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Transforming growth factor-beta (TGFb)1 is thought to be implicated in breast cancer progression. However, data about the
influence of TGFb1 on breast cancer development are conflicting. To clarify the clinical relevance of TGFb1, TGFb1 protein level has
been measured by enzyme-immoassay in 193 breast tumour samples. We found that 94.3% of patients expressed TGFb1 with a
range of 0–684 pgmg�1 protein. In the overall population, an increase of tumoral TGFb1 was observed in premenopausal patients
when compared to postmenopausal subgroup (P¼ 0.0006). When patients were subdivided according to nodal status, TGFb1 was
correlated to type-1 plasminogen activator inhibitor in the node-negative subgroup (P¼ 0.040). Multivariate analysis revealed that,
after lymph node status (P¼ 0.0002) and urokinase-type plasminogen activator (P¼ 0.004), TGFb1 was an independent prognostic
marker for DFS (P¼ 0.005) in the overall population. In the node-negative population, TGFb1 was the prominent prognostic factor
(P¼ 0.010). In the same population, Kaplan–Meier curves demonstrated that high TGFb1 level was correlated with a shorter disease-
free survival (P¼ 0.020). These data suggest that the measurement of tumoral TGFb1 protein level, especially for node-negative
patients, might help to identify a high-risk population early in tumour progression.
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Transforming growth factor-beta (TGFb) belongs to a superfamily
of secreted polypeptides, which regulate cell proliferation,
differentiation, motility and apoptosis in a variety of different
cell types (Roberts and Sporn, 1990). Three TGFb isoforms 1–3
are ubiquitously expressed and have been detected in humans
and other mammals. TGFb1 have been associated with both
normal mammary gland development and breast carcinogenesis
(Wakefield et al, 2000). Thus, in vivo, TGFb1 appears to regulate
normal ductal and alveolar development in the mammary gland
(Jhappan et al, 1993). Moreover, TGFb1 probably mediates the
massive cell death and restructuring that takes place during
postlactational involution of the mammary gland (Strange et al,
1992). Besides these physiological functions, there is considerable
evidence that TGFb1 is implicated in several aspects of breast
cancer onset and progression (Wakefield et al, 2000). A commonly
held view is that TGFb1 prohibits tumour cell proliferation
because TGFb1 is a potent growth inhibitor for nearly all epithelia
in vitro (Roberts and Sporn, 1990). Moreover, TGFb1 can induce

apoptosis, a process associated with tumour suppression,
promote replicative senescence and exhibit negative regulation of
angiogenesis (Alexander and Moses, 1995; Schwarte-Waldhoff
et al, 2000; Perlman et al, 2001). Consistent with a tumour-
suppressor role, transgenic mouse models have bring evidence that
TGFb1 is able to protect against mammary tumour development
in vivo, because either the suppression of TGFb1 or the inacti-
vation of the TGFb signalling pathway results in loss of tumour
prohibition and promotes carcinogenesis (Pierce et al, 1995;
Bottinger et al, 1997). On the other hand, virally transformed
tumorigenic mammary epithelial cell lines as well as most of
the cell lines derived from invasive human breast carcinomas
are resistant to the antiproliferative effects of TGFb1 in vitro
and do not respond to treatment with TGFb1 in vivo. In a number
of cases, this is attributable to inhibiting mutations in either
TGFb type I or II receptors (Chen et al, 1998; Gobbi et al, 2000)
or deregulation of the downstream signalling cascade (Xie
et al, 2002).
In addition, there is increasing evidence that after cells lose their

sensitivity to TGFb1-mediated growth inhibition, autocrine TGFb
signalling may promote tumorigenesis. Consistent with a pro-
oncogenic role for TGFb1 in late-stage cancer, elevated levels of
TGFb1 are often observed in advanced carcinomas, and have been
correlated with increased tumour invasiveness and disease
progression in a variety of tumours such as malignant melanoma
(Moretti et al, 1999) and colonic (Tsushima et al, 1996), ovarian
(Bristow et al, 1999), and prostatic (Shariat et al, 2004) cancers.
This suggests that secreting higher levels of TGFb1 may provide an
advantage to tumour cells. Pro-oncogenic effects include direct
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effects of TGFb1 on tumoral cells, such as the stimulation of
invasion and motility (Oft et al, 1996). Tumour TGFb1 may also
indirectly promote cancer progression by promoting tumour
vascularisation (Oh et al, 2000) and inhibiting mechanisms of
immune surveillance (Letterio and Roberts, 1998).
In breast cancer, a number of studies have been engaged to

