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Loss of skeletal muscle in cancer cachexia has a negative effect on both morbidity and mortality. The role of nuclear factor-kB (NF-
kB) in regulating muscle protein degradation and expression of the ubiquitin–proteasome proteolytic pathway in response to a
tumour cachectic factor, proteolysis-inducing factor (PIF), has been studied by creating stable, transdominant-negative, muscle cell
lines. Murine C2C12 myoblasts were transfected with plasmids with a CMV promoter that had mutations at the serine
phosphorylation sites required for degradation of I-kBa, an NF-kB inhibitory protein, and allowed to differentiate into myotubes.
Proteolysis-inducing factor induced degradation of I-kBa, nuclear accumulation of NF-kB and an increase in luciferase reporter gene
activity in myotubes containing wild-type, but not mutant, I-kBa proteins. Proteolysis-inducing factor also induced total protein
degradation and loss of the myofibrillar protein myosin in myotubes containing wild-type, but not mutant, plasmids at the same
concentrations as those causing activation of NF-kB. Proteolysis-inducing factor also induced increased expression of the ubiquitin–
proteasome pathway, as determined by ‘chymotrypsin-like’ enzyme activity, the predominant proteolytic activity of the b-subunits of
the proteasome, protein expression of 20S a-subunits and the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating
enzyme, E214k, in cells containing wild-type, but not mutant, I-kBa. The ability of mutant I-kBa to inhibit PIF-induced protein
degradation, as well as expression of the ubiquitin–proteasome pathway, confirms that both of these responses depend on initiation
of transcription by NF-kB.
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Loss of skeletal muscle results in weakness, immobility and finally
death of the cancer patient. Depletion of myofibrillar proteins in
muscle results from a decreased protein synthesis (Lundholm et al,
1976) combined with an increased protein breakdown (Lundholm
et al, 1982). The increase in protein breakdown is possibly the
most important component of muscle cachexia, since anabolic
stimuli, such as nutritional supplementation, fail to reverse the
muscle wasting (Evans et al, 1985).
The major catabolic pathway involved in degradation of

myofibrillar proteins in a range of catabolic conditions, including
cancer cachexia, is the ubiquitin–proteasome proteolytic system
(Attaix et al, 1998). In this process, protein substrates are
conjugated with a polyubiquitin chain, which enables them to be
recognised for degradation by the proteasome, a multi-subunit
complex containing a range of proteolytic enzymes. The main
mediators known to influence expression of polyubiquitin genes
and proteasomal subunits are glucocorticoids (Wang et al, 1998),
cytokines such as tumour necrosis factor-a (TNF-a) (Li et al, 1998)
and proteolysis-inducing factor (PIF) (Lorite et al, 2001), a

sulphated glycoprotein produced by cachexia-inducing murine
and human tumours (Todorov et al, 1996), which specifically
induces degradation of skeletal muscle (Lorite et al, 1998).
Several studies have investigated the role of the nuclear

transcription factor, nuclear factor-kB (NF-kB), in induction of
proteasome gene expression. The human proteasome C3 subunit
promoter contains elements homologous to the consensus NF-kB-
binding site (Du et al, 2000), suggesting that NF-kB may be
involved in gene transcription. However, the mechanism by which
this occurs appears to be diametrically opposite for glucocorticoids
(Du et al, 2000) and TNF-a (Li and Reid, 2000). Thus,
glucocorticoids stimulate proteasome expression (at least the C3
subunit) by antagonising the interaction of NF-kB with its
response element in the proteasome promoter region. Glucocorti-
coids also induce gene transcription and protein synthesis of the
NF-kB inhibitor, IkB, and inhibit the expression of cytokines
(Almawi and Melemedjian, 2002). In contrast, induction of protein
degradation by TNF-a, which is also mediated through the
ubiquitin–proteasome proteolytic pathway (Li et al, 1998),
appears to be mediated through proteasomal degradation of IkBa
and translocation of NF-kB to the nucleus (Li and Reid, 2000). We
have also recently shown that both PIF (Whitehouse and Tisdale,
2003) and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), an
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intracellular signal for the increased protein degradation induced
by PIF (Whitehouse et al, 2003), cause degradation of IkBa and
nuclear accumulation of NF-kB, associated with an increased
proteasome expression. Moreover, attenuation of this process,
either by the polyunsaturated fatty acid, eicosapentaenoic acid
(EPA), or the NF-kB inhibitor peptide, SN50, also attenuated the
PIF-induced increase in proteasome expression, suggesting that
NF-kB may act as a transcription factor in the PIF-induced
increase in proteasome expression.
To investigate the role of NF-kB in PIF-induced protein

