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Thymidylate synthase (TS) is the enzyme that catalyses the last step in de novo thymidylate synthesis. It is of interest clinically because
it is an effective target for drugs such as 5-fluorouracil, often used in combination therapy. Despite a number of earlier reports
indicating that TS is a cell cycle-dependent enzyme, this remains equivocal. Here, we show that in HCT116 cells synchronised by
serum starvation, there is a clear dissociation between the expression of cyclin E (a well-characterised cell-cycle protein) and TS.
Although both cyclin E and TS mRNA and protein increased during G1, TS upregulation was delayed. Moreover, TS levels did not
decrease following S-phase completion while cyclin E decreased sharply. Similarly, clear differences were seen between cyclin E and
TS as asynchronously growing HCT116 cells were growth-inhibited by low-serum treatment. In contrast to previous reports using
rodent cells, adenovirus-mediated over-expression of E2F1 and cyclin E in three human cell lines had no effect on TS. Cell-cycle
progression was blocked by treatment of cells with pharmacological inhibitors of CDK2 and CDK4 and by ectopic expression of
p16INK4A. Whereas CDK2 inhibition had no effect on TS levels, inhibition of CDK4 was associated with decreased TS protein levels.
These results provide the first evidence that drugs targeting CDK4 may be useful with anti-TS drugs as combination therapy for
cancer.
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For DNA synthesis to proceed normally, a balanced pool of the
four deoxyribonucleotides, dCMP, dGMP, dAMP and dTMP is
required. These deoxyribonucleotides are synthesised from
ribonucleotides by the enzyme ribonucleotide reductase (RNR).
Of the four deoxyribonucleotides, only dUMP requires further
metabolism. It is converted to dTMP by thymidylate synthase (TS),
which catalyses the transfer of a methyl group from the co-factor
tetrahydrofolate to the C5 position of the uracil moiety. TS is the
sole cellular enzyme capable of de novo synthesis of dTMP. As
such, this enzyme has been used for many decades as a target for
cancer chemotherapeutic agents. TS protein levels are elevated in
some cancers (Haqqani et al, 1999; Mizutani et al, 2001) and high
levels are associated with a poorer response to drugs targeting
dTMP synthesis (Johnston et al, 1995). Despite extensive studies of
TS for many decades, the mechanisms regulating its expression in
human cells remain largely undefined.
Since deoxynucleotides are required for DNA synthesis, it is

commonly believed that TS is an S-phase-dependent enzyme
(Schwartz and Shah, 2005). In mouse fibroblasts synchronised
by mitotic selection, TS behaved as a cell cycle-dependent enzyme
with mRNA levels undergoing a 5- to 10-fold increase as cells
progress from G1- to S-phase (Nagarajan and Johnson, 1989).

Similarly, in human diploid fibroblasts synchronised by serum
starvation, TS mRNA also increased 14-fold at 24 h after cells
resumed growth (Ayusawa et al, 1986). However, this pattern of
regulation is not universally seen (Dolnick, 2000). One report using
sorted, asynchronously growing human tumour cell lines sug-
gested that the level of TS protein did not strongly correlate with
cell-cycle phases but rather with the proliferative state of the cells
(Pestalozzi et al, 1995). In murine cells, synchronised in S-phase by
aphidicolin treatment, TS mRNA levels remained rather constant
throughout most of the cell cycle following drug removal
(Matherly et al, 1989).
The majority of normal cells in an adult are in a non-dividing

state. In response to appropriate stimuli, some of these cells will
begin to proliferate. This transition from G0 to G1 constitutes the
point of entry from the ‘resting’ state to the proliferative state. The
decision of a cell to enter the cell cycle is made at a time in G1

termed the ‘Restriction point’ (Pardee, 1974). Traversing this
checkpoint constitutes an irreversible commitment to cell-cycle
progression. Quiescent cells can be stimulated to proliferate by
mitogenic signals that activate cyclin D-CDK4/6 complexes. As G1