evaluate the potential prognostic value of TGFb1. In most of these
studies, tumoral TGFb1 expression has been examined either
by immuno-histochemical assay or by Northern blot analysis.
Although several groups demonstrated that increased TGFb1 was
associated with more aggressive tumour behavior and poorer
survival (Gorsch et al, 1992; Dalal et al, 1993; Walker et al, 1994),
other authors reported the absence of correlation between disease
progression and TGFb1 immunostaining or mRNA level (Dublin
et al, 1993; Ghellal et al, 2000). Furthermore, a few number of
studies demonstrated that TGFb1 was related to favorable outcome
for patients with breast cancers (Murray et al, 1993; Kesari et al,
1999).
To date, quantitative determination of TGFb1 protein level has

been performed exclusively in plasma of breast cancer patients.
While some studies failed to reveal any change in plasma TGFb
value in patients with breast cancer (Wakefield et al, 1995;
Lebrecht et al, 2004), other reports demonstrate that patients with
more advanced tumours have higher serum levels of TGFb1 (Kong
et al, 1995; Ivanovic et al, 2003), suggesting that serum TGFb1
may reflect the severity of invasive breast cancer. However, these
late studies have been performed on a small cohort of patients
and potential prognostic value of TGFb1 has not been clearly
determined. To clarify the relevance of TGFb1 as a prognostic
marker in human breast cancer, we quantified TGFb1 protein level
in 193 breast tissue specimens. The association between TGFb1
and the usual histological and biological parameters previously
validated was examined. The prognostic relevance of TGFb1 for
disease-free (DFS) and overall survival (OS) was studied for all
patients by Cox multivariable analysis including the traditional
prognostic markers.

MATERIALS AND METHODS

Patient population

This study involved 193 patients diagnosed and treated in
Assistance Publique of Marseille (France) between early 1987
and late 1992. These patients were previously included in a
retrospective multicenter study (Romain et al, 2000). Patients were
selected according to the following criteria: (1) primary unilateral
breast tumour; (2) previously untreated, no evidence of metastatic
disease or any other malignancy at the time of diagnosis; (3) T1T2,
N0N1 status according to UICC criteria; (4) o75 years old; and (5)
surgery as the first treatment.
The patients were 29–74 years old at diagnosis, with a median

age of 57 years. In total, 37.3% of patients were premenopausal.
A total of 83 patients presented a tumour size p2 cm; 48.7% of
patients were node-negative (N�), 29.6% presented one to three
axillary invaded nodes (Nþ ) and 21.7% had more than three
invaded nodes (Nþ þ ). Among the 193 tumours graded
according to Scarff, Bloom and Richardson classification (SBR),
25.5% were classified grade I, 52.8% were grade II, and 21.7% were
grade III. Ductal carcinomas were diagnosed in 75% of patients,
and invasive lobular carcinomas in 25% of patients.
The primary treatment was tumorectomy or quadrantectomy

(92%) or modified radical mastectomy (8%) with axillary
dissection, followed by radiotherapy in 98% of cases. Among the
121 postmenopausal patients, 21 received no adjuvant treatment
whereas 33 received hormone therapy, 33 were treated with
chemotherapy, and 34 received both treatments. Among the 72
premenopausal patients, 36 received no adjuvant therapy and 36

were treated as follow: 10 with chemotherapy, 22 with hormone
therapy and four patients with both treatments. The median
follow-up was 94 months (range, 1–140). At the cutoff date of this
study, 16 local recurrences, 42 metastasis and 28 deaths had been
recorded. Tumour samples and clinical informations were
obtained under Institutional Clinical Board approval.