degradation and proteasome expression, murine myoblasts have
been transfected with viral plasmid constructs that induce
overexpression of mutant IkBa proteins, that are insensitive to
degradation via the ubiquitin–proteasome pathway, and, which,
selectively inhibit NF-kB activation (Li and Reid, 2000). The effect
of PIF on protein degradation and expression of regulatory
components of the ubiquitin–proteasome pathway has been
compared in fully differentiated forms of these cells containing
mutant I-kBa, with those transfected with the empty viral vector.

MATERIALS AND METHODS

Materials

L-[2,63H] phenylalanine (sp.act.2.00 TBqmmol�1) was purchased
from Amersham International (Bucks, UK). Foetal calf serum
(FCS), horse serum (HS), Dulbecco’s modified Eagle’s medium
(DMEM), OPTI-MEM1 reduced medium and lipofectamine were
purchased from Life Technologies (Paisley, Scotland). Mouse
monoclonal antibodies to 20S proteasome a subunits, MSS1 and
p42 were purchased from Affiniti Research Products, (Exeter, UK),
while mouse monoclonal antibody to myosin heavy chain was
from Novocastra (Newcastle, UK). Rabbit polyclonal antisera to
murine I-kBa was from Calbiochem (Herts, UK), that to mouse
actin was from Sigma Aldridge (Dorset, UK) and that to ubiquitin
conjugating enzyme (E214k) was a gift from Dr Simon Wing,
McGill University (Montreal, Canada). Peroxidase-conjugated
rabbit anti-mouse antibody and peroxidase-conjugated goat anti-
rabbit antibody were purchased from Dako Ltd (Cambridge, UK),
Hybond A nitrocellulose membranes were from Amersham
International (Bucks, UK). Electrophoretic-mobility shift (EMSA)
gel shift assay kits were from Panomics (CA, USA). Escherichia coli
DH5a cells were from Gibco BRL (Paisley, Scotland). Plasmid
constructs were under the control of the cytomegalovirus (CMV)
promoter and were gifts from Dr Yi-Ping Li (Baylor College of
Medicine, Houston, TX, USA). These consisted of empty pCMV4
vector used for the control cell line I-kBaDN (truncation of amino
acids 1–36) and I-kBa S32/A36 (point mutations of Ser32 and Ser36

to alanine). Plasmid DNA was purified using WIZARD Magnesilt
purification kit (Promega, Southampton, UK) according to the
manufacturer’s protocol. Primers for PCR analysis were purchased
from MWG Biotech (Ebersberg, Germany). Gene Juice for
transfection studies was obtained from Gene Flow (Staffordshire,
UK). The luciferase reporter assay kit was purchased from BD
Biosciences Clontech, Oxford, UK. The kinetic-QCL endotoxin
assay kit was from Bio Whittaker, MD, USA.