progresses, pRb is phosphorylated by these complexes (Weinberg,
1995; Blagosklonny and Pardee, 2002), ultimately leading to E2F
release. E2F transcription factors play an essential role in cell-cycle
progression and are directly involved in the regulation of genes
required for the G1/S transition as well as genes related to DNA
synthesis (DeGregori et al, 1995). E2F can bind DNA as a
homodimers or heterodimer containing the co-activator Dp1 to
activate the transcription of target genes such as cyclin E. Newly
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synthesised cyclin E then forms a complex with CDK2 to drive S-
phase entry (Sauer and Lehner, 1995; Woo and Poon, 2003).
Some reports have suggested that E2F is involved in TS

regulation. In rodent cells, microarray analysis has shown that
ectopic expression of various E2F family members increase TS
mRNA levels (Ishida et al, 2001; Kalma et al, 2001; Polager et al,
2002). In human cells, two E2F consensus binding sites are found
in the inverted repeat of the TS promoter. However, point
mutation of neither of these sites affected TS gene expression
(Dong et al, 2000; Lee and Johnson, 2000). Although studies of
human tumour samples have examined the correlation between
E2F levels and TS levels, no consistent picture has emerged. Some
studies have shown a strong correlation between expression levels
of E2F and TS while others have shown no significant relationship
(Kasahara et al, 2000; Sowers et al, 2003a; Belvedere et al, 2004).
Regulatory sequences in the TS promoter are highly conserved
across species, including mouse and human (Lee and Johnson,
2000). An interesting difference in TS induction between murine
and human cells was seen following cytomegalovirus (CMV)
infection. Upon CMV infection, TS levels were upregulated in both
murine and human cells. However, in mouse cells TS induction
was E2F dependent (Gribaudo et al, 2000) whereas in human cells
it was not (Gribaudo et al, 2002). Given the inconsistent pattern of
TS regulation in various cell types and the critical role of this
enzyme in cancer treatment, we undertook to investigate the
relationship between TS expression and the cell cycle in human
tumour cell lines.
In the present report, we describe the use of four human cell

lines, HCT116, MCF-7, PC3 and GM38, to investigate the cell cycle
dependency of TS. HCT116 cells were synchronised by serum
starvation and the levels of both TS mRNA and protein were
studied and compared to the levels of cyclin E as cells were starved
or stimulated to re-enter the cell cycle. The regulatory role of E2F
and cyclin E in TS expression was directly assessed by adenovirus-
mediated over-expression of these two proteins. We also used
small molecule inhibitors of CDKs to block the cell cycle and
determine their effect on TS expression levels. Our results provide
additional evidence that TS levels in human cells are not
dependent on cell-cycle progression but rather on cellular events
taking place in G1 prior to E2F release and cyclin E activation. TS
levels were downregulated by inhibition of CDK4 but not CDK2,
suggesting that this cyclin-dependent kinase active only in early
G1, is involved in the control of TS expression. Additionally,
inhibition of CDK4 by p16INK4A over-expression also led to a
decrease in TS levels. These results suggest that CDK4 might be a
useful target to evaluate clinically in combination therapy with
anti-TS drugs.

MATERIALS AND METHODS

Cell culture, cell synchronisation and flow cytometry

HCT116 colon cancer cells, MCF-7 and PC3 were obtained from
ATCC (Manassas, VA, USA). Normal fibroblast GM38 cells were
obtained from NIGMS (Bethesda, MD, USA). Cells were regularly
tested for mycoplasma contamination by staining with Hoechst
33258. HCT116 were maintained in McCoy’s 5A medium (Wisent,
St-Bruno, Quebec, Canada) supplemented with 10% fetal calf
serum (FCS, Wisent) at 371C in a 5% CO2/95% air atmosphere.
MCF-7, PC3 and GM38 cells were maintained in DMEM (HyClone,
Logan, UT, USA) supplemented with 10 and 15% FCS, respectively,
at 371C in a 5% CO2/95% air atmosphere. For synchronisation
experiments, HCT116 cells were plated at low density (1� 106 per
10 cm plate) and incubated for 7 days in culture medium
containing 0.5% FCS. Following growth arrest, cells were
stimulated to re-enter the cell cycle by addition of fresh medium
supplemented with 20% FCS. For flow cytometry analysis, cells

