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Gene expression profiling for the diagnosis of acute leukaemia
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An optimised diagnostic setting in acute leukaemias combines cytomorphology and cytochemistry, multiparameter immunophe-
notyping, cytogenetics, fluorescence in situ hybridisation, and polymerase chain reaction (PCR)-based assays. This allows classification
and definition of biologically defined and prognostically relevant subtypes, and allows directed treatment in some subentities. Over
the last years the microarray technology has helped to quantify simultaneously the expression status of ten thousands of genes in
single experiments. This novel approach will hopefully become an essential tool for the molecular classification of acute leukaemias in
the near future. It can be anticipated that new biologically defined and clinically relevant subtypes of leukaemia will be identified based
on their unique gene expression profiles. This method may therefore guide therapeutic decisions and should be investigated in a
diagnostic setting in parallel to established standard methods.
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An optimised routine diagnostic setting in acute leukaemias
comprises a combination of methods including cytomorphology,
multiparameter immunophenotyping, cytogenetics, fluorescence
in situ hybridisation (FISH), and molecular methods such as
polymerase chain reaction (PCR). This widened diagnostic
spectrum has revealed deeper insights into disease-specific
chromosomal and molecular alterations in acute leukaemias and
has also led to improved understanding of the genetic hetero-
geneity of the diverse subtypes. Algorithms for diagnostic
questions using these methods in varying combinations are helpful
to gather all relevant information in an effective way (Haferlach
et al, 2005a) and allow the selection of disease-specific therapeutic
approaches, for example, use of all-trans retinoic acid in acute
promyelocytic leukaemia (APL) with PML-RARA, of imatinib in
BCR-ABL-positive acute lymphoblastic leukaemia (ALL), or of
specific antibodies against the CD20 or CD52 antigens. Never-
theless, well-defined cytogenetic subgroups exhibit considerable
heterogeneity with respect to both response to therapy and
prognosis (Moos et al, 2002). Thus, more diversified classification
systems based on the underlying molecular pathogenic event
would be desirable (Bullinger and Valk, 2005).
Microarray technology provides comprehensive data on expres-

sion patterns of ten thousands of genes in parallel, which qualifies
this method for a central role in the optimisation of diagnosis and
of the classification of acute leukaemias. Gene expression profiling
(GEP) may lead to the detection of new biologically defined and
clinically relevant subtypes in leukaemias as a basis for specific
therapeutic decisions (Valk et al, 2004). Testing as a routine
method for diagnostic purposes in parallel to current standard
methods is essential to enable GEP to be included in future routine

diagnostic applications and in clinical trials (Haferlach et al,
2005c).

TECHNICAL ASPECTS OF MICROARRAY ANALYSES

Microarrays contain precisely positioned DNA-probes designed to
specifically monitor the expression levels of thousands of genes
in a parallel manner. Commercial chip designs, for example, HG-
U133 Plus 2.0 (Affymetrix, Santa Clara, California, USA), contain
about 42 000 genes probably representing most of the human
genome. Common to all expression profiling approaches is the
heteroduplex formation: structural features of nucleic acid enable
every nucleic acid strand to recognise complementary sequences
through base pairing. After hybridisation, complementary fluor-
escently tagged nucleotides can be detected (Lockhart et al, 1996;
Southern et al, 1999).
Different microarray platforms are available: filter arrays

(formerly considered as macroarrays owing to their lower probe
density), spotted glass slide arrays that vary according to the
immobilised probe, that is, cDNA, oligonucleotides, or genomic
fragments, and according to substrate choice for surface modifica-
tion. With cDNA arrays, PCR products of cDNA clone representing
genes of interest are spotted systematically on nitrocellulose
filters or glass slides. The construction of spotted arrays is based
on the use of cDNA collections that can be focused on genes
expressed in a particular context. This array technique can be
performed by individual investigators, is easily customisable, and
does not require primary knowledge of cDNA sequence because
clones can be used before sequencing. Oligonucleotide arrays
offer greater specificity than cDNA arrays, because they can be
tailored to minimise chances of cross-hybridisation (Ramaswamy
et al, 2001).
Kohlmann et al (2005) demonstrated that preparation by

different operators and use of different sample-handling proce-
dures did not impair the robustness of diagnostic gene expression
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signatures. These results give further support to the application of
microarrays in a routine diagnostic setting (Kohlmann et al, 2005).
The advanced computational methods employed in array-based

classification – for example, support-vector machines – must be
calibrated with large sets of example gene expression profiles.
Cross-platform approaches, meaning generation of the training-set
on a remote microarray set-up, different from the one locally used
for analysing new samples, were demonstrated to be more
consistent and reproducible than previously assumed (Nilsson
et al, 2006), which further qualifies GEP to play a key role in
routine diagnostic settings.

