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Point mutation in GRIM-19: a new genetic lesion in Hurthle cell
thyroid carcinomas
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A very peculiar group of tumours of the thyroid gland is
characterised by the presence of large polygonal cells with a
distinctive granular eosinophilic cytoplasm packed with mitochon-
dria. This type of cell has been referred to as oncocyte, Hurthle,
Askanazy or oxyphil cell (Sobrinho-Simoes et al, 2004). Hurthle
cell tumours (HCT) are defined as being composed of at least 75%
Hurthle cells. Hurthle cell adenomas (HCA) are encapsulated
benign lesions, while Hurthle cell carcinomas (HCC) can be
classified as variant of follicular thyroid carcinoma (FTC) or
papillary thyroid carcinoma (PTC) (Sobrinho-Simoes et al,
2004).
Molecular bases of the vast majority of HCT are still largely

unknown. Hurthle cell carcinomas variant of PTC is characterised
by RET/PTC rearrangements and BRAFV800E mutations, hallmarks
of classic PTC cases. Hurthle cell carcinomas often show aneuploid
karyotype with widespread numerical chromosomal alterations
and frequent chromosome 7 trisomy (Dettori et al, 2003).
Moreover, allelic losses at 19p13.2 and 2q21 are prevalent in
HCT. In these regions, two loci (TOO, thyroid tumours with cell
oxyphilia, and NMTC1, nonmedullary thyroid carcinoma 1)
predisposing to familial nonmedulllary thyroid carcinoma
(FNMTC) have been mapped (Stankov et al, 2004). However, the
corresponding genes have not been isolated yet.
Mitochondria have been proposed to play an important role in

HCT formation. The increased number of mitochondria and the
mitochondrial structural abnormalities observed in HCT mimic
those detected in the cells of patients with several mitochondrial
diseases and myopathies. Mitochondria play essential roles in
cellular energy production and it has been proposed that
mitochondrial proliferation in HCT might be a compensatory
mechanism for a decline in oxidativephosphorylation (Maximo
et al, 2002). The NADH:ubiquinone oxidoreductase (complex I)
catalyses the first step of electron transfer in the mitochondrial
oxidative phosphorylation system and it is encoded by nuclear and
mithocondrial genes. Mitochondrial DNA (mtDNA) mutations are
often present in HCT and most of them target genes that belong to
the complex I (Maximo et al, 2002). The high rate of mtDNA
replication coupled with the inherent instability of mtDNA have
been suggested to cause such a high rate of mtDNA mutations.
Moreover, genome-wide expression profiling has revealed imbal-
ance in the expression of mitochondrial genes and in nuclear genes
encoding the respiratory chain complexes in HCT.

In this issue of BJC, Maximo and co-workers describe a novel
genetic lesion in HCC of the thyroid (Maximo et al, 2005, present
issue). Their discovery highlights a novel intriguing connection at
the genetic level between HCT occurrence, mitochondrial meta-
bolism and cell death. In particular, Maximo et al described HCC
cases carrying mutations in the GRIM-19 gene. GRIM-19 (gene
associated with retinoid-interferon-induced mortality-19) maps on
19p13.2 and codes for a 16-kDa protein that may be localised in the
nucleus and mithocondria. The GRIM-19 protein exerts a dual
function: (i) it is essential for assembly and function of the
complex I of the mitochondrial respiratory chain (Huang et al,
2004) and (ii) it induces apoptosis in a number of cell lines upon
treatment with interferon-beta and retinoic acid (Angell et al,
2000). Mechanistically, this could be, at least in part, linked to the
capability of the GRIM-19 protein to bind to and suppress
transcription driven by STATS (signal transducer and activator of
transcription 3) (Lufei et al, 2003). STATS plays important roles in
cell growth, survival and cell transformation, and is constitutively
active in various cancers. Moreover, GRIM-19 interacts with a
protein named GW112 that is highly expressed in colon cancers
and has an antiapoptotic function (Zhang et al, 2004). Mutations
identified in HCC by Maximo et al were located at codons 26, 83,
88 (exon 1) and 198 (exon 5) of GRIM-19. In one of the cases (case
7) there was a papillary carcinoma, displaying Hurthle cell features
in which there was a RET/PTC rearrangement in addition to the
GRIM 19 mutation. Three of the GRIM-19 mutations were somatic,
while the other one (codon 88) was germline. In the latter case
there were, besides the Hurthle cell variant of PTC, multiple benign
nodules displaying Hurthle cell features. However, no GRIM-19
mutations have been found in six families affected by familial
HTC, even though GRIM-19 maps on chromosome 19p13.2 where
also the TCO locus has been located.
There is good reason to believe that the report by Maximo et al

will represent an important step forward in our molecular
understanding of HCT and of mitochondrial disfunction in this
tumour type. The mitochondrial and the cell survival activity of
GRIM-19, coupled with the presence of abnormal mitochondrial
structures in HCT, suggest that, indeed, GRIM-19 mutations may
be important for HCT pathogenesis. However, it will be crucial to
determine the functional consequences of such mutations. Since
GRIM-19 is a proapoptotic gene, it is tempting to speculate that its
loss-of-fucntion may contribute to HCC. The mutations identified
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by Maximo and co-workers were not associated to loss of
heterozygosity; therefore, an important point to be addressed is
whether they act through haploinsufficiency or negative dom-
inance mechanisms. Ablation of GRIM-19 expression by RNA
interference in cultured thyrocytes and thyroid specific-targeting
in transgenic mice could provide formal proofs of GRIM-19 role in
thyroid carcinogenesis. Finally, the analysis of larger series of

samples could confirm the prevalence of GRIM-19 mutations and
their distribution in the various HCT subtypes. It will be also
interesting to explore whether GRIM-19 is involved in oxyphilic
tumours affecting nonthyroid tissues such as kidney, salivary and
parathyroid glands tumours. Finally, the results by Maximo and
co-workers will prompt the search for mutations in other genes
with similar functions in human tumours.
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