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The aim of the study is to examine the association between multilocus genotypes across 10 genes encoding proteins in the
antioxidant defence system and breast cancer. The 10 genes are SOD1, SOD2, GPX1, GPX4, GSR, CAT, TXN, TXN2, TXNRD1 and
TXNRD2. In all, 2271 cases and 2280 controls were used to examine gene–gene interactions between 52 single nucleotide
polymorphisms (SNPs) that are hypothesised to tag all common variants in the 10 genes. The statistical analysis is based on
three methods: unconditional logistic regression, multifactor dimensionality reduction and hierarchical cluster analysis. We examined
all two- and three-way combinations with unconditional logistic regression and multifactor dimensionality reduction, and used a global
approach with all SNPs in the hierarchical cluster analysis. Single-locus studies of an association of genetic variants in the antioxidant
defence genes and breast cancer have been contradictory and inconclusive. It is the first time, to our knowledge, the association
between multilocus genotypes across genes coding for antioxidant defence enzymes and breast cancer is investigated. We found no
evidence of an association with breast cancer with our multilocus approach. The search for two-way interactions gave experiment-
wise significance levels of P¼ 0.24 (TXN [t2715c] and TXNRD2 [g23524a]) and P¼ 0.58 (GSR [c39396t] and TXNRD2 [a442g]),
for the unconditional logistic regression and multifactor dimensionality reduction, respectively. The experiment-wise significance levels
for the three-way interactions were P¼ 0.94 (GPX4 [t2572c], TXN [t2715c] and TXNRD2 [g23524a]) and P¼ 0.29 (GSR [c39396t],
TXN [t2715c] and TXNRD2 [a442g]) for the unconditional logistic regression and multifactor dimensionality reduction, respectively.
In the hierarchical cluster analysis neither the average across four rounds with replacement of missing values at random (P¼ 0.12) nor
a fifth round with more balanced proportion of missing values between cases and controls (P¼ 0.17) was significant.
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Breast cancer is the most common malignancy affecting women
worldwide. It is estimated to constitute 18% of all female cancers
with more than one million incident cases worldwide every year
(McPherson et al, 2000). Several epidemiological studies have
shown that the risk of breast cancer is increased for women with a
family history of the disease (Pharoah et al, 1997; Collaborative
Group on Hormonal Factors in Breast Cancer, 2001; Dite et al,
2003), and twin studies have suggested that most of the excess
familial risk of breast cancer is due to inherited genetic factors
(Lichtenstein et al, 2000). However, the known breast cancer
susceptibility genes can account for only 20 –25% of the excess
familial risk (Easton, 1999). Low-penetrance alleles are hypothe-
sised to be fairly common and expected to contribute substantially
to breast cancer incidence (Pharoah et al, 2004).

The molecular mechanisms underlying the aetiology of breast
cancer are not fully understood. It is, however, generally thought
that the initiation of breast cancer occurs after an accumulation of
genetic alterations that result in either activation of oncogenes
and/or inactivation of tumour suppressor genes. These lead to

either cellular proliferation and/or abnormal programmed cell
death. Reactive oxygen species (ROS) can damage DNA in the form
of mutations, deletions, gene amplification and rearrangements.
These changes may cause initiation of programmed cell death, or
activation of several proto-oncogenes and/or inactivation of some
tumour suppressor genes. Reactive oxygen species can also cause
lipid peroxidation, protein alterations and/or damage to the
mitochondria (Hayes and McLellan 1999; Mates and Sanchez-
Jimenez 2000; Ray and Husain 2002). Reactive oxygen species
include the superoxide anion (O2�), hydrogen peroxide (H2O2)
and the hydroxyl radical (*OH). These are constantly generated
in the cell as a result of aerobic metabolism and can also be
generated as a result of inflammation, cellular stress and from the
metabolism of exogenous compounds. They serve important
cellular functions at normal concentrations. However, high and/
or sustained levels of ROS, referred to as oxidative stress, are
suggested to be associated with several diseases, including cancer
(Mates and Sanchez-Jimenez, 2000).