DATA MINING, INTERPRETATION, AND STORAGE OF
MICROARRAY DATA

The enormous amount of data generated by microarray analyses is
a challenge even in small studies, easily summing up to several
gigabyte of raw expression data. After image processing, the first
analysis step is to produce a large number of quantified gene
expression values. Normalisation must be performed before
analysing the data in order to guarantee the appropriate
comparison of the measured gene expression levels between a set
of arrays.
Data mining, which is the discovery of non-obvious informa-

tion, mainly uses two different analyses: supervised analyses group
the patients according to predefined characteristics and thus allow
a correlation of array data with already known parameters such as
clinical parameters or outcome. Unsupervised analyses are used to
test the hypothesis whether specific characteristics, for example,
genetic aberrations, are also reflected at the level of gene
expression signatures without predefining groups of interest.
A multiclass statistical analysis approach is highly recom-

mended for acute leukaemias, as often multiple groups of
leukaemia subtypes have to be compared. Variants of common
statistical tests select gene expression levels that allow the
separation of these known groups. After detecting differential
gene expression, many different machine-learning algorithms are
applied to accurately classify samples into these known groups.
Ideally, class prediction is done by dividing gene expression data
into training and independent test sets.
Hierarchical clustering allows the organisation of data into

groups with similar signatures. It can be used for both reduction
of complexity of the matrix-like data and visualisation in a more
understandable way and predicts the categorisation of unknown
samples. This hierarchical structure provides potentially useful
information about the relationship between adjacent clusters.
Common crossing points in dendrograms represent similar patient
characteristics as well as similarities with regard to expression of
distinct genes in gene expression patterns. Thus, it not only can be
used for the visualisation of supervised analyses, but also is the
method-of-choice, when information with respect to the complete
repertoire of expected gene expression patterns is limited.
Principal component analysis (PCA) can be used to reduce the

dimensionality of array data and to visualise large data sets. The
multidimensional and matrix-like structured array data set is
reduced to a new set of variables, that is, principle components.
To allow the direct estimation of biologic relevance, an effective

annotation of microarray experiments is a major task that has been
approached by the MGED group (Microarray Gene Expression
Data Group, www.mged.org), which defined the standards for
annotation and publication of microarray experiments.

DIAGNOSIS OF ACUTE LEUKAEMIAS BASED ON GEP

The pivotal work of GEP in acute leukaemias was reported by
Golub et al (1999) who provided data on the applicability of
microarrays and new biostatistical analyses which led to a first

‘class prediction’: a limited pattern of 50 discriminatory genes was
able to separate 27 patients with ALL from 11 patients with AML.
Acute lymphoblastic leukaemia was further separated in T-lineage
and in B-lineage. Subsequently, in 36 out of the 38 cases the
molecular diagnosis of leukaemia was made correctly based on
this gene expression profile (Golub et al, 1999; Ramaswamy et al,
2001). A separate study confirmed this discrimination of AML and
ALL in 51 childhood leukaemias, and subdivided B-precursor-
from T-precursor-ALL (Moos et al, 2002). An important milestone
in microarray analysis with respect to class discovery and
prediction of class and outcome was the report on childhood
ALL by Yeoh et al (2002), who performed GEP subclassification
according to the cytogenetic, immunological, and molecular
subtypes, and were able to predict therapeutic outcome and to
show that specific genes in ALL at diagnosis appear to indicate
an increased risk of developing therapy-induced AML. Thus, the
prediction of response to therapy, of risk to relapse, and even of
risk of the development therapy-induced secondary malignancies
seem realistic goals for GEP.

AML

Recent studies were able to demonstrate that GEP shows
significant correlations with all the established diagnostic methods
applied so far in the acute leukaemis. As will be shown in further
detail, there are strong correlations with cytomorpholgy, immun-
phenotyping, cytogenetics, and molecular genetics.