were harvested by trypsinisation, washed once with cold phos-
phate-buffered saline (PBS) and fixed by suspending the cell pellet
in cold 70% ethanol for 1 h or longer. Cells were then washed with
cold PBS and incubated with propidium iodide (1mgml�1) in PBS
containing 40 mgml�1 ribonuclease A for 1 h on ice. Stained cells
were then analysed using a BD LSR flow cytometer, appropriately
gated to isolate the single cell population. Cell-cycle distribution
was then determined using the Modfit program (Verity Software
Inc., Topsham, ME, USA).

Drug treatments and gene transfer

CDK2 Inhibitor III and CDK4 inhibitor have been previously
described (Bhattacharjee et al, 2001; Zhu et al, 2003). Roscovitine,
CDK2 Inhibitor III and CDK4 inhibitor were purchased from
Calbiochem (Darmstadt, Germany) and dissolved in DMSO. MCF-7,
PC3 and HCT116 were plated at a density of 2� 105 cells per ml
incubated overnight prior to addition of the drugs. Adenoviruses
encoding cyclin E, Dp1 and E2F1 were supplied by Dr JR Nevins
and have been previously described (Schwarz et al, 1995; Ekholm
et al, 2001). CA35 adenovirus encoding b-galactosidase was
provided by Dr C Addison. Adenovirus expressing human
p16INK4A was from Dr F Graham and has been previously
described (Schreiber et al, 1999). Adenoviruses were propagated in
293 cells and purified by CsCl banding as previously described (Ng
and Graham, 2002).

RNA extraction, RT–PCR and real-time PCR

RNA extractions were carried out as previously described
(Birnboim, 1988). cDNA synthesis was carried out using 3 mg total
RNA, 1 mg oligo-dT primer (Invitrogen, Carlsbad, CA, USA) and
200U of M-MLV reverse transcriptase (Invitrogen), following the
manufacturer’s instructions. Quantification of human TS, Cyclin E
and ribosomal protein L32 (RPL32) mRNAs was carried out using
the following primer pairs: TS (forward 50-CCCTGACGACAGAA
GAA; reverse, 50-TAGTTGGATGCGGATTG); cyclin E (forward
50-CAAGTACACCAGCCACCTC; reverse 50-GTACAACGGAGCC
CAGAA); RPL32 (forward 50-GCCCTCAGACCCCTTGTG; reverse
50-AGATGCCAGATGGCAGTTT); E2F1 (forward 50-GCCACTCG
GCTGACGG; reverse 50-GGCTGATCCCACCTACGGT); b-2-micro-
globulin (forward 50-CGCTACTCTCTCTTTCTGGC; reverse 50-AA
CTTCAATGTCGGATGGAT).
Real-time PCR reactions were performed on a Roche (Basel,

Switzerland) Lightcycler in a total volume of 20 ml. The PCR buffer
contained 2–4mM MgCl2, 2–8 pmol of each primer, 2U of Taq
polymerase (Invitrogen), 1/40 000 dilution of Sybr green I
(Molecular Probes, Eugene, OR, USA), and 2 ml of an appropriate
dilution of the cDNA template. Amplification conditions were as
follows: for TS, 981C, 20 s (1 cycle); 981C, 3 s, 511C, 8 s, 721C, 17 s
(40 cycles). For cyclin E, 981C, 20 s (1 cycle); 981C, 1 s, 601C, 6 s,
721C, 24 s (40 cycles). For RPL32, 981C, 20 s (1 cycle); 981C, 1 s,
611C, 6 s, 721C, 19 s (40 cycles). For E2F1, 991C, 20 s (1 cycle); 991C,
3 s, 581C, 8 s, 721C, 20 s (40 cycles). For b-2-microglobulin, 951C,
30 s (1 cycle); 951C, 1 s, 521C, 10 s, 721C, 6 s (40 cycles). Relative
quantification of unknown samples was achieved by building a
standard curve from a two-fold serial dilution series of one of the
samples designated as a reference. Values obtained for individual
mRNAs were then normalised to data obtained for RPL32 or b-2-
microglobulin, used as references in these experiments.