Purification of PIF

Proteolysis-including factor was purified from solid MAC16
tumours excised from mice with a weight loss between 20 and
25% as described previously (Todorov et al, 1996; Whitehouse and
Tisdale, 2003). Tumours were homogenised in 10mM Tris–HCl,
pH 8.0, containing 0.5mM phenylmethylsulphonyl fluoride, 0.5mM

EGTA and 1mM dithiothreitol at a concentration of 5ml g�1

tumour. The supernatant obtained after addition of ammonium
sulphate (40% wv�1) was subjected to affinity chromatography

using anti-PIF monoclonal antibody coupled to a solid matrix. The
immunogenic fractions were concentrated and used for further
studies. The purity of the PIF was confirmed by polyacrylamide gel
electrophoresis and immunoblotting. This showed a band for PIF
at Mr 24 000, sometimes accompanied by an albumin-bound band
at Mr 69 000. No other bands were apparent. The endotoxin
content of the preparation was below the level of detection.

Production of transformed colonies

Transformation of plasmid DNA into E. coli was achieved using
DH5a cells. Plasmid DNA was serially diluted to 0.015 mg (ml)�1 to
perform transformations and 5 ml of diluted DNA was added to
70ml of competent DH5a cells in a chilled microcentrifuge tube
and mixed before incubating on ice for 30min. The cells were then
heat shocked for 30 s at 371C and immediately put back on ice for
2min. LB medium (500ml) was added and cells were further
incubated at 371C for 40min. Aliquots (200ml) of the transformed
cells were spread on LB agar plates containing ampicillin and the
plates were incubated overnight at 371C. Controls for the
transformation included a positive control of PUC19 and a
negative control of DH5a alone. PCR analysis was employed to
identify transformed colonies using primers directed against the
I-kBa insert (forward: GCT GTG ATC ACC AAC CAG C; reverse:
CTC TGG CAG CAT CTG AAG G) and for plasmid DNA for those
containing pCMV4 (forward: GGT CTA TTC GGG AAC CAA G;
reverse: CAC ATT CCA CAG AAG CTG C).

Myogenic cell culture and transfection

The C2C12 myoblast cell line was grown in DMEM supplemented
with 10% FCS plus 1% penicillin and streptomycin under an
atmosphere of 10% CO2 in air. Stable transfections were carried
out on cells at 50–80% confluency using GeneJuice, according to
the manufacturer’s protocol, and selected by resistance to
ampicillin (5 g l�1) as described previously (Smith et al, 2004).
Transfected myoblasts were stimulated to differentiate by repla-
cing the growth medium with DMEM supplemented with 2% HS,
when the cells reached confluence. Differentiation was allowed to
continue for 3–5 days until myotubes were clearly visible.

Luciferase reporter gene assay

The assay was performed using the method described by the
supplier. In brief, C2C12 myoblasts containing each IkBa insert
were seeded in 75 cm2 flasks without antibiotics and incubated
until 80% confluent. Then, cells were washed twice with OPTI-
MEM Reduced Medium, followed by the addition of 6ml of OPTI-
MEM Reduced Medium containing either 15mg of NF-kB luciferase
reporter plasmid or 15 mg of control luciferase plasmid and 45 ml of
Lipofectamine reagent. After 24 h incubation, the cells were
passaged into six-well plates at 1� 105 cells per well, allowed to
reach confluence, and differentiated into myotubes. Cells were
treated with PIF for 1 h at varied concentrations between 0 and
16.8 nM and washed twice in PBS. 1� cell lysis buffer was added to
cells and cell extracts were immediately assayed for luciferase
activity using a BioOrbit luminometer 1253 (Turku, Finland). This
was the earliest time point at which an increase in luciferase
activity was observed.

Measurement of protein degradation

This was determined as described previously (Whitehouse and
Tisdale, 2003) by prelabelling cells for 24 h with L-[2,63H]phenyl-
alanine (0.67mCimmole�1), followed by extensive washing in PBS
and further incubation for 2 h in DMEM without phenol red, until
no more radioactivity appeared in the supernatant. Protein
degradation was determined by the release of [2,63H]phenylalanine

Protein degradation and ubiquitin–proteasome expression

SM Wyke and MJ Tisdale

712

British Journal of Cancer (2005) 92(4), 711 – 721 & 2005 Cancer Research UK

T
ra
n
sla

tio
n
a
l
T
h
e
ra
p
e
u
tic

s



into the medium after 24 h in the presence of various concentra-
tions of PIF together with 2mM cold phenylalanine to prevent
reincorporation of radioactivity in the cells.