MORPHOLOGY IN AML

The morphologic classification on the basis of the FAB and World
Health Organization (WHO) classifications still plays an important
role in acute leukaemia diagnostics owing to its fast and easy
applicability, and the possibility of guidance of other diagnostic
methods. Haferlach et al (2002) demonstrated that the prediction
of the FAB subtype of AML is possible, based solely on the
expression status of a limited set of one to three genes, which were
sufficient to separate M3, M3v, M4eo, and M6 from all other
subtypes with 100% accuracy. The prediction of morphology in
APL subtypes, M3 and M3 variant, was also accomplished,
although both show the t(15;17)/PML-RARA. This further confirms
the diversity of both morphologic subtypes not only on the basis of
morphologic aspects but also on the clinical outcome that seems
better in the M3 subtype than in the M3v subtype (Haferlach et al,
2005b).

IMMUNOPHENOTYPING IN AML

Until now, immunophenotyping by multiparameter flow cyto-
metry has been the standard method for diagnosis and classification
of acute leukaemias, especially ALL. In genes most relevant for
diagnosis and subclassification of AML and ALL, Kern et al (2003)
found congruent results between protein expression and corre-
sponding mRNA abundance in 75–100% of all the 39 analysed
AML cases. Thus, GEP correlates to protein expression data
revealed by multiparameter flow cytometry.

CYTOGENETICS IN AML

Cytogenetic aberrations are considered disease-defining in a large
number of AML types. They represent the most important
prognostic parameter, and have thus been incorporated into
the WHO classification of AML (Jaffe et al, 2001). Identification is
performed by chromosome banding analysis in combination with
FISH and RT–PCR.
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The reciprocal translocations t(8;21)/AML1-ETO, t(15;17)/PML-
RARA, and inv(16)/CBFB-MYH11 are characterised by distinct
morphologic phenotypes and by a favourable prognosis; reciprocal
translocations involving the MLL gene on 11q23 are, by contrast,
associated with poor prognosis and are frequent in therapy-related
AML (t-AML). These reciprocal translocations represent the first
hierarchy in the WHO classification of AML. Several groups were
able to characterise different and specific gene expression profiles
of these subgroups in adults (Schoch et al, 2002a, b; Debernardi
et al, 2003; Valk et al, 2004) and in children with AML (Ross et al,
2003). In an analysis of Kohlmann et al (2001), the expression
profiles of 35 genes were sufficient for predicting the class of all
samples of the above-mentioned three cytogenetic subtypes and
for separating them from normal bone marrow with 100%
accuracy. The application of a minimum set of 39 genes allowed
the definition of a fifth AML subgroup, being represented by the
11q23/MLL gene rearrangements (Kohlmann et al, 2003). Ross
et al (2003) confirmed the high prediction accuracy of 98% for
AML with t(11q23)/MLL rearrangements in childhood AML. In
addition, the authors could delineate APL with t(15;17)/PML-
RARA, core-binding factor (CBF)-leukaemias, and acute mega-
karyocytic leukaemia with a 100% prediction accuracy in 130
children with AML. In conclusion, GEP confirms the status of these
cytogenetic subtypes as distinct biologic entities provided in the
WHO classification.
Trisomy 8 represents a frequent karyotype abnormality in AML

as well as isolated change as in combination with other
abnormalities. With respect to this chromosomal abnormality in
AML, a complete separation with GEP from AML with normal
karyotype was not possible in the study of Virtaneva et al (2001),
who performed GEP on CD34þ cells on first-generation
oligonucleotide arrays (Affymetrix). This probably reflects that
trisomy 8 does not represent a disease-defining abnormality, but
occurs somewhat as a secondary aberration. Nonetheless, a gene
dosage effect was clearly demonstrated as many genes coded on
chromosome 8 were expressed at higher levels in AML with
trisomy 8.
Because of its very poor clinical course and its characteristic,

but not yet well understood biologic features, AML with a complex
aberrant karyotype (defined by X3 chromosomal abnormalities)
is an outstanding subtype. Schoch et al (2002a, b) compared this
subtype to AML with the reciprocal translocations t(8;21)/AML1-
ETO, inv(16)/CBFB-MYH11, MLL rearrangements, trisomy 8 as
sole abnormality, and normal karyotype in 150 cases (Schoch et al,
2002a, b). The discrimination of AML with complex aberrant
karyotype from every other subgroup was possible with 100%
accuracy in pairwise comparison. In addition there was a
significantly higher expression of RAD21 (1.7-fold), which is
involved in double-strand break repair and has antiapoptotic
funtion in AML. This confirms the separation of this AML subtype
from other cytogenetic subgroups.