Protein extraction, immunoblotting and densitometry

For western blot analysis, total protein extracts of HCT116, MCF-7,
PC3 and GM38 cells were prepared by lysing cells in sodium
dodecyl sulphate (SDS) sample buffer (125mM MOPS, pH 6.8, 2%
SDS, 10% glycerol, 1% b-mercaptoethanol, 0.001% bromophenol
blue) and heating the extracts at 1001C for 10min.
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Following protein quantification using fluorescamine (Uden-
friend et al, 1972) (Sigma, St Louis, MO, USA), 20–40 mg of total
protein extract was resolved on a 12% polyacrylamide gel (19 : 1
acrylamide : bisacrylamide) and transferred on an Immobilon
polyvinylidene difluoride membrane (Millipore, Billerica, MA,
USA) as previously described (Bissoon-Haqqani et al, 2006).
Membranes were blocked and then probed with the appropriate
dilutions of primary antibodies specific to cyclin E, cyclin D1, E2F1
(Santa Cruz Biotechnologies, Santa Cruz, CA, USA), b-actin,
p16INK4A (Sigma), p27KIP1 (BD Biosciences, Franklin Lakes, NJ,
USA) and rabbit anti-TS (Haqqani et al, 1999) (Rockland
Immunochemicals, Gilbertsville, PA, USA). Blots were then washed
5 times with TBS-T (10mM Tris-HCl pH 8, 150mM NaCl, 0.05%
Tween 20) and incubated for 1 h with Envision labelled polymer
mouse rabbit-HRP (Dako Cytomation, Glostrup, Denmark)
secondary antibody, diluted 1 : 250 in TBS-T.
For densitometry analysis, blots were scanned using a GS 800

densitometer (Bio-Rad, Hercules, CA, USA) and quantification was
achieved using the Quantity One software. Bands were quantified
and compared to the 0 h signal. b-actin levels were used as a
reference to correct for loading.

RESULTS

Synchronisation of HCT116 cells by serum starvation and
re-feeding

Synchronisation of HCT116 cells was achieved by maintaining cells
for 7 days in 0.5% FCS. Under these conditions, more than 80% of
the cells were in the G0/G1 phase of the cell cycle (Figure 1A).
Eight– ten hours after addition of fresh medium supplemented
with 20% FCS, cells resumed growth and started to enter S-phase.
By 18 h post-stimulation, the majority of cells were actively
replicating and, by 30 h, most cells had progressed through the G2/
M phase and were back in G1 (Figure 1A and B). Based on flow
cytometry to measure cell-cycle distribution, these conditions
achieved an adequate level of cell synchrony. As shown in
Figure 1B, the majority of cells entered S-phase between 10 and
16 h post-stimulation, corresponding to the G1/S transition. The
proportion of cells in S-phase remained high until about 24 h, at
which time cells entered G2/M. The completion of the first cell
cycle and an increase in the G1 population was observed at 28 h.

Kinetics of expression of cyclin E and thymidylate synthase
in synchronised HCT116 cells