Measurement of proteasome activity

‘Chymotrypsin-like’ enzyme activity was determined fluorimetri-
cally by the method of Orino et al (1991) by the release of
aminomethyl coumarin (AMC) from the fluorogenic peptide
succinyl-LLVY-AMC. This method has been described previously
for C2C12 myotubes (Whitehouse and Tisdale, 2003). Activity was
measured in the absence and presence of the specific proteasome
inhibitor lactacystin (10 mM). Only lactacystin-suppressible activity
was considered to be proteasome specific.

Western blot analysis

Myotubes were incubated with various concentrations of PIF as
depicted in the figure legends, after which the medium was
removed and the cells were washed with PBS and scraped from the
plastic surface. They were then sonicated at 41C in 500–2000ml of
20mM Tris–HCl, pH 7.5, 2mM ATP, 5mM MgCl2 and 1mM

dithiothreitol (DTT). Samples of cytosolic protein (5–30 mg),
formed by centrifugation at 18 000 g for 5min, were resolved on
12% sodium dodecylsulphate, polyacrylamide gels (SDS/
PAGE) and transferred to 0.45 mm nitrocellulose membranes,
which had been blocked with 5% Marvel in Tris-buffered
saline, pH 7.5, at 41C overnight. The primary antibodies were

used at a dilution of 1 : 1000 except for actin (1 : 100), and the
secondary antibodies were also used at a dilution of 1 : 1000.
Incubation was for 1 h at room temperature and development
was by enhanced chemiluminescence (ECL) (Amersham,
UK). Blots were scanned by a densitometer to quantitate
differences.

Electrophoresis mobility shift assay (EMSA)

DNA-binding proteins were extracted from myotubes according to
the method of Andrews and Faller (1991), which utilises hypotonic
lysis followed by high salt extraction of nuclei. The EMSA-binding
assay was carried out using a Panomics EMSA ‘gel shift’ kit
according to the manufacturer’s instructions.

Statistical analysis

Differences in means between groups were determined by one-way
ANOVA, followed by Tukey’s post-test.

RESULTS

To determine whether NF-kB mediates PIF-induced protein
degradation and upregulation of the ubiquitin–proteasome
proteolytic pathway in muscle, C2C12 murine myoblasts were
transfected with either of two dominant-negative mutants of I-kBa.
In I-kBa DN, the phosphorylation sites required for degradation
(Ser32 and Ser36) are absent (truncation of amino acids 1–36),
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Figure 1 Effect of mutation on degradation of I-kBa in the presence of PIF. (A) Western blot analysis of I-kBa after 30min incubation with 0 (lanes 1, 6
and 11), 2.1 (lanes 2, 7 and 12), 4.2 (lanes 3, 8 and 13), 10.5 (lanes 4, 9 and 14) and 16.8 (lanes 5, 10 and 15) nM PIF in wild-type cells transfected with
pCMV4 (lanes 1–5), I-kBaS32/A36 (lanes 6–10) and I-kBaDN (lanes 11–15). (B) Densitometric analysis of the blot shown in (A) as the mean7s.e.m. for
three separate determinations. Differences from control are indicated as c, Po0.001, while differences from wild-type are shown as f, Po0.001. (C)
Western blot of actin showing equal loading of samples in (A).
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while in I-kBa S32/A36 there are point mutations of Ser32 and Ser36

to alanine. This prevented ubiquitin conjugation and proteolysis
of either protein (Brockman et al, 1993; Chen et al, 1995). The
control cells were transfected with the empty pCMV4 vector.