MOLECULAR GENETICS IN AML

Forty-five per cent of all AML patients show a normal karyotype
and represent the largest subgroup. In recent years, the spectrum
of recurrent molecular mutations in AML has considerably
broadened. Around 75–80% cases of normal karyotype can now
be further classified by molecular methods. For example, the
heterogeneous mutations affect receptor tyrosine III kinases such
as the FLT3 kinase, partial tandem duplications within the MLL
gene with its many funtions in haematopoiesis, and NPM1
mutations, which affect a nucleocytoplasmic shuttle protein with
involvement in a tumour-suppressor-pathway. These molecular
markers are not randomly distributed, but are associated with
distinct cytogenetic subgroups and represent for some part
independent prognostic parameters.

The FLT3 length mutations (FLT3-LM) (or FLT3-ITD; internal
tandem duplication) represent a frequent molecular mutation in
AML found in 23% of all cases and in 40% of all normal karyotype,
and are highly associated with a negative prognosis. Schnittger
et al (2002a) compared the expression profile of AML with
FLT3-LM to normal bone marrow samples, AML with t(8;21)/
AML1-ETO, inv(16)/CBFB-MYH11, t(15;17)/PML-RARA, MLL-
translocations, trisomy 8, and complex aberrant karyotype.
The FLT3-LM group was discriminated from trisomy 8 cases
with 97% accuracy and from all other karyotypically aberrant
AML groups with 100% accuracy. However, it was not possible
to discriminate within AML with normal karyotype between
those with and without FLT3-LM. Neither was it possible
after including point mutations in the tyrosine kinase domain
(FLT3-TKD) cases into the FLT3 mutated group. Within the
distinct cytomorphologic FAB subgroups, however, a clear
separation between FLT3-LM positive and negative cases was
accomplished. The 20 top discriminative genes varied substantially
between the diverse FAB subtypes, although many are downstream
target genes of FLT3. These data suggest that the effects of a
mutationally activated FLT3 receptor may be different, depending
on a primary genetic alteration or the composition of different
genetic alterations in addition to the FLT3-LM. These additional
alterations may vary between the distinct morphological subtypes,
and thus cause a differentiation block at different levels in
haematopoiesis.
In a series of 110 AML patients with normal karyotype, Neben

et al (2005) were able to separate samples with FLT3-LM and
FLT3-TKD, with up to 100% accuracy. This did not apply to NRAS
mutations and NRAS wild-type samples, suggesting that only
FLT3-LM and FLT3-TKD are associated with a specific signature
(Neben et al, 2005). In a similar approach, Lacayo et al (2004) were
able to identify cases with FLT3-LM, FLT3-TKD, and those without
either mutation in a series of 81 childhood AML, although there
were significant overlaps between the respective groups (Lacayo
et al, 2004).
Partial tandem duplications of the MLL gene (MLL-PTD) occur

mainly in cytogenetically normal AML and are prognostically
unfavourable. It was not possible to define a specific expression
profile discriminating positive from negative cases (Schnittger
et al, 2002b). By contrast, Ross et al (2003) showed that MLL
chimeric fusion genes are characterised by a distinct expression
signature in childhood acute leukaemia irrespective of lineage
assignment. AML with MLL-PTD did not cluster with MLL
chimeric fusion gene cases (Ross et al, 2003). Thus, the pathogenic
mechanisms of partial duplications and of chimeric gene fusions
of the MLL gene seem to differ significantly. Further, these
results suggest that the MLL-PTD might represent an example
of a mutation that does not define a specific distinct biologic
entity but instead is involved in different subtypes of
leukaemias.
NPM1 mutations are also correlated with normal karyotype in