The expression patterns of human TS and cyclin E mRNA and
proteins were compared in HCT116 cells after release from serum
starvation. The cyclin E promoter contains a number of E2F
consensus sites (Geng et al, 1996) and is known to be expressed in
late G1, at the time of E2F release (Halaban, 1999). In our
experimental model, cyclin E mRNA rose sharply by 4 h post-
stimulation and reached a maximum (four-fold above baseline) by
10–12 h (Figure 2A). In contrast, changes in TS mRNA followed
different kinetics; upregulation of TS mRNA occurred more slowly
than cyclin E, reaching its maximum only after 16–20 h. Cyclin E
mRNA levels started to drop after 12 h whereas TS mRNA levels
remained relatively constant. Cyclin E and TS protein levels, as
detected by western blot analysis, also followed different kinetics
(Figure 2B and C). The level of both proteins increased in parallel,
shortly after re-feeding. Cyclin E increased continuously to a
maximum between 14 and 18 h, decreasing thereafter. In contrast,
TS increased gradually to a maximum at 16–18 h, remaining
relatively constant thereafter. Thus, in this human colorectal
cancer cell line synchronised by serum starvation and re-feeding,
prominent upregulation of cyclin E and TS was seen in G1,
reaching a maximum in early S-phase. However, expression of the

two genes differed significantly later in the cell cycle: cyclin E
mRNA and protein decreased whereas TS did not.

Kinetics of expression of cyclin E and thymidylate synthase
in HCT116 cells during serum deprivation

To complement our study of HCT116 cells released from
synchronisation by re-addition of serum, we also studied the
same cells as they exited the cell cycle following serum deprivation.
We followed TS and cyclin E levels periodically during the 6-day
course of serum deprivation. During serum deprivation, cells
continued to grow rapidly for the first 3 days; thereafter the growth
rate decreased appreciably (Figure 3A). The percentage of cells in
S-phase, as measured by flow cytometry, decreased sharply at day
1, continued to decrease at a slower rate until day 4, then reached a
plateau value of about 15% until day 6 (Figure 3A). The expression
of cyclin E and TS was measured during this same period. For TS,
both mRNA and protein levels decreased about five-fold almost
linearly over the 6-day period (Figure 3B and C). Cyclin E mRNA
levels decreased more rapidly than TS mRNA, most evident at days
1 and 2, followed by a more gradual decrease. Changes in cyclin E
protein levels did not correlate with changes in mRNA levels; an
increase in the level of cyclin E protein was seen after 5 days. Thus,
under these experimental conditions, changes in TS and cyclin E
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differed significantly, providing further evidence of differences in
their regulation.

Ectopic expression of cyclin E and E2F1 does not induce TS
expression in HCT116, MCF-7 or GM38 cells

Previous reports using mouse and rat embryonic fibroblasts
showed that ectopic expression of E2F1 and E2F2 leads to an
increase in TS transcripts (DeGregori et al, 1995; Ishida et al,
2001). To further characterise the relationship between key
effectors of G1/S transition and the regulation of human TS
transcription, we infected HCT116 and MCF-7 cells with recombinant

adenoviruses expressing E2F1, Dp1 and cyclin E. Western blot
analysis revealed that, 24 h post-infection, both cyclin E and E2F1
were over-expressed in both cell lines (Figure 4A and C). However,
no significant changes were observed in TS levels following
infection with any of the viruses. Real-time PCR analysis also
showed a dose-dependent increase in E2F1 and cyclin E mRNA
expression in infected HCT116 cells (Figure 4B). E2F1 mRNA did
not accumulate as much as cyclin E mRNA, likely because of the
pro-apoptotic activity of E2F1. As expected, ectopic expression of
E2F1 alone or E2F1 together with Dp1 (its binding partner),
upregulated endogenous cyclin E mRNA by a factor of two—three-
fold, but little change was observed in endogenous TS mRNA
(Figure 4B). The increase in cyclin E protein levels observed in
HCT116 and MCF-7 cell lines infected with E2F1 and E2F1þ Dp1
was less than expected (Figure 4A and C), possibly because these
are very fast-growing cell lines. We therefore infected a normal
human fibroblast line, GM38, with the same adenoviruses. These
cells, which have a longer doubling time, responded to ectopic
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expression of E2F1 and E2F1þDp1 by a marked increase in cyclin
E levels (Figure 4D). However, despite the observed high E2F1
activity, there was no significant increase in TS protein levels.