Transfected myoblasts were allowed to differentiate into myotubes
for further studies.
Proteolysis-inducing factor induced a decrease in I-kBa

(Figure 1, lanes 2–5) and an increase in nuclear accumulation of
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mutants are shown as open boxes. Figures are means7s.e.m. for three separate determinations. Differences from control are indicated as a, Po0.05 and c,
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NF-kB (Figure 2, lanes 2–4) in control myotubes transfected with
the pCMV4 vector, which was the same as that previously observed
in C2C12 myotubes (Whitehouse and Tisdale, 2003). In contrast,
overexpression of I-kBa DN or I-kBa S32/A36 inhibited degrada-
tion of I-kBa in the presence of PIF (Figure 1, lanes 6–15), as well
as nuclear translocation of NF-kB (Figure 2, lanes 6–10).
Myoblasts transfected with these mutant plasmids have previously
been shown not to respond to TNF-a with nuclear translocation of
NF-kB (Li and Reid, 2000), in contrast with those containing the
empty vector. Myotubes containing the truncated I-kBa (I-kBaDN)

showed a lower molecular weight for I-kBa (Figure 1, lanes 11–15)
as expected.
To determine whether the increased nuclear translocation of

NF-kB was linked to an increased transcriptional activity,
myoblasts containing the mutant plasmids or the empty vector
were transfected with a plasmid vector with the NF-kB-binding site
in the promoter region of the reporter luciferase gene and allowed
to differentiate into myotubes. When treated with 2.1–10.5 nM PIF
for 1 h, the luciferase activity was between 3.5- and 7.5-fold higher
relative to untreated control in myotubes transfected with the
empty pCMV4 vector, but was not increased in either of those
containing the mutant plasmid (Figure 3). These results confirm
that activation of NF-kB by PIF causes an increase in transcrip-
tional activity.
The effect of PIF on protein degradation in wild-type and

mutant cell lines is shown in Figure 4. Proteolysis-inducing factor
produced a significant increase in total protein loss, as measured
by [3H] phenylalanine release, over the concentration range 2–
16.8 nM, in wild-type, but not in mutant cells. The effect was seen
over the same concentration range as that inducing I-kBa
degradation (Figure 1, lanes 2–5) and nuclear accumulation of
NF-kB (Figure 2, lanes 2–4) and the increase in luciferase reporter
gene activity (Figure 3). The effect in wild-type cells was similar to
that previously reported for nontransfected C2C12 myotubes
(Gomes-Marcondes et al, 2003). Proteolysis-inducing factor also
produced a decrease in the concentrations of the myofibrillar
protein myosin in myotubes transfected with the wild-type pCMV4
vector, which was significant at all concentrations of PIF between 2
and 16.8 nM (Figure 5, lanes 1–5). A decrease in myosin was not
seen in myotubes that overexpressed either I-kBamutant (Figure 5,
lanes 6–15). As previously reported (Acharyya et al, 2004) in
cachectic mice bearing the colon 26 tumour and in myotubes
treated with TNF-a and interferon-g, PIF induced selective loss of
myosin, while actin levels remained unchanged (Figure 5). This
may be due to selective degradation of myosin by the ubiquitin–
proteasome pathway. The ability of mutant I-kBa to inhibit PIF-
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induced protein loss indicates that this response depends on
NF-kB signalling.
We have previously shown (Lorite et al, 2001; Gomes-