A defence system exists to combat ROS and to secure a redox-
balance where oxidants are kept at nontoxic levels. This defence
system is composed of both nonenzymatic and enzymatic
compounds. The nonenzymatic compounds include flavonoids,
gluthathione and antioxidant vitamins such as vitamin A, C and E
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(Mates and Sanchez-Jimenez, 2000). The enzymatic defence system
of ROS is called the antioxidant defence system (ADS). The major
factors in ADS are superoxide dismutases (SOD), catalase (CAT)
and gluthathione peroxidase (GPX) (Hayes and McLellan, 1999;
Mates and Sanchez-Jimenez, 2000; Ray and Husain, 2002; Town-
send et al, 2003) Antioxidant enzymes can inhibit the initiation of
carcinogenesis, affect tumour progression, and their expression is
reduced in many types of cancerous cells (Oberley and Oberley,
1997; Li et al, 2000; Mates and Sanchez-Jimenez, 2000).

The thioredoxin proteins (TRX1 and TRX2) also serve
important redox-catalytic functions in the cell. TRX1 is the
most studied and the function of TRX2 remains unknown.
TRX1 supplies reducing equivalents to thioredoxin peroxidases
and ribonucleotide reductase, regulates transcription factors and
enzyme activity, stimulates cell growth and is an inhibitor of
apoptosis. There is an increased level of TRX1 in many cancerous
cells and the protein is associated with aggressive tumour growth
(Powis et al, 2000; Powis and Montfort, 2001). Thioredoxin
reductase is the only known class of enzymes that can reduce TRX1
and TRX2. Only two confirmed forms of thioredoxin reductaser
exist, TRXR1 and TRXR2. TRXR1 and TRXR2 catalyse several
reductions of both exogenous and endogenous compounds and
they may play a role in the protection against cell growth and cell
transformation (Mustacich and Powis, 2000).

Most candidate-gene association studies investigating the
association between genetic variants in the genes coding enzymes
involved in antioxidant defence and breast cancer have only
studied a single SNP in one of the two genes, SOD2 and GPX1. The
results have been inconsistent and inconclusive. We have recently
investigated the single-locus effects of common variants in 10
genes (SOD1, SOD2, GPX1, GPX4, GSR, CAT, TXN, TXN2, TXNRD1
and TXNRD2) in a large breast cancer case–control study.
We used 52 SNPs to tag common variants in the genes and found
marginal evidence for association with polymorphisms in CAT
(g27168a) (P¼ 0.039), TXN (t2715c) (P¼ 0.007) and TXNRD2
(g23524a) (P¼ 0.040), results that were no longer significant after
correcting for multiple testing (Cebrian et al, 2006). However, the
absence of significant single-locus main effects does not exclude
the possibility of important interactions between the loci. Studies
of genetic epistasis in model organisms suggest that epistasis
makes a large contribution to the genetic regulation of complex
traits in various organisms, and in animal models there are several
examples of two-locus epistatic interactions that are not associated
with detectable single-locus effects (Carlborg and Haley, 2004).
Furthermore, in the context of human genetic association studies it
has been shown that it is possible to detect epistatic interactions in
the absence of single-locus main effects under several plausible
genetic models (Ritchie et al, 2001; Marchini et al, 2005). The
purpose of this study was to search for evidence for interactions
between common variants in genes involved in the antioxidant
defence system using three complementary approaches.

MATERIALS AND METHODS

Cases and controls

The selection and characteristics of cases and controls are
described in detail in Cebrian et al, 2006. In brief, we used
genotype data for 52 SNPs chosen to tag the known common
variation in 10 genes of interest (SOD1, SOD2, GPX1, GPX4, GSR,
CAT, TXN, TXN2, TXNRD1 and TXNRD2) from a case-control
study of 2271 cases and 2280 controls (all subjects are women). We
used data from the International HapMap Project and resequen-
cing data from the Environmental Genome Project to identify
tagging SNPs. We aimed to tag all variants with minor allele
frequency (MAF) 40.05 with a correlation of 0.8 or greater (see
Cebrian et al for details). A list of the SNPs assayed is given in

Table 1. All cases had been diagnosed with invasive breast cancer
and were ascertained through the East Anglian Cancer Registry as
part of an ongoing population-based study called SEARCH
(breast). Controls were randomly selected from the Norfolk arm
of the European Prospective Investigation of Cancer. The ethnic
background of both cases and controls is similar with 498%
white. Table 2 summarises characteristics of the cases. Cases are
younger than controls. The median ages were 51 and 65, and the
interquartile ranges were (45– 55) and (59–71), for cases and
controls, respectively. Among cases, 69% were incident cases. The
morphology and histopathological grade or clinical stage were
similar for incident and prevalent cases. The study is approved by
the Eastern Region Multicentre Research Ethics Committee, and all
patients gave written informed consent.