Effects of drug inhibition of CDK4 and CDK2 on cell-cycle
progression and TS levels

Roscovitine is a potent broad-specificity inhibitor of cyclin-
dependent kinases (CDKs), and has been shown to block cell-
cycle progression both in G1 and G2 (Meijer et al, 1997). If TS
expression were dependent on the cell cycle, then its expression
would be expected to be affected by inhibitors of CDKs. The effects
of roscovitine and other more specific inhibitors of CDK2 and
CDK4 on TS expression were tested on HCT116, MCF-7 and PC3
cells. Following treatment of cells for 24 h with the various agents,
expression levels of TS and cell-cycle proteins were determined by
western blot analysis and cell-cycle distribution was measured by
flow cytometry. As expected, treatment of HCT116 cells with
roscovitine increased the G2/M fraction and decreased the G1

fraction (Figure 5B). Treatment with CDK2 inhibitor yielded very
similar results, with an increase in the number of cells in G2/M.
Treatment with CDK4 inhibitor led to an accumulation of cells in
G0/G1. The changes in cell-cycle distribution in MCF-7 cells treated
with the same inhibitors were very similar (data not shown).
Inhibition of CDK2 by roscovitine or CDK2 inhibitor was
associated with a marked decrease in cyclin D1 protein levels in
HCT116 (Figure 5A), a moderate decrease in MCF-7 (Figure 5C),
but no change in PC3 (Figure 5D). No consistent pattern of
changes in cyclin E expression was seen in the three cell lines in
response to treatment with the inhibitors. However, upon
treatment with even the lowest dose of CDK4 inhibitor (but not
the CDK2 inhibitor), a clear decrease in TS protein levels was
observed in all three cell lines. Under the same conditions, no
changes in cyclin E or cyclin D levels were detected, except for a
decrease in cyclin E in MCF-7 cells treated with 10 mM CDK4

inhibitor. Thus, TS expression in human cells appears not to be
related to either cyclin D1 or cyclin E expression levels. Inhibition
of CDK4 blocked cell cycle in G0/G1 and led to a consistent
decrease in TS expression in all three cell lines without
significantly affecting other cell cycle-dependent proteins. These
results strongly suggest that CDK4 activity is involved in the
regulation of TS expression.

Effects of CDK4 inhibition by p16INK4A expression on
cell-cycle progression and TS levels

To provide additional evidence about the role of CDK4 in the
regulation of TS, we infected HCT116 and MCF-7 cells with an
adenovirus encoding human p16INK4A, a known inhibitor of
CDK4 and CDK6. As expected for an inhibitor of CDK4, HCT116
responded to p16INK4a over-expression by an increase in the
G0/G1 fraction (Figure 6A). Western blot analysis of extracts of
infected HCT116 cells showed a strong induction of p16
(Figure 6B). As shown above using a small molecule to inhibit
CDK4, over-expression of p16 to inhibit CDK4 also produced a
decrease in endogenous TS protein levels. Very similar results were
seen in MCF-7 cells (Figure 6C and D). These data demonstrate
that inhibition of CDK4 activity either by p16 or by treatment with
a small molecule inhibitor leads to an accumulation of cells in G1

and produces a decrease in TS. Therefore, CDK4 activity appears
to be essential for expression of TS in human cell lines.

DISCUSSION

The present study was undertaken to address the question of
whether TS in human cells is or is not a cell cycle-dependent
enzyme. There is a scientific agreement that non-dividing (G0)
cells have low TS levels, which increase when cells are stimulated
to grow. Proliferating cells need balanced levels of the four
deoxyribonucleotides for normal DNA replication. The four
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deoxyribonucleotides are directly synthesised from the corre-
sponding ribonucleotides by the enzyme RNR; however, only
dTMP requires an additional step, catalysed by TS, to complete its