Preparation of tumour tissue extracts and ER and PR
assays

Tumour tissues were stored in liquid nitrogen and routinely
assayed for estrogen (ER) and progesterone receptors (PR) levels,
according the recommendations of the European Organization
for Research and Treatment of Cancer (EORTC), as previously
described (Foekens et al, 1989). Tumour tissues were pulverised
in the frozen state with a microdismembrator (Braun, Melsungen,
Germany) as recommended by the EORTC. The resulting powder
was suspended in buffer containing 10mM Tris-HCl pH 7.4, 1.5mM

EDTA, 10mM Na2MoO4, 0.5mM DTT and 10% glycerol. The
suspension was centrifuged for 60min at 105 000 g at 41C. The
high-speed supernatants (cytosols) were collected and stored in
liquid nitrogen. For all samples, cytosolic protein concentration
was determined using BCA assay (Pierce Chemical, Rockford, IL,
USA). ER and PR levels were determined by enzyme immunoassay
as described previously (Foekens et al, 1989). To assess the
between-assay variations, in each series of tests an aliquot of a
pooled breast cancer cytosol sample was analyzed.
The remaining cytosols were frozen and stored in liquid

nitrogen until used for the determination of thymidine kinase
(TK) enzyme activity, urokinase-type plasminogen activator
(uPA), type-1 plasminogen activator inhibitor (PAi-1), and
TGFb1.

TK, uPA and PAi-1 assays

TK enzyme activity was measured using the Prolifigen TK
Radioenzymatic Assay (Sangtec Medical, Bromma, Sweden), with
the modifications recommended by the EORTC Receptors and
Biomarkers Study Group (Foekens et al, 2001).
uPA levels were measured with the Immunobinds uPA ELISA

kit and PAi-1 levels by the Immunobinds PAi1 ELISA kit
(American Diagnostic, Greenwich, CT, USA), according to the
instructions of the manufacturer. Inactive and active forms of uPA
are all recognised by the uPA ELISA kit, as is receptor-bound uPA
and uPA complexed with PAi-1 and PAi-2. PAi-1 ELISA detects
latent and active forms of human PAi-1 and PAi-1 complexes. The
assay is insensitive to PAi-2.

TGFb1 measurement

TGFb1 levels in breast tumour cytosols were measured by ELISA.
This assay used monoclonal antibody (R&D Systems, UK) as
capture antibody and biotinylated polyclonal antibody (R&D
Systems, UK) as detection antibody. The assay specifically
measures active TGFb1 forms. To measure total TGFb1 present
in tumour samples, biologically latent TGFb1 was activated by
acid-treatment. For this purpose, cytosols were diluted with four
volumes of DPBS buffer (2.7mM KCl, 137mM NaCl, 1.5mM

KH2PO4, 3.2mM Na2HPO4, 1mM CaCl2, 0.5mM MgCl2, pH 7.4).
Samples were then incubated for 15min at room temperature in
the presence of 0.02 vol of 1 N HCl, then neutralised with equal
volume of 1 N NaOH. ELISA analysis was performed in 96-well
plates following the instructions of the manufacturer (R&D
Systems, UK). Recombinant human TGFb1 (R&D Systems, UK)
was used as standard at 0–1000 pgml�1. A preliminary evaluation
was performed to assess the buffer compatibility and the
parallelism of sample dilutions. The inter- and intra-assay
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(n¼ 10) CVs of a pool of tumour extracts with mean value of
134.1 pg TGFb1 per mg protein were 7.5 and 3.9% respectively.

Statistical analysis

The strength of the associations of TGFb1 with other variables was
tested with Spearman rank correlation. The associations of TGFb1
(used as continuous variables) with other variables (used as
grouping variables) were examined using Mann–Whitney U test
(two categories), or in the case of more than two ordered
categories by Kruskal–Wallis test. Survival curves were generated
using the method of Kaplan and Meier and the log-rank test for
trend was used to examine survival data. For the univariate
survival analysis, DFS time (the interval between date of surgery
and primary failure defined as a locoregional and/or distant
recurrence) and OS time (the interval between date of surgery and
death by any cause) were used as follow-up parameters. P-values
p0.05 were considered as significant.
Cox multivariate regression analysis was used to evaluate the