All samples were genotyped for selected tagSNPs using the ABI
PRISM 7900 sequence detection system or ‘Taqman’ (Applied
Biosystems). Cases and controls were arrayed together in 12
384-well plates and a 13th plate contained eight duplicate samples
from each of the 12 plates to ensure a good quality of genotyping.
The concordance was 499% for all SNPs. Failed genotypes were
not repeated. The rate for failed genotype did not exceed 8.3% for
any of the SNPs.

Statistical methods

We used three different approaches to look for epistasis, all of
which have been described previously: one parametric method –
unconditional logistic regression (Marchini et al, 2005); and
two non-parametric methods –multifactor dimensionality reduc-
tion (Ritchie et al, 2001) and hierarchical cluster analysis
(Hastie et al, 2001; Levenstein et al, 2003). Unconditional
logistic regression and multifactor dimensionality reduction were
programmed in Cþ þ . Stata version 8.2 was used to program the
hierarchical cluster analysis.

All two- and three-way SNP combinations were examined with
unconditional logistic regression and multifactor dimensionality
reduction, while a global approach with all SNPs was used in the
hierarchical cluster analysis. The number of possible d-way
combinations out of n tagSNPs is given by: n!/(d!*(n�d)!). Hence,
the number of possible two-way interactions (n¼ 52, d¼ 2) is 1326
and the number of three-way interactions (n¼ 52, d¼ 3) is 22 100.

For all three analyses methods the problems of multiple testing
and calculation of an experiment-wise significance are addressed
by permutation testing. The most significant test statistic derived
from the original data set is compared to an empirical null
distribution of the test statistic, which is created by permuting or
shuffling the labels of cases and controls. The assumption is that
the shuffling of the case–control label will break any possible
association between genotype and the disease while maintaining
the correlation structure of the genetic markers. The proportion of
permutation samples in which the test statistic is at least as
significant as the test statistic in the original data set is the
significance level. The number of permutations was chosen
according to the required accuracy of the evidence for association
with breast cancer (minimum of 100) and computational intensity.

The logistic regression method (ULR) aims to find combinations
of SNPs that increase the risk of developing breast cancer
compared to no effect of the SNPs. For each combination of SNPs
a likelihood ratio test is conducted where a saturated logistic
model (with all main and interaction effects) is compared to the
null model (with no main or interaction effects). The null model
has one degree of freedom and a saturated model for n number of
loci has 3n degrees of freedom. The algorithm used reduces the
number of degrees of freedom by m (compared to the theoretical
maximum) in a contingency table when m cells are empty in both
cases and controls. The likelihood ratio test is calculated as:
2 ðlog Likfull � log LiknullÞ � w2

df and the test statistics are assumed
to follow a w2 distribution with 8 degrees of freedom (df) for the
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Table 1 Details of SNPs used in the analyses