synthesis. Until recently, RNR was considered to be a prime
example of a cell cycle-dependent enzyme. RNR is a dimeric
enzyme composed of two non-identical subunits, R1 and R2,
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encoded by separate genes. R2 is rate limiting for the enzymatic
activity of RNR and its level is cell cycle dependent (Chabes and
Thelander, 2000). However, an analogue of R2, p53R2 has recently
been found that is not cell cycle dependent (Guittet et al, 2001;
Nordlund and Reichard, 2006). p53R2 can substitute for R2 to
form an active RNR enzyme capable of generating deoxyribo-
nucleotides in resting cells or following DNA damage. It is
important that RNR and TS have to be coordinated; without
adequate levels of TS, dUMP could rise to a high enough level to
allow its incorporation into DNA in place of dTMP. This is
potentially a mutagenic event (leading to a AT-GC transition)
since uracil can be recognised, excised and replaced by cytosine by
a base-excision DNA repair pathway designed to recognise
spontaneous deamination of cytosine (converting it to uracil) in
DNA (Lindahl, 2000). Given the danger to the integrity of the
genome should dUMP be incorporated into DNA, one might a
priori assume the necessity of having adequate levels of TS
available whenever deoxynucleotides are synthesised by RNR.
Based on recent insight that RNR activity can be independent of S-
phase, there is therefore sufficient reason to expect that TS activity
should also be independent of the cell cycle.
The widespread assumption that TS is cell cycle dependent

enzyme has come from studies that, for the most part, have used
rodent models. In synchronised murine cells, TS mRNA and TS
activity increased as cells reach S-phase (Navalgund et al, 1980;
Nagarajan and Johnson, 1989). Ectopic over-expression of E2F
transcription factors leads to upregulation of TS transcripts (Ishida
et al, 2001; Kalma et al, 2001; Polager et al, 2002). Since E2F
transcription factors are one of the main effectors of the G1/S
transition (Fan and Bertino, 1997) that control the expression of a
number of genes required for DNA synthesis (DeGregori et al,
1995), these studies reinforced the hypothesis that TS is a S-phase-
dependent enzyme. There are, however, other studies which do not
support this hypothesis. For example, in asynchronously growing
human cancer cells, TS levels were high in cycling cells (largely
independent of the phase of the cell cycle) and low in confluent
cells (Pestalozzi et al, 1995).
The present report provides additional supporting evidence that

TS expression in human cells is not closely linked to the cell cycle
and also that it is not dependent on E2F activity. When serum-
deprived HCT116 cells were stimulated to enter the cell cycle, both
TS and cyclin E (a known direct target of E2F transcription factors)
started to increase several hours after addition of serum (G1 and
early S-phase). However, TS and cyclin E differed in that the
increase in TS mRNA and TS protein was more gradual than the
increase in cyclin E and occurred within a few hours later.
Moreover, as cells progressed through the cell cycle, TS mRNA and

TS protein levels remained high while cyclin E declined. TS and
cyclin E expression was also followed in exponentially growing
cells subjected to serum deprivation. Again, the pattern of cyclin E
and TS expression showed distinct differences. TS protein and
mRNA levels declined almost linearly over a 6-day period whereas
cyclin E mRNA decreased sharply in the first day of serum
deprivation. To directly assess the role of cellular proteins involved
in the G1/S transition on TS expression, we over-expressed E2F1,
Dp1 and cyclin E in human HCT116 and MCF-7 cancer cell lines as
well as in GM38 normal fibroblasts. Ectopic expression of these
proteins had no discernible effect on endogenous TS expression in
any of the studied cell lines, indicating that neither E2F1 nor cyclin
E significantly affect TS expression in human cells. Notably, in
normal human fibroblasts, expression of E2F1 and E2F1þDp1 led
to a strong accumulation of endogenous cyclin E, due to increased
E2F1 activity, but no change in TS protein expression was
observed. Our results, therefore, do not support a role for E2F in
TS expression.
We next explored a pharmacological approach to perturbing the