prognostic value of TGFb1 in the overall or Nþ or N� popula-
tions. Multivariate analysis was performed with variables elimi-
nated in a step-down fashion. Variables with a Pp0.05 were
retained in the final multivariate models. Hazard ratios (HR)
derived from the estimated regression coefficients, are presented
with their 95% confidence intervals (CI).
Variables were categorised as follows: age (50 or younger, and

older than 50), pathological tumour size (p20mm or 420mm),
menopausal status (premenopausal vs postmenopausal), patholo-
gical nodal status (N�, none; Nþ , 1 to 3; Nþ þ , more than 3),
histologic grade (SBR grade I, II or III), and histologic type (ductal
vs lobular).
In regard to the variations of ER levels observed in premeno-

pausal vs postmenopausal patients (39), all tumours were
considered to be estrogen receptor-negative (ER�) if ER values
o15 fmolmg�1 protein; for the premenopausal population,
tumours with ER 15–205 fmolmg�1 protein (75th percentile) were
classified ERþ , whereas tumours of postmenopausal patients were
considered as ERþ when ER level was 15–377 fmolmg�1 protein
(75th percentile). In both pre- and post-menopausal populations,
ERþ þ represents tumours with ER values exceeding the 75th
percentile. In all cases, the tumours were considered to be PR-
positive if values exceeded 20 fmolmg�1 protein. For all others
biological parameters, cutpoints corresponded to the 25th and 75th
percentiles of the distribution (see Table 1).

RESULTS

Clinicopathological characteristics

The clinicopathological characteristics of the patients are pre-
sented in Table 1. Patients were characterised according to their
age, hormonal (menopausal) and steroid receptor status, tumour
grade according the SBR grading system, histology and size of the
tumour, and the axillary nodal status.

Biological characteristics of the breast cancer samples
analyzed

The distribution of biological factors in breast cancer samples are
listed in Table 2. A wide inter-patient variability in the levels of all
the parameters measured could be observed. ER, PR and TK levels
were previously determined in our laboratory and integrated
elsewhere in other published study (Romain et al, 1995, 2000).
uPA and PAi-1 levels ranged from 0.01 to 1.39 ngmg�1 protein
(median, 0.20) and from 0.27 to 54 ngmg�1 protein (median, 6.0),
respectively. TGFb1 was detectable in 94.3% of samples and its
concentration ranged from 0 to 684 pgmg�1 protein, with a
median at 86.7 pgmg�1 protein.

Relationships between TGFb1 and clinicopathological and
biological parameters

When the correlation between TGFb1 and each of the others
parameters was examined in the overall population, no significant
correlation could be observed between TGFb1 and the biological
and clinicopathological variables, except the hormonal status.
Thus, premenopausal patients were found to express higher TGFb1
levels than postmenopausal patients (114 vs 86 pgmg�1 protein,
P¼ 0.0006) (not shown). When patient population was subdivided
according to pathological nodal status, TGFb1 remained correlated
to the hormonal status in both node-negative (P¼ 0.012) and
node-positive (P¼ 0.008) subgroups (Table 3). Moreover, a
positive association between TGFb1 and PAi-1 (P¼ 0.040) was
observed in the node-negative population.

Prognostic relevance

The impact of TGFb1 on OS and DFS was determined in the overall
population and node-negative/node-positive subsets. When 25th

Table 1 Patient characteristics

Feature Category No. of patients Percentage

Total population 193
Age (years) p50 62 32.1

450 131 67.9

Hormonal status Premenopausal 72 37.3
Menopausal 121 62.7

Receptor statusa ER� PR� 21 10.9
ER� PR+ 7 3.6
ER+ PR� 39 20.2
ER+ PR+ 126 65.3

Histology Invasive duct 145 75.1
Invasive lobular 48 24.9

Tumour size T1 83 43.0
T2 110 57.0

SBR grade I 49 25.5
II 102 52.8
III 42 21.7

Nodal status N� 94 48.7
N+ 57 29.6
N++ 42 21.7

aThe subgroups ER+ include the patients with ER+ and ER++ (ER415 fmolmg�1

protein), as defined in Materials and Methods section.