Gene Label db SNPa MAFb Location Codon number Amino acidc

CAT CAT-01 rs1001179 0.22 Regulatory 0
CAT CAT-03 rs769217 0.22 Silent 389 D4D
CAT CAT-04 rs511895 0.42 Intronic 0
CAT CAT-05 rs7104301 0.26 Regulatory 0
CAT CAT-08 rs1049982 0.32 5’UTRd 0
GPX1 GPx1-01 rs3448 0.25 Intergenic
GPX4 GPx4-02 rs713041 0.46 3’UTR 0
GPX4 GPx4-04 rs4807542 0.16 Silent 12 P4P
GPX4 GPX4-06 rs757229 0.46 Intergenic 0
GSR GSR-01 rs1002149 0.16 Regulatory 0
GSR GSR-07 rs4628224 0.19 Intronic 0
GSR GSR-12 rs8190924 0.05 Intronic 0
GSR GSR-14 rs2978663 0.37 Intronic 0
GSR GSR-16 rs8191009 0.20 Intronic 0
GSR GSR-18 rs3926402 0.39 Intronic 0
GSR GSR-19 rs2911678 0.22 Intronic 0
SOD1 SOD1-01 rs4998557 0.12 Intronic 0
SOD1 SOD1-02 rs202445 0.17 Regulatory 0
SOD1 SOD1-03 rs2070424 0.07 Intronic
SOD2 SOD2-02 rs1799725 0.49 Missense 16 V4A
SOD2 SOD2-05 rs2842958 0.21 Intronic 0
TXN TRX1-02 rs1410051 0.24 Intronic 0
TXN TRX1-03 rs4135168 0.26 Intronic 0
TXN TRX1-05 rs4135192 0.33 Intronic 0
TXN TRX1-06 rs2418076 0.27 Intronic 0
TXN TRX1-07 rs4135208 0.33 Intronic 0
TXN TRX1-08 rs4135211 0.07 Intronic 0
TXN TRX1-09 rs4135225 0.33 Intronic 0
TXN TRX1-10 rs2776 0.50 3’UTR 0
TXN TRX1-11 rs2301241 0.41 5’UTR 0
TXN TRX1-12 rs4135165 0.09 Intronic 0
TXN TRX1-13 rs4135172 0.08 Intronic 0
TXN TRX1-14 rs4135179 0.23 Intronic 0
TXN TRX1-15 rs4135215 0.16 Intronic 0
TXN TRX1-16 rs4135221 0.13 Intronic 0
TXN2 TRX2-01 rs2281082 0.19 Intronic 0
TXN2 TRX2-03 rs8139906 0.18 Intronic 0
TXN2 TRX2-04 rs8140110 0.09 Intronic 0
TXNRD1 TRXR1-01 rs4964778 0.18 Intronic 0
TXNRD1 TRXR1-02 rs4964779 0.12 Intronic 0
TXNRD1 TRXR1-03 rs4564401 0.07 Intronic 0
TXNRD1 TRXR1-04 rs10861201 0.23 Intronic 0
TXNRD2 TRXR2-01 rs2073752 0.28 Missense 370 T4I
TXNRD2 TRXR2-03 rs5748469 0.33 Missense 66 S4A
TXNRD2 TRXR2-04 rs756661 0.47 Intronic 0
TXNRD2 TRXR2-05 rs2020917 0.28 Intronic 0
TXNRD2 TRXR2-07 rs740603 0.46 Intergenic 0
TXNRD2 TRXR2-08 rs4485648 0.20 Intronic 0
TXNRD2 TRXR2-09 rs732262 0.09 Intronic 0
TXNRD2 TRXR2-10 rs1548357 0.27 Intronic 0
TXNRD2 TRXR2-11 rs2073750 0.21 Intronic 0
TXNRD2 TRXR2-12 rs3788306 0.30 Intronic 0

adb: rs number for each SNP which uniquely identifies it. bMAF: minor allele frequency. cLabels for amino acids: aspartic acid (D); proline (P); valine (V); alanine (A); threonine (T);
isoleucine (I); serine (S). dUTR: untranslated region.

Table 2 Characteristics of cases

Morphology Stage

Cases Age (Range) (IQR) Ductal Lobular Other I/II III/IV

Incident n¼ 1558 52 (26–69) (47–58) 1075 (71%) 246 (16%) 186 (12%) 1431 (95%) 72 (5%)
Prevalent n¼ 743 48 (25–54) (43–51) 540 (73%) 107 (14%) 94 (13%) 668 (95%) 38 (5%)
All n¼ 2271 51 (25–69) (45–55) 1615 (72%) 353 (16%) 280 (12%) 2099 (95%) 110 (5%)

Characteristics of cases. Age: average age; range: (lowest –highest); IQR: interquartile range (the mid 50% of the distribution). For the 2280 controls the average age, age range
and IQR were: 65 (44–81) (59–71).
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two-locus interaction and 26 df for the three-locus interactions.
The different combinations of SNPs are indirectly compared
through their likelihood ratio test with the null model. The most
significant P-value from the likelihood ratio tests is used in the
permutation test with 1000 permutations for both the two-way and
three-way models.

The multifactor dimensionality reduction (MDR) method was
introduced by Ritchie et al, in 2001. The aim of MDR is to reduce
the number of dimensions in the analysis to one by using a model
for cases and controls that classifies multilocus genotypes into
either a high- or low-risk group. This grouping depends on the
ratio of cases to controls for each genotype (the version of the
MDR method used in the analysis assumes an equal number of
cases and controls, which is not required in later versions of the
method). If the ratio is X1, the group is a high-risk group and low-
risk group if the ratio is o1. For model validation both split-
sample and cross-validation is used. The data is divided into 10
equal-sized data sets. In all, 9/10 of the data, called the training set,
is used to develop a model and the remaining 1/10 of the data,
called the test set, is considered an independent data set and
used to test the internal validity of the model by predicting the
grouping of genotypes into high- and low-risk groups. Cross-
validation is applied to protect against chance division of the data
set from the split-sample and is used to calculate the average
internal prediction error. Hypothesis testing was based on the
average prediction error, which is used in the permutation testing
with 100 permutations.