AML and predict favourable survival if detected as the only
molecular alteration. The predictability of NPM1 mutations on
the basis of GEP results is controversial: Verhaak et al (2005) did
not succeed in showing, in an unsupervised analysis, a clearcut
separation of NPM1 mutated from unmutated cases in more than
100 AML patients with normal karyotype. By contrast, the
unsupervised clustering analyses of Alcalay et al (2005) clearly
separated NPM1 mutated from NPM1 wild type regardless of the
presence of additional FLT3 mutations or nonmajor chromosomal
rearrangements. This is strongly supporting NPM1 mutations in
AML as a distinct biological entity (Alcalay et al, 2005). The
molecular signature of NPM1 mutated AML includes upregulation
of several genes putatively involved in the maintenance of a stem-
cell phenotype. Similarly, Wilson et al (2006) found NPM1
mutations highly correlated with a cluster that was characterised
by normal karyotype, genes involved in signalling and apoptosis,
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and an excellent prognosis in a study on 170 AML patients. In
addition, NPM1 mutations were associated with a cluster of
monocytic leukaemias.
Valk et al (2004) and Bullinger and Valk (2005) focused on AML

with normal karyotype with respect to other molecular markers
and prognosis. Valk et al (2004) used unsupervised cluster
analyses and identified up to 16 groups of AML based on separate
molecular signatures. The clustering was driven not only by the
presence of chromosomal lesions (e.g., t(8;21)/AML1-ETO,
t(15;17)/PML-RARA, inv(16)/CBFB-MYH11), but also by particular
genetic mutations (CEBPA, MLL-PTD, FLT3-LM) and abnormal
oncogene expression (EVI1). Thus, GEP seems suitable for the
characterization of the large subgroup of AML with normal
karyotype. Bullinger was able to separate distinct subgroups with
different prognosis within AML and normal karyotype on specific
GEPs.

ACUTE LYMPHOBLASTIC LEUKAEMIA

Following the results of Golub et al (1999) who had shown that
the definition of the lineage of acute leukaemias can be predicted
on the basis of a small number of genes, further subclassification
of ALL on the basis of GEP was performed showing that most
cytogenetic, molecular, and immunologic subgroups of ALL can be
linked to distinct gene signatures.

CYTOGENETICS AND MOLECULAR GENETICS IN ALL

Moos et al (2002) divided childhood leukaemia samples into
AML, B-lineage ALL, and T-lineage ALL, and were able to
separate low-risk ALL from high-risk ALL cases. They were able
to demonstrate that the TEL-AML1/t(12;21) fusion transcript
with its high frequency in childhood ALL and its favourable
prognosis represents a distinct gene signature in ALL (Moos et al,
2002).
MLL/11q23 rearrangements define a prognostically unfavour-

able subgroup in ALL. In the study of Armstrong et al (2002),
Armstrong et al MLL-positive ALL had a distinct GEP consistent
with an early haematopoietic progenitor cell expressing multi-
lineage markers and specific HOX genes. This entity could be
clearly separated from other ALL and AML cases (Armstrong et al,
2002).
In the above-mentioned study, Yeoh et al (2002) discriminated

327 childhood ALL cases in the following subtypes: T-ALL, E2A-
PBX1/t(i;19), BCR-ABL/t(9;22), TEL-AML1/t(12;21), MLL/11q23
rearrangements, and hyperdiploid karyotype. Kohlmann et al
(2003) could accurately discriminate in adult ALL precursor B-ALL
with t(9;22)/BCR-ABL and t(4;11)/MLL-AF4, B-ALL with t(8;14)/
IgH-c-MYC, respectively, and precursor T-ALL.
In contrast to most genetic ALL subtypes that could be

associated to distinct gene signatures, the BCR-ABL gene expres-
sion pattern in Philadelphia-positive ALL was identified as more
heterogeneous, similar to ALL without known molecular rearran-
gements in the study of Chiaretti et al (2005).
The major role of cytogenetic aberrations in the characterisation

of acute leukaemia entities has further been proven in an analysis
of ALL cases comparing the respective gene expression signatures
in children and adults (Kohlmann et al, 2004). Using genes
differentially expressed in childhood ALL subgroups, a classifica-
tion of corresponding adult ALL cases resulted in high prediction
accuracy compared with the study of Armstrong et al (2002). These
analyses not only emphasise the importance of genetics in
leukaemia across different age groups, but also prove the
reproducibility of microarray analyses in general, leading to
consistent data in separate analyses performed in different
laboratories on independent samples.