Table 2 Biological characteristics of the breast cancer population

Variables Range Mean (IC)a Q25 Q50 Q75

ER (fmol mg�1 protein)
Overall population 0–654 197 (23.9) 33 149 325
Premenopausal 1–455 122 (26.8) 22 87 205
Postmenopausal 0–654 218 (22.4) 67 254 377

PR (fmolmg�1 protein) 0–1000 156 (26.3) 8.7 67 274
TK (mUmg�1 protein) 4–2804 349 (66.9) 70 138 388
uPA (ngmg�1 protein) 0.01–1.39 0.28 (0.03) 0.11 0.20 0.38
PAi-1 (ngmg�1 protein) 0.27–54 8.73 (1.19) 3.7 6.0 10
TGFb1 (pgmg�1 protein) 0–684 121 (16.6) 42 86.7 148

a95% confidence interval, CI.
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and 75th percentiles of the distribution were used as cutoff values,
TGFb1 appeared significant (P¼ 0.020) for DFS in the overall
population (Figure 1A). The 10-year probability of DFS was 86.4%
for patients with low TGFb1 levels (o42 pgmg�1 protein), 72% for
the intermediate group (42–148 pg TGFb1/mg protein) and 61%
for patients with TGFb1X148 pgmg�1 protein. The patients were
then dichotomised according to their nodal status. While TGFb1
was found to have no significant impact on DFS in the node-
positive subgroup (not shown), high TGFb1 levels were signifi-
cantly associated with poor DFS in the node-negative population
(P¼ 0.02) (Figure 1B). Thus, among the node-negative patients
with low TGFb1 level, no relapse (DFS¼ 100%) were observed,
whereas 17 and 38% relapses were observed for patients with
intermediate and high TGFb1 expression levels, respectively.
Unlikely, the level of TGFb1 had no impact on OS, neither in the
overall population nor in the node-positive/node-negative groups
(not shown).
A Cox multivariate analysis was performed to evaluate whether

TGFb1 might significantly add to the contribution of the
traditional prognostic factors. A significance level of 5% in the
univariate analysis was chosen as the criterion for entering
variables (SBR grade, nodal status, ER, uPA, PAi-1, TK and
TGFb1) (not shown). The analysis was conducted in the overall
population and node-negative/node-positive subgroups (Table 4).
The analysis performed for OS revealed nodal status (P¼ 0.0003)
and SBR grade (P¼ 0.0008) as independent parameters in the
overall population. The prominent predictor for OS was SBR grade
(P¼ 0.004) and ER (P¼ 0.020) in the node-positive population,
and uPA (P¼ 0.010) in the node-negative subgroup. In addition of
nodal status (P¼ 0.0002) and uPA (P¼ 0.004), TGFb1 was
independently associated to poor DFS in the overall population
(P¼ 0.005). Whereas PAi-1 appeared as the prominent indepen-
dent predictor for the node-positive patients (P¼ 0.019), the
parameter associated with DFS in the population without node-
infiltration was TGFb1 (P¼ 0.010).

DISCUSSION

The reduced response to TGFb in some tumour systems appears to
involve multiple mechanisms, including loss of functional TGF-b
receptor proteins (Grady et al, 1999; Fukai et al, 2003). In addition,
mutations of downstream TGF-b signalling pathway genes have
also been shown to result in a loss of responsiveness to TGF-b1
(Wang et al, 2000; Maliekal et al, 2003). In contrast to many other
tumours, structural lesions of TGFb signal transducers appear to
be rare in breast cancers (Chen et al, 1998; Xie et al, 2002; Jeruss
et al, 2003). This suggests that, in a number of circumstances such
as cell dedifferentiation, the normal function of TGFb1 in breast
epithelial cells might be abrogated on behalf of oncogenic function.