We used agglomerative or bottom-up hierarchical cluster
analysis (HCA). The purpose of HCA is to categorise individuals
into groups (clusters) according to the similarity of their genotype
over all 52 loci independent of case– control status. Within
a cluster individuals are more similar to each other than to
an individual outside the cluster. The algorithm builds up a
hierarchical structure of clusters with one individual in each
cluster at the lowest level and one cluster containing all individuals
at the highest level. The similarity-measure applied was based on
the number of SNPs for which individuals have the same genotype.
Complete linkage agglomerative clustering was used to build
up groups, where the intergroup dissimilarity is defined as the
dissimilarity between the most dissimilar pair of individuals with
one person from each cluster. The dissimilarity within a cluster is
monotonically increasing as more and more clusters are merged.
We then used several levels of the hierarchy to generate between 2
and 10 clusters. Association of group membership with case–
control status was assessed using standard w2 tests. Each test
statistic is calculated from a 2� k contingency table, with cases
and controls as rows and k columns, which represent the number
of clusters at each step. k is thus between 2 and 10. The smallest of
these P-values is chosen to calculate the experiment-wise
significance by permutation testing with 10 000 permutations.

The proportion of missing values was 6.2% for cases and 1.8 %
for controls. It is unlikely that missing values are related to
genotype, but the problem of missing data was handled differently
for each of the analytic methods in order to minimise the chance of
bias. For the logistic regression, samples with missing genotypes
were excluded. This will not result in bias assuming missing values
are not related to genotype. However, the multifactor dimension-
ality reduction will tend to give more significant results if the
distribution of the missing values is differential between cases
and controls, as it assumes one case for every control. Therefore,
to balance the proportion of missing values between cases and
controls for this method, any subject was excluded if they had
more than 17 missing genotypes. This resulted in the exclusion of
316 subjects from the data (26 controls and 290 cases) and left
0.91% missing values for cases and 1.4% for controls. The
threshold of missing values was chosen to minimise the number
of excluded subjects and to find a balanced division of missing
values between cases and controls. As all genotypes were used for

the hierarchical cluster analysis all subjects were included, but the
missing values were replaced at random based on the distribution
of genotypes in the nonmissing data.

RESULTS

Tables 3 and 4 outline the 10 SNP combinations with smallest
P-values for the two- and three-way interactions identified by
logistic regression. The most significant combinations of loci
were, for the two-way combination, TRX1-14 and TRXR2-04 (naı̈ve
P¼ 0.00026) and, for the three-way combination, GPX4-02,
TRX1-14 and TRXR2-04 (naı̈ve P¼ 0.00021). Neither of these
was significant in the permutation analysis (P¼ 0.24 and P¼ 0.94,
respectively). Table 5 outlines the multilocus genotype frequencies
and effect sizes for the most significant SNP combination
identified with logistic regression (TRX1-14 and TRXR2-04). The
SNPs TRX1-14 and TRXR2-04 are both intronic and unlikely to
have a direct functional effect. GPX4-02 is located in the 30

untranslated region and is a potential regulatory variant that
affects gene expression.

Tables 6 and 7 illustrate the 10 combinations with lowest
classification error for the whole data set for the two- and three-
way interactions, respectively, for the multifactor dimensionality
reduction. The combinations with lowest average prediction error
were for the two-way interaction GSR-16 and TRXR2-05; and
the three-way interaction GSR-16, TRX1-14 and TRXR2-05. The
experiment-wise significance estimated by permutation testing
showed that the average prediction errors were not better than
expected by chance for the best of either the two-way (P¼ 0.58) or
the three-way combinations (P¼ 0.29). Table 8 outlines the
multilocus genotype frequencies and effect sizes for the most

