus, the enhanced antitumour
effect of the combined therapies could also be explained by the
ability of AS602868 to increase the number of cells in S phase as
these cells are 100–1000 times more sensitive to CPT-11 (Li et al,
1972).
Invalidation of the genes coding for IKK2, NEMO, or RelA

resulted in early embryo death from TNF-dependent liver
apoptosis demonstrating the important anti-apoptotic functions
of NF-kB (Karin and Lin, 2002). Moreover, the expression of a
non-phosphorylatable form of the IkB-a subunit, which acts as a
super-repressor of NF-kB activation, increased apoptotic re-
sponses in various cell lines stimulated by TNFa (Van Antwerp
et al, 1998). As CPT-11 treatment resulted in an increase in TNFa
intratumoural concentration and as AS602868 revealed the
apoptotic potential of TNFa in HT-29 colon cancer cells as well
as in Jurkat leukaemic cells (Frelin et al, 2003), this mechanism
could also be involved in AS602868/CPT-11 antitumoural effect.
Furthermore, the suppressor protein p53 is mutated in HT-29 cells
(Goldberg et al, 1996; Gobert et al, 1999) and recent data showed
that p53 mutations may promote cancer progression by augment-
ing NF-kB activation in the context of chronic inflammation
(Weisz et al, 2007).
To our knowledge, none of the many NF-kB signaling inhibitors

described so far (Gilmore and Herscovitch, 2006) have been shown
in vivo to increase chemotherapy efficiency in CRC. Taken
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together, our results provide a rationale for using the IKK2
inhibitor AS602868 combined with CPT-11 as a promising
therapeutic strategy for clinical testing in CPT-11 refractory CRC
and probably other solid tumours. Of course the toxicity/efficacy
ratio will be a crucial factor for the therapeutical use of AS602868
molecule. However, preliminary results warrant that clinical trials
will be performed.
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