Marcondes et al, 2003) that PIF-induced protein degradation was

strongly correlated with an increase in expression of key regulatory
components of the ubiquitin–proteasome proteolytic pathway. To
determine the role of NF-kB in this process, functional proteasome
activity was determined by measuring the ‘chymotrypsin-like’
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enzyme activity, the major proteolytic activity of the b-subunits.
Using the fluorogenic substrate succinyl LLVY-MCA, an increase
in enzyme activity was seen at concentrations of PIF between 2 and
16.8 nM in myotubes transfected with the control vector pCMV4
(Figure 6), with a bell-shaped dose–response curve as previously
reported (Gomes-Marcondes et al, 2003). In contrast, myotubes
transfected with both mutant constructs showed no increase in
‘chymotrypsin-like’ enzyme activity in the presence of PIF
(Figure 6). Expression of proteasome subunits was determined
by Western blotting of cellular supernatants. The effect of PIF on
expression of 20S a-subunits in wild-type and mutant I-kBa
transfected myotubes is shown in Figure 7. Proteolysis-inducing
factor induced a significant increase in 20S a-subunit expression at
concentrations between 2 and 10.5 nM in wild-type (Figure 7, lanes
1–5), but not mutant cells (Figure 7, lanes 6–15). Proteolysis-
inducing factor also increased expression of MSS1, an ATPase
subunit of the 19S regulatory complex, in myotubes transfected
with control vector, pCMV4 (Figure 8, lanes 1–5), but not in those
transfected with either type of mutant I-kBa (Figure 8, lanes 6–15).
MSS1, appearing as a single band at MrB50 000, was increased in
pCMV4 myotubes in the same concentration range as that
previously reported in untransfected myotubes (Gomes-Mar-
condes et al, 2003). Proteolysis-inducing factor also increased
expression of p42, an ATPase subunit of the 19S regulator that
promotes ATP-dependent association of the 20S proteasome with
the 19S regulator to form the 26S proteasome (Tanahashi et al,
1999) in wild-type (Figure 9, lanes 1–5), but not in mutant

myotubes (Figure 9, lanes 6–15). The concentrations of PIF
producing an increase in p42 were the same as those producing an
increase in 20S a-subunit expression (Figure 7). Proteolysis-
inducing factor also produced an increase in expression of the Mr
14 000 ubiquitin-conjugating enzyme (E214k) in wild type
(Figure 10, lanes 1–5), but not in myotubes expressing the mutant
form of I-kBa (Figure 10, lanes 6–15). Previous studies (Gomes-
Marcondes et al, 2003) have shown E214k expression to parallel that
of proteasome subunits. The ability of mutant I-kBa to inhibit PIF-
induced proteasome expression confirms that this response also
depends on initiation of transcription by NF-kB.

DISCUSSION

Nuclear factor-kB plays an important role in cellular function
including immune and inflammatory responses, regulation of cell
growth and apoptosis and tumour induction (Karin et al, 2002). In
this study, we have utilised I-kBa mutated at Ser32 and Ser36 to
investigate a role for NF-kB in protein degradation and induction
of the ubiquitin–proteasome proteolytic pathway by PIF. Phos-
phorylation of I-kBa at Ser32 and Ser36 by the I-kB kinase complex
(IKK) leads to ubiquitination of I-kBa at nearby lysine residues
and degradation by the proteasome (Karin, 1999). An alternative
pathway has recently been reported (Fan et al, 2003) whereby
activation of NF-kB occurs through C-Src-mediated tyrosine
phosphorylation of I-kBa at residue 42, which is capable of
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Figure 7 (A) Effect of PIF on 20S proteasome a-subunit expression in myotubes transfected with pCMV4 (lanes 1–5), I-kBa S32/A36 (lanes 6–10) and
I-kBaDN (lanes 11–15) plasmids. Myotubes were incubated for 24 h with 0 (lanes 1, 6 and 11), 2.1 (lanes 2, 7 and 12), 4.2 (lanes 3, 8 and 13), 10.5 (lanes 4,
9 and 14) and 16.8 (lanes 5, 10 and 15) nM PIF and proteasome expression was determined by Western blotting of 5 mg of cytosolic protein. (B)
Densitometric analysis of three replicate blots as shown in (A)’ band 1;& band 2. Differences from 0 nM PIF are indicated as a, Po0.05, b, Po0.01 and c,
Po0.001, while differences from wild-type myotubes are indicated as d, Po0.05 and f, Po0.001. (C) Western blot of actin from the blot shown in (A).
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activating NF-kB in the absence of ubiquitin-dependent degrada-
tion of I-kBa. Such a pathway normally occurs in the redox
activation of NF-kB. That such a pathway is not operative in C2C12