Table 4 Top 10 three-way interactions from logistic regression

Loci df LRT P-value

GPX4-02, TRX1-14 and TRXR2-04 26 29.64 0.00021
TRX1-14, TRX1-15 and TRXR2-04 25 28.68 0.00024
CAT-08, GSR-18 and SOD1-02 26 29.36 0.00025
TRX1-14, TRXR2-01 and TRXR2-04 26 29.10 0.00029
GSR-12, TRX1-14 and TRXR2-04 22 25.96 0.00032
SOD1-02,TRXR2-04 and TRXR2-08 26 28.52 0.00042
GPX1-01, GPX4-06 and TRXR2-03 26 28.51 0.00042
TRX1-14, TRX1-16 and TRXR2-10 23 26.29 0.00042
TRX1-14, TRXR2-04 and TRXR2-09 19 23.08 0.00047
GSR-16, SOD2-02 and TRXR2-05 26 28.04 0.00055

The 10 three-way combinations with lowest P-value from the logistic regression (in
descending order with the most significant first). The log-likelihood ratio statistic
(LRT) is shown with degrees of freedom (df) and naı̈ve P-value.

Table 3 Top 10 two-way interactions from logistic regression

Loci df LRT P-value

TRX1-14 and TRXR2-04 8 14.77 0.00026
GPX4-02 and TRX1-14 8 14.20 0.00040
TRX1-06 and TRX1-14 8 11.96 0.0024
SOD1-01 and TRX1-06 8 11.71 0.0029
GPX4-06 and TRX1-14 8 10.34 0.0081
CAT-03 and SOD1-01 7 9.456 0.0085
CAT-01 and CAT-04 7 9.448 0.0085
GPX4-02 and TRXR2-04 8 10.10 0.0097
SOD1-01 and TRX1-14 8 9.868 0.011
GPX4-02 and TRX1-06 8 9.854 0.012

The ten two-way combinations with lowest P-value from the logistic regression (in
descending order with the most significant first). The log-likelihood ratio statistic
(LRT) is shown with degrees of freedom (df) and naı̈ve P-value.
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significant SNP combination identified with multifactor dimen-
sionality reduction (GSR-16 and TRXR2-05). The SNPs GSR-16,
TRXR2-05 and TRX1-14 are all intronic.

The method of hierarchical cluster analysis was very unstable as
results varied a lot with different random number seeds used to
replace the missing values at random. Thus, four different random
number seeds were used and the average significance level was
P¼ 0.12. In addition, a fifth round of the hierarchical cluster
analysis was conducted where subjects were ignored if they had
more than 17 missing values. This way the proportion of missing

values was more balanced between cases and controls. The result
from the fifth round gave a P-value of 0.17.

DISCUSSION

We have found no evidence that interactions between common
variants in 10 genes involved in the antioxidant defence system
are associated with breast cancer risk, based on data from over
2000 cases and 2000 controls. Despite the comparatively large
sample size, statistical power of this study may be limited. For
specific two- and three-way combinations scarcity of data in
individual cells in the contingency table may render risk estimates
unreliable. This problem is compounded by the issue of multiple
testing as there are 1326 possible two-way and 22 100 possible
three-way combinations, and so only very highly significant
interactions would remain significant after allowing for multiple
testing by permutation analysis. Indeed, the naı̈ve P-value for
most significant two-way interaction in the logistic regression
analysis of 0.00026 became nonsignificant (P¼ 0.24) after permu-
tation testing. We estimated that a naı̈ve P-value of 0.000044
would be needed for significance at the 5% level for the two-way
logistic regression. It would be difficult to determine the exact
power of the methods used because this would depend on the
underlying genetic model, which is unknown. However, to give
some feel for the sort of effects that would be detectable Table 9
illustrates the multilocus genotype frequencies and effect sizes for
a permuted data set that was significant at the 5% threshold for the
two-way logistic regression. Furthermore, Marchini et al (2005)
simulated data for 300 000 loci in a similar sized case– control
study to ours (2000/2000) under plausible scenarios for epistatic
interaction and showed that the logistic regression method
has reasonable power to detect gene–gene interactions even in
the absence of main effects and with conservative correction for
multiple testing.