IMMUNOPHENOTYPING IN ALL

Kern et al (2003) analysed ALL cases combining immunologic and
cytogenetic classifications – Pro-B-ALL/t(4;11), c-ALL/Pre-B-ALL
with and without t(9;22), mature B-ALL/t(8;14), Pro-T-ALL, Pre-T-
ALL, and cortical T-ALL. The prediction accuracy for discriminat-
ing T-precursor from B-precursor ALL was 100%. Although PCA
of B-precursor ALL cases yielded distinct clusters for Pro-B-ALL,
c-ALL/Pre-B-ALL, and mature B-ALL, the precursor subtypes
c-ALL/Pre-B-ALL with t(9;22)/BCR-ABL were not completely
discriminated from those without t(9;22)/BCR-ABL. This is in
accordance with other analyses demonstrating the difficulty in
identifying a specific gene expression signature for B-precursor
ALL with t(9;22)/BCR-ABL (Yeoh et al, 2002; Chiaretti et al,
2005).
However, cortical T-ALL were found to show distinct clusters

from immature T-ALL cases; yet, there was a large overlap between
Pro-T-ALL and Pre-T-ALL and even biphenotypic acute leukae-
mias carrying both T-lymphatic and myeloid features (Kern et al,
2003). A further step towards better understanding of the
biological characteristics of T-ALL has been suggested by Ferrando
et al (2002) who identified distinct gene expression signatures and
related them to normal thymocyte development (Ferrando et al,
2002; Ferrando and Look, 2003). Accordingly, Pro-T and LYL1-
positive cases were distinguished from early cortical thymocyte
and HOX11-positive cases as well as from TAL1-positive late
cortical thymocyte cases.

GLOBAL APPROACHES IN THE DIAGNOSIS OF
LEUKAEMIAS USING MICROARRAYS

Several papers used GEP as a global approach for the diagnosis in
acute leukaemias (Yeoh et al, 2002; Ross et al, 2003; Haferlach
et al, 2005c). At present, an international study (MILE: microarray
innovations in leukaemia) is prospectively testing 4000 cases of
leukaemia and MDS in 11 centres within the European leukaemia
network (ELN, WP13) to define the role of GEP in the diagnostic
panel in leukaemia (Haferlach et al, 2006; Staal et al, 2006). Each
centre is trained on an identical microarray protocol and uses the
same equipment and kits for target preparation (Affymetrix HG-
U133 Plus 2.0). For the first time, an international multicentre
research study demonstrated a very high reproducibility of
microarray analyses performed at different centres with a
prediction accuracy was 95.6%. This lays the foundation for an
international clinical research initiative evaluating the application
of microarrays in the diagnosis and classification of haematologic
malignancies (Haferlach et al, 2005).
In the past years, several studies further investigated the

prediction of response to therapy and biologically directed class
discovery using GEP in leukaemia. However, this review is
intended to cover only the diagnostic possibilities of microarrays,
so these important aspects and contributions cannot be demon-
strated in detail.

CONCLUSION AND FUTURE DIRECTIONS

The introduction of microarray technology has been a major step
towards the comprehensive biologic characterisation of various
diseases and will clearly allow the identification of yet unknown
subentities and even new biologically defined entities. In
particular, it has become clear that distinct cytogenetically defined
subtypes in leukaemia have very specific underlying gene
expression profiles that can be used to identify these subtypes
based on microarray analyses with very high accuracy. The
problems concerning the prediction of some less well-defined
leukaemia subclasses might lead to the interpretation that these
might not represent real subgroups but rather a heterogeneous
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mixture of different leukaemias; however, GEP might provide a
tool to further delineate the respective subtypes.
It is expected that the routine application of microarrays will

significantly improve molecular diagnostics in leukaemia (Staudt,
2003) and will provide new insights into the pathogenic alterations
of malignant and non-malignant haematopoietic cells. In addition,
these comprehensive data are anticipated to allow the identifica-
tion of prognostically relevant markers and disease-specific
markers that can be applied for collaborative programmes to
monitor minimal residual disease (MRD). Of the highest clinical
relevance is the capability of microarray approaches to identify
pathogenically essential structures and alterations that can be
targeted by future drugs that, hopefully, will lead to an improved
management of these diseases.

The adequate diagnosis and subclassification of leukaemias
today is based on a combination of various methods including
cytomorphology, cytochemistry, multiparameter immuno-
phenotyping, cytogenetics, fluorescence in situ hybridisation,
and quantitative and nonquantitative molecular genetics. This
is costly, time-consuming, and requires skilled personnel in
centralised reference laboratories. Based on GEP, substantial
steps forward have already been made in the direction of
both optimising the diagnostic capabilities and reducing the
financial reserves. A significant number of today’s diagnostic
approaches can already be reproduced by GEP, and further
clinical trials are on the way to assert the validity of this
approach for diagnosis, prognostication, and individual treatment
decisions.
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