myotubes in the presence of PIF is shown by the lack of nuclear
accumulation of NF-kB in cells transfected with the I-kBa mutant
plasmids in the presence of PIF. This confirms that a lack of
response in myotubes containing the mutant plasmids means that
the effect is mediated through NF-kB.
The present observations indicate that NF-kB activation is

involved in PIF-induced degradation of cellular proteins in skeletal
muscle. In this respect, PIF appears to be similar to TNF-a (Li and
Reid, 2000). There are few studies which have looked at NF-kB
activation in skeletal muscle under conditions of muscle wasting.
However, a recent study (Hunter et al, 2002) showed nuclear
extracts from the soleus muscle of rats undergoing disuse atrophy
to show increased binding of NF-kB oligonucleotides. This
complex bound antibody to p50, c-Rel and Bcl-3, but not other
NF-kB members, and there was no evidence for the canonical NF-
kB pathway involving activation of p65 or I-kBa. This pathway,
therefore, seems to be different from that induced by PIF.
Disuse atrophy resembles cancer cachexia in that protein

degradation is mediated primarily by the ubiquitin–proteasome
pathway (De Martino and Ordway, 1998). This suggests that
activation of NF-kB may be a common mechanism for increased
gene expression of key regulatory components of this pathway by
agents such as PIF and TNF-a (Li and Reid, 2000). However, this
mechanism is opposite to that induced by glucocorticoids, which
have been shown (Du et al, 2000), at least in L6 muscle cells, to
induce expression of the C3 proteasome subunit by antagonising
interaction of NF-kB with the response element in the promoter

region. Studies on protein degradation during sepsis, which is also
mediated through the ubiquitin–proteasome pathway (Tiao et al,
1994), showed that NF-kB is increased at early time points (4 h),
but decreased at later time points (16 h) (Penner et al, 2001).
Which of these changes in NF-kB expression are responsible for
the increased muscle protein degradation is not known, but the
glucocorticoid receptor antagonist RU38486 increases NF-kB,
suggesting that the decreased expression is due to glucocorticoids.
How apparently opposite changes in NF-kB expression in the same
cell type produce the same effect is not known. It is known that
NF-kB can have different effects in different cell types. Thus, while
in most cell types NF-kB seems to promote cell proliferation and
protect against apoptosis, in skin, it appears to oppose prolifera-
tion (Dajee et al, 2003). It is possible that different NF-kB pathways
are affected by glucocorticoids from that of PIF and TNF-a.
Interestingly, insulin-like growth factor II (IGF-II)-dependent NF-
kB activation has been linked to myoblast differentiation (Canicio
et al, 2001). It is possible that proteolysis of intracellular regulators
is required for fusion and that this requires induction of the
ubiquitin–proteasome pathway.
This study shows that increased expression of both proteasome

subunits and E214k in the presence of PIF is mediated through
activation of NF-kB. A recent study (Li et al, 2003) shows that
TNF-a stimulates expression of the ubiquitin carrier protein,
UbcH2, a homologue of murine E220k in skeletal muscle, in a
process which is regulated at the transcriptional level by NF-kB.
UbcH2 appears to act in parallel with E214k targeting a distinct
pool of protein for degradation.
Proteolysis-inducing factor has also been shown to activate NF-