Possible problems of confounding and bias must also be
considered. However, most plausible biases would be expected to
be away from the null and result in false positive associations. For
example, stratification due to hidden population substructure is
often cited as a potential problem in genetic association studies,
but is unlikely to have been important in this analysis –we
have previously looked for association between unlinked markers
in the controls and found no evidence for population stratifica-
tion (Goode et al, 2005). Similarly, differential measurement of
genotype between cases and controls is unlikely to be important as,
if present, this would be expected to result in a false positive
result. On the other hand, nondifferential genotyping errors
would have diluted a possible association. Given that geno-
typing assays are only accepted if there is 100% concordance

Table 5 Genotype frequencies and effect sizes for most significant two-way interaction with logistic regression

TRXR2-04

0 1 2 Total

TRX1-14
0 362/441 700/622 291/292 1353/1355

1 (N/A) 0.73 (0.61–0.87) 0.82 (0.67–1.02) 1 (N/A)
1 226/196 388/365 178/121 792/682

0.71 (0.56–0.90) 0.77 (0.63–0.94) 0.56 (0.43–0.73) 0.86 (0.76–0.98)
2 37/37 57/66 19/34 113/137

0.82 (0.51–1.32) 0.95 (0.65–1.39) 1.47 (0.82–2.62) 1.21 (0.92–1.58)
Total

625/674 1145/1053 488/447
1 (N/A) 0.85 (0.74–0.98) 0.85 (0.72–1.01)

Genotype frequencies and effect sizes for most significant two-way interaction with logistic regression. Loci: TRX1-14 and TRXR2-04. At each locus: 0¼ common homozygote,
1¼ heterozygote and 2¼ rare homozygote. In each cell: controls/cases; odds ratio (95% confidence interval). The log-likelihood ratio statistic is 14.77 (P¼ 0.00026, 8 df).

Table 6 Top 10 two-way interactions from multifactor dimensionality
reduction

Loci Classification error

GSR-16 and TRXR2-05 0.4566
TRX1-14 and TRXR2-04 0.4571
GPX1-01 and TRX1-14 0.4571
TRX1-14 and TRXR2-05 0.4577
TRXR2-01 and TRXR2-03 0.4587
TRX1-14 and TRXR1-03 0.4588
GPX4-04 and TRXR2-01 0.4590
GPX4-04 and TRX1-14 0.4590
TRX1-12 and TRXR2-05 0.4593
TRX1-14 and TRXR2-10 0.4594

The 10 two-way combinations with the lowest classification error for the whole data
set are illustrated. The combinations are shown in descending order, that is, the
combination with lowest classification error is first.

Table 7 Top 10 three-way interactions from multifactor dimensionality
reduction

Loci Classification error

GSR-16, TRX1-14 and TRXR2-05 0.4459
GPX4-02, TRX1-14 and TRXR2-04 0.4465
GSR-16, TRX1-06 and TRXR2-05 0.4484
SOD2-05, TRX1-11 and TRXR2-03 0.4486
TRX1-11, TRXR2-03 and TRXR2-12 0.4486
GPX4-04, TRXR2-01 and TRXR2-03 0.4488
GPX1-01, GSR-16 and TRXR2-05 0.4489
TRX1-11, TRXR2-01 and TRXR2-10 0.4489
TRXR2-01, TRXR2-03 and TRXR2-10 0.4490
CAT-03, TRX1-09 and TRXR2-03 0.4491

The 10 three-way combinations with the lowest classification error for the whole
data set are illustrated. The combinations are shown in descending order, that is, the
combination with lowest classification error is first.
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between duplicate samples, the number of genotyping errors is
expected to be trivial.

Missing data is more likely to have introduced bias as there were
more missing values in cases than in controls. However, unless the
missing genotypes were not random with respect to genotype
category and related to case–control status, missing data will not
bias the ULR. The loss of data will result in a small loss of
statistical power. Missing data are more likely to be important for
MDR, which relies on a balanced case–control design, but as the
result was negative, it seems unlikely that the adjustment used for
missing values was inadequate. For the HCA the distribution of
values in the nonmissing data was used to replace missing values at
random, but the analysis was very sensitive to the different random
number seeds. The estimate in the fifth round of HCA with
balanced proportion of missing values between cases and controls
might therefore be more appropriate.