Table 3 Relationship between TGFb1 and biological and clinicopatho-
logical variables

Node-negative patients

n Range Q50 P q

Hormonal status
Premenopausal 35 8–567 132
Postmenopausal 59 0–349 74 0.012 �0.259

Tumour size
T1 61 0–349 74
T2 33 3–367 91 0.725 0.036

SBR grade
I 30 3–349 100
II 48 0–367 82
III 16 3–337 79 0.885 0.015

ER
Negative 17 17–259 75
Low 56 0–367 85
High 21 9–349 117 0.906 0.094

PgR
Negative 30 3–341 72
Positive 64 0–349 104 0.696 0.041

TK
Negative 26 3–349 102
Low 50 0–337 69
High 18 15–684 132 0.293 0.108

uPA
Negative 28 0–303 72
Low 42 7–349 107
High 24 4–337 79 0.380 0.091

PAI-1
Negative 26 0–167 72
Now 47 3–366 81
High 21 3–684 149 0.040 0.211

Node-positive patients

n Range Q50 P q

Hormonal status
Premenopausal 37 13–684 120
Postmenopausal 62 2–405 71 0.008 �0.265

Tumour size
T1 22 5–679 88
T2 77 2–684 76 0.943 �0.007

SBR grade
I 19 4–346 76
II 54 2–643 98
III 26 2–684 62 0.680 �0.041

ER
Negative 10 14–433 107
Low 62 3–643 83
High 27 3–684 89 0.728 0.035

PgR
Negative 32 3–684 101
Positive 67 2–678 87 0.929 0.009

TK
Negative 20 3–257 83
Low 42 2–387 107
High 37 10–325 82 0.749 0.032

uPA
Negative 17 3–348 87
Low 56 2–684 96
High 26 6–151 90 0.793 �0.027

PAI-1
Negative 21 3–643 82
Now 50 4–341 89
High 28 6–676 100 0.977 �0.003

n¼ number of patients; Q50, median values.

Table 3 (Continued)

Node-positive patients

n Range Q50 P q
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Whereas TGFb1 seems to be confirmed as a marker of bad
prognostic in a number of human tumours such as colorectal
(Tsushima et al, 1996; Picon et al, 1998) and prostatic (Ivanovic
et al, 1995; Shariat et al, 2004) cancers, the impact of TGFb1 on the
progression of breast cancer remains uncertain. As for carcinomas
in other organs, TGFb1 expression is often increased locally and
systemically in advanced breast cancers, particularly at the leading
invasive edge of the tumour and in metastasis (Dalal et al, 1993;
Walker et al, 1994; Chakravarthy et al, 1999). Nevertheless,
whereas the elevated expression of TGFb1 is described to associate
with disease progression in a number of studies (Gorsch et al,
1992; Dalal et al, 1993; Walker et al, 1994), others studies failed to
reveal diagnostic or predictive value of TGFb1 for breast cancer
patients (Dublin et al, 1993; Murray et al, 1993; Kesari et al, 1999;
Ghellal et al, 2000).
It is notable that, except when measured in plasma, most of the

authors employed semiquantitative immunohistochemical staining
to evaluate TGFb1 protein level in breast samples. In this study, we
have measured for the first time the level of TGFb1 protein in
breast tumour samples by ELISA, in order to examine potent
correlations with clinical features. Using this assay, we found
94.3% of patients expressing TGFb1 with a range of 0–684 pgmg�1

protein and a median value of 86.7 pgmg�1 of protein.
In agreement with a number of previous studies, we show in the

overall population that TGFb1 was correlated only with meno-
pausal status. Thus, a moderate but significant increase of tumoral
TGFb1 level was observed in premenopausal patients when
compared to postmenopausal subgroup (P¼ 0.0006). These data

are in apparent opposition with some published studies, indicating
that estradiol decreased the production of TGFb1 by breast cancer
epithelial cells in vitro (Knabbe et al, 1987; Philips and McFadden,
2004). Nevertheless, the diminution of TGFb1 in postmenopausal
patients might reflect adaptability process of tumoral cells to the
profound hormonal modifications, which occur during meno-
pause.
The increased expression of uPA has been reported to be