kB in primary hepatocytes and the human cancer cell line HepG2,
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Figure 8 (A) Effect of PIF on MSS1 expression in myotubes transfected with wild type (lanes 1–5), I-kBa S32/A36 (lanes 6–10) and I-kBaDN (lanes 11–
15) plasmids. Myotubes were incubated for 24 h with 0 (lanes 1, 6 and 11), 2.1 (lanes 2, 7 and 12), 4.2 (lanes 3, 8 and 13), 10.5 (lanes 4, 9 and 14) and 16.8
(lanes 5, 10 and 15) nM PIF and MSS1 expression was determined by Western blotting of 5 mg of cytosolic protein. (B) Densitometric analysis of three
replicate blots shown in (A). Differences from 0 nM PIF are indicated as c, Po0.001, while differences from wild-type controls are shown as d, Po0.05 and f,
Po0.001. (C) Western blot of actin from the blot shown in (A).
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Figure 9 (A) Effect of PIF on p42 expression in myotubes transfected with pCMV4 (lanes 1–5), I-kBa S32/A36 (lanes 6–10) and I-kBaDN (lanes 11–
15) plasmids. Myotubes were incubated for 24 h with 0 (lanes 1, 6 and 11), 2.1 (lanes 2, 7 and 12), 4.2 (lanes 3, 8 and 13), 10.5 (lanes 4, 9 and 14) and 16.8
(lanes 5, 10 and 15) nM PIF and p42 expression was determined by western blotting. (B) Densitometric analysis of three replicate blots shown in (A).
Differences from 0 nM PIF are shown as c, Po0.001, while differences from wild-type controls are shown as f, Po0.001. (C) Western blot of actin from the
blot shown in (A).
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Figure 10 Effect of PIF on E214k expression in myotubes transfected with pCMV4 (lanes 1–5), I-kBa S32/A36 (lanes 6–10) and I-kBaDN (lanes 11–15)
plasmids. Myotubes were incubated for 24 h with 0 (lanes 1, 6 and 11), 2.1 (lanes 2, 7 and 12), 4.2 (lanes 3, 8 and 13), 10.5 (lanes 4, 9 and 14) and 16.8 (lanes
5, 10 and 15) nM PIF and p42 expression was determined by Western blotting. (B) Densitometric analysis of three replicate blots shown in (A). Differences
from 0 nM PIF are shown as c, Po0.001, while differences from wild-type controls are shown as f, Po0.001. (C) Western blot of actin from the blot shown
in (A).
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resulting in the increased production of interleukin-6 and -8 (IL-6
and IL-8) and C-reactive protein and the decreased production of
transferrin (Watchorn et al, 2001). There was also an increase in
ICAM-1, another NF-kB-inducible gene. These results suggest that
the primary effects of PIF on gene expression are mediated
through NF-kB. The mechanism by which this occurs has not been
completely evaluated, but recent evidence (Smith and Tisdale,
2003) suggests that PIF induces activation of both phospholipases
A and C (PLA2 and PC-PLC). The former causes the release of
arachidonic acid from membrane phospholipids, while diacylgly-
cerol, derived from PC-PLC, has been suggested to provide a
positive feedback signal to protein kinase C (PKC) (Smith and
Tisdale, 2003). We have shown PKC to be involved in PIF-induced
proteasome expression (Smith et al, 2004) and PKC may act as a
signal for NF-kB activation through phosphorylation and activa-
tion of IKK (Fullman et al, 1992).
Induction of protein degradation and expression of the

ubiquitin–proteasome pathway through activation of NF-kB
would provide a mechanism to explain the effect of EPA in
attenuating the process in cachectic mice (Whitehouse et al, 2001).
Eicosapentaenoic acid is also effective clinically in preventing loss

of lean body mass in patients with pancreatic carcinoma (Barber
et al, 1999). We have shown EPA to prevent both degradation of
I-kBa and nuclear accumulation of NF-kB in murine myotubes in
the presence of PIF (Whitehouse and Tisdale, 2003), through
attenuation of upstream signalling pathways. Omega-3 polyunsa-
turated fatty acids have also been shown to inhibit I-kB
phosphorylation and NF-kB activation in murine macrophages,
although the mechanism is not known (Novak et al, 2003). This
manuscript provides experimental evidence to support the claim
that PIF induces proteasome expression through activation of
nuclear binding of NF-kB. Thus, agents capable of inhibiting
activation of NF-kB should potentially be capable of inhibiting
muscle protein degradation in cancer cachexia if PIF is involved.
One such agent, resveratrol, may prove useful for the treatment of
muscle wasting in cancer cachexia (Wyke et al, 2004).
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