The lack of interaction between the SNPs analysed in this study
does not exclude the presence of other important interacting
variants in the 10 genes. A comprehensive SNP tagging approach
was used in an attempt to capture all the known common variation
in the genes under study, but this process is imperfect. Common
variants in the genes SOD2, CAT, GPX1, GPX4, GSR and TXN were
identified by resequencing in a modest sample of individuals (90 in
total and 62 non-African Americans). Consequently, some
common SNPs in these genes will have been missed by chance.
Nevertheless, the high SNP density in the genes with 0.21– 0.73 kbp
per SNP is very likely to be sufficient to tag any SNP missed by
resequencing. Resequencing data were not available for the genes

SOD1, TXN2, TXNRD1 and TXNRD2 and data from the HapMap
project were used to select tagSNPs. As coverage of the HapMap
data for these genes was at a SNP density of 2 –4 kbp per SNP it is
anticipated that any further SNPs will be well tagged. It is also
possible that the populations used for selecting tagSNPs–mixed
American ethnicities for resequencing data after exclusion of
African Americans and CEPH trios for HapMap–do not ade-
quately represent the population from which our study has been
drawn. However, the haplotype frequencies estimated in our
controls are similar to those estimated using both EGP and
HapMap data. Finally, the tagging approach used is unlikely to
adequately capture rare variants (minor allele frequency o0.05),
and so the possibility that there are important rare susceptibility
variants acting together cannot be excluded.

It is also possible that common variants in these genes interact
with variants in genes in other relevant biological pathways. For
example, studies of modular epistasis in yeast metabolism suggest
that epistasis extend beyond functional modules of genes and
frequently involves interactions between, rather than within,
functional modules (Segre et al, 2005).

We have shown that it is straightforward to implement several
methods to search for gene–gene interactions in a moderately
large data set, but the question of which method is superior
can only be answered when real gene–gene interactions are
identified in human disease. Our analysis was restricted to the
study of variation within a single cellular pathway, but analysis of
common variants across the whole genome may prove to be
more fruitful. It is likely that data from several genome-wide

Table 8 Genotype frequencies and effect sizes for most significant two-way interaction with multifactor dimensionality reduction

TRXR2-05

0 1 2 Total

GSR-16
0 748/701 596/505 108/125 1452/1331

1 (N/A) 0.90 (0.77–1.06) 1.24 (0.94–1.63) 1 (N/A)
1 378/363 274/302 67/66 719/731

1.02 (0.86–1.22) 1.18 (0.97–1.43) 1.05 (0.74–1.50) 1.11 (0.98–1.26)
2 55/32 24/39 8/5 87/76

0.62 (0.40–0.97) 1.73 (1.03–2.91) 0.67 (0.22–2.05) 0.95 (0.69–1.32)
Total

1181/1096 894/846 183/196
1 (N/A) 1.02 (0.90–1.16) 1.15 (0.93–1.43)

Genotype frequencies and effect sizes for most significant two-way interaction with multifactor dimensionality reduction. Loci: GSR-16 and TRXT2-05. At each locus:
0¼ common homozygote, 1¼ heterozygote and 2¼ rare homozygote. In each cell: Controls/cases; odds ratio (95% CI).

Table 9 Genotype frequencies and effect sizes for a two-way interaction from a permuted data set that was significant at the 5% threshold with logistic
regression

B

0 1 2 Total

A
0 373/355 660/762 359/344 1392/1461

1 (N/A) 1.21 (1.01–1.45) 1.01 (0.82–1.24) 1 (N/A)
1 183/102 294/291 148/135 625/528

0.59 (0.44–0.78) 1.04 (0.84–1.29) 0.96 (0.73–1.26) 0.80 (0.70–0.92)
2 14/12 27/37 15/17 56/66

0.90 (0.41–1.97) 1.44 (0.86–2.41) 1.19 (0.59–2.42) 1.12 (0.78–1.62)
Total

570/469 981/1090 522/496
1 (N/A) 1.35 (1.16–1.57) 1.15 (0.97–1.37)

Genotype frequencies and effect sizes for a two-way interaction from a permuted data set that was significant at the 5% threshold with logistic regression. Loci: A and B. At each
locus: 0¼ common homozygote, 1¼ heterozygote and 2¼ rare homozygote. In each cell: Controls/cases; odds ratio (95 % confidence interval). The naı̈ve P-value is 0.000044 (8
df) and the log-likelihood ratio statistic is 33.81. The data set was picked out based on the naı̈ve P-value, which is the threshold naı̈ve P-value for the 5% tail of the empirical null
distribution.
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association studies will be available for breast cancer, as well as
other phenotypes, and the use of multiple analytic methods will
be appropriate for comparative purposes. Advances in the field

of systems biology may help to reduce the genomic search space
in both candidate gene and genome-wide association studies
(Irizarry et al, 2005).
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