associated with poor prognostic for patients with breast cancer
(Duffy et al, 1998). Paradoxically, its inhibitor PAi-1 has also been
described to contribute to the malignant phenotype of tumour cells
(Look et al, 2002; Schrohl et al, 2004). Thus, PAi-1 might promote
the development of tumoral angiogenesis through the stabilisation
and maturation of new vessels (Bajou et al, 2004). Interestingly,
TGFb1 was also found to be positively correlated to PAi-1 in the
node-negative subgroup (P¼ 0.040). The activity of PAi-1 is tightly
regulated on the transcriptional level, and TGFb1 is the major
regulator of PAi-1 expression and in turn of local PAi-1 activity
(Westerhausen et al, 1991). Thus, in the node-negative population,
the upregulation of PAi-1 by TGFb1 might constitute an early
event that promotes further progression of breast tumours. This is
in agreement with our data indicating that TGFb1 is an indicator of
bad prognostic for breast cancer patients. Thus, multivariate
analysis revealed that, after lymph node status (P¼ 0.0002) and
uPA (P¼ 0.004), TGFb1 was an independent prognostic marker for
DFS (P¼ 0.005) in the overall population. Furthermore, TGFb1
remained the prominent prognostic factor in the node-negative
population (P¼ 0.010). In this late population, Kaplan–Meier
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curves further demonstrated that high level of TGFb1 was
correlated with a shorter disease-free survival (P¼ 0.020). Con-
versely, TGFb was not a prognostic factor for OS in the node-
negative population. However, it has to be mentioned that at
the cutoff date of the study, three deaths had been recorded
in the node-negative subgroup. This is probably insufficient to
distinguish a potential influence of TGFb on overall survival,
in this population. Whereas clinical studies in breast cancers
have led to conflicting results, our data suggest that TGFb1 has
the potential to promote metastasis and recurrence for patients
with breast carcinomas. It has to be noted that patients included
in this study have not received modern chemotherapy, which
could influence the outcomes. The fact that prognostic value
of TGFb1 was observed in node-negative population strongly
suggests that TGFb1 interferes at early stages of tumour
progression, probably by making cell environment favorable for
metastatic spread.

Although the lymph node status is one of the best prognostic
factors in breast cancer, it is not sufficiently accurate to predict the
clinical course of the disease. Indeed, 20–30% of node-negative
breast cancer patients will experience disease recurrence and
metastatic dissemination. Whereas numerous predictive factors
have been characterised thus far, early prognostic markers that
interfere at the beginning of tumour progression are scarce. The
prognostic significance of high TGFb1 level on DFS observed in
node-negative breast cancer patients suggest that the determina-
tion of tumoral TGFb1 status might help to identify a high-risk
population early in tumour progression, for which a more
appropriate therapy should be established. In this context, it
appears fundamental to confirm the prognostic value of TGFb in a
large cohort of node-negative patients. Furthermore, as total TGFb
(active plus latent forms) has been measured in our study, it would
be helpful to determine the respective role for latent and active
TGFb as prognostic markers in breast cancers.

Table 4 Cox multivariate analysis of OS and DFS, in overall population (n¼ 193), and in node-positive (n¼ 99) and node-negative patients (n¼ 94)

DFS OS

Variable category Coding HR (CI) P HR (CI) P

Overall population
Nodal status
N� 0 1.00 1.00
N+ 1 1.84 (1.33–2.54) 2.31 (1.46–3.66)
N++ 2 3.39 (1.77–6.45) 0.0002 5.34 (2.13–13.4) 0.0003

SBR grade
I 0 1.00
II 1 2.89 (1.55–5.37)
III 2 8.35 (2.42–28.8) 0.0008

UPA
Negative 0
Low 1 2.00 (1.25–3.21)
High 2 4.02 (1.57–10.3) 0.004

TGFb1
Negative 0 1.00
Low 1 1.83 (1.19–2.81)
High 2 3.36 (1.43–7.91) 0.005

Node-positive patients
PAi-1
Negative 0 1.00
Low 1 2.09 (1.26–3.46)
High 2 4.36 (1.58–11.7) 0.019

SBR grade
I 0 1.00
II 1 3.07 (1.43–6.62)
III 2 9.46 (2.47–45.2) 0.004

ER
Negative 0 1.00
Low 1 0.45 (0.22–0.9)
High 2 0.20 (0.05–0.81) 0.020

Node-negative patients
UPA
Negative 0 1.00
Low 1 3.75 (0.83–16.9)
High 2 14.1 (0.69–285.5) 0.010

TGFb1
Negative 0 1.00
Low 1 2.90 (1.19–7.10)
High 2 8.41 (1.41–50.4) 0.010

Candidate variables in the Cox model are listed in Results. HR, hazard ratio; CI, 95% confidence interval.
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