cell cycle. Treatment of three cell lines with roscovitine and CDK2
inhibitor led to an accumulation of cells in G2/M without an
observable effect on endogenous TS levels. However, a marked
decrease in TS expression was seen upon treatment with a CDK4
inhibitor. To provide independent evidence that CDK4 activity is
indeed linked to TS expression, we carried out experiments using
adenovirus-mediated expression of p16INK4A. This cell-cycle
inhibitory protein is well known to bind to CDK4 and CDK6 and
inhibit their activities (Vidal and Koff, 2000). Over-expression of
p16INK4A blocked MCF-7 and HCT116 cells in G0/G1 and
produced a clear decrease in TS levels. Ectopic expression of p16
produced a decrease in TS, confirming the role of CDK4 in the
control of TS expression.
The cell cycle is a highly complex process that is only partially

understood. Dysregulation of cell-cycle proteins is often found in
malignant cells. In cycling cells, E2F1 and cyclin E expression
normally reaches a maximum in late G1/early S-phase after passing
through the Restriction point (Figure 7). Our experiments clearly
demonstrate that TS expression in human cells is independent of
E2F1 and cyclin E. We show, for the first time, that inhibition of
CDK4 leads to a decrease in TS protein. This suggests that there
exists a TS activation window in early-mid G1 prior to the G1/S
transition and the activation of CDK2 (Figure 7). Since TS levels
are low only in non-dividing cells and elevated in proliferating cells
(largely independent of the cell-cycle phases), we propose that TS
should be considered a proliferation marker, similar to Ki-67 and
PCNA. In the past, the level of expression of E2F1 has been used as
a prognostic marker for response to anti-TS drugs on the
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assumption that TS is an S-phase enzyme (Banerjee et al, 2000;
Kasahara et al, 2000; Sowers et al, 2003b). The evidence presented in
this report clearly indicates that, in human cells, TS is strictly
expressed in early-mid G1 and is not regulated by E2F1 activity.
Therefore, levels of E2F may not be a valid predictive marker for
tumour response to anti-TS drugs (Belvedere et al, 2004). One
important conclusion from the evidence presented in this and other
recent studies employing human cell lines is that there are species
differences between human and rodent cells with respect to the
regulation of TS. Despite the apparent similarity of regulatory
sequences in the TS promoter of the rat, mouse and human genes, it
appears that regulation of TS is significantly different in these species.
TS is the target of a number of cancer chemotherapeutic drugs.

Over-expression of TS is one mechanism by which tumours may
develop resistance to such drugs (Johnston et al, 1995). Previous
studies have shown that treatment of cancer cells with the CDK
inhibitors UCN-01 and flavopiridol led to a downregulation of TS
levels and sensitised cells to 5-fluorouracil (Hsueh et al, 1998; Abe
et al, 2000). UCN-01 is a broad-specificity kinase inhibitor, known
to inhibit not only CDKs but also PKC and Chk1 (Akinaga et al,
1991; Busby et al, 2000). Flavopiridol is a flavonoid that exerts a
strong inhibitory activity against CDK2, CDK4 and CDK1 (Carlson
et al, 1996). In the present study, we have shown a marked
decreased in TS levels following inhibition of CDK4 but not CDK2.
This suggests that the observed decrease in TS expression
following treatment with UCN-01 and flavopiridol was due to

inhibition of CDK4 but not other CDKs. In recent years, a number
of new chemotherapeutics compounds targeting the cell cycle have
been developed to inhibit the growth of cancer cells (Collins and
Garrett, 2005). PD 0332991, a specific inhibitor of CDK4/6, showed
antitumour activity in xenografts (Fry et al, 2004). As shown in this
report, TS expression is decreased both by small molecule
inhibitors of CDK4 and following over-expression of p16INK4A.
Interestingly, it has been previously shown that tumour tissue
from patients who responded to fluoropyrimidine-based treatment
expressed high levels p16INK4A (Kamoshida et al, 2004). Since we
have shown that CDK4 regulates TS expression, high levels of
p16INK4A would be expected to decrease TS levels and to sensitise
cells to anti-TS drugs. The data presented in this report provides a
rationale for evaluating combination therapy of anti-TS drugs and
CDK4 inhibitors, since these two classes of drugs are expected to
act synergistically.
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