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Germline mutations have been associated with generation of various types of tumour. In this study, we investigated genetic alteration
of germline tumours that affect the drug sensitivity of cells. Although all germline tumour cells we tested were hypersensitive to
DNA-damaging drugs, no significant alteration was observed in their DNA repair activity or the expression of DNA repair proteins. In
contrast, germline tumours expressed very low level of epidermal growth factor receptor (EGFR) compared to drug-resistant ovarian
cancer cells. An immunohistochemical analysis indicated that most of the primary germline tumours we tested expressed very low
level of EGFR. In accordance with this, overexpression of EGFR in germline tumour cells showed an increase in drug resistance,
suggesting that a lack of EGFR, at least in part, contributes to the drug sensitivity of germline tumours.
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Germline mutations are associated with generation of various
tumours. Previous studies indicated that germline cells were
hypersensitive to DNA-damaging agents (Cagnoli et al, 1998).
Although the mechanisms, of drug resistance are still poorly
understood, an increased rate of DNA adduct removal appears to
be associated with drug resistance in various human cancers (Lai
et al, 1988; Dinapoli et al, 1993; Johnson et al, 1994; Eastman and
Schulte, 1998). Drug-resistant human tumours have been shown to
express higher levels of nucleotide excision repair (NER) proteins
such as XPA, XPB (Lai et al, 1988; Eastman and Schulte, 1998),
ERCC1, and cockayne syndrome group B (CSB) (Lai et al, 1988).
Also, altered expression of genes involved in O-6-alkyltransferase-
mediated direct DNA repair (O-6-methylguanine DNA methyl
transferase, MGMT) or base excision repair pathway also
contributes to drug resistance of cancer cells (Chetsanga and
Lindahl, 1979; Doetsch and Cunningham, 1990; Cohen et al, 1991;
Demple and Harrison, 1994; Gill et al, 1996; Deutsch et al, 1997;
Asagoshi et al, 2000; Bielas and Heddle, 2000; Dobson et al, 2000;
Evans et al, 2000). Defects in mismatch repair (MMR) are
associated with cisplatin resistance by contributing to increased
replication bypass of cisplatin adducts and to a drug-tolerant
phenotype (Hansen et al, 1998; Karahalil et al, 1998; Hansen and
Kelley, 2000; Limp-Foster and Kelley, 2000; O’Neill, 2000). There-
fore, loss of MMR proteins such as hMLH1 leads to resistance of
tumour cells to a variety of DNA-damaging agents, including
bifunctional alkylating and monofunctional methylating agents

(Rosenquist et al, 1997; Waters et al, 1999; Zharkov et al, 2000)
such as cisplatin and N0-methyl-N-nitrosourea (Koi et al, 1994;
Fishel and Kolodner, 1995; Fink et al, 1996, 1998; Drummond et al,
1996).
In addition to genetic alteration of DNA repair genes, altered

drug transport, increased metallothionein or glutathione levels,
mitochondrial alterations, and altered DNA adduct formation have
been reported to contribute to drug resistance of human cancers
(Graves et al, 1992; Mello et al, 1996; Kuga et al, 1997; Leighton
et al, 1997; Mitra et al, 1997; Umar et al, 1997). Growth factor
receptor such as epidermal growth factor receptor (EGFR) is also
amplified in many solid tumours (Arteaga, 2003). Introduction of a
protein tyrosine kinase inhibitor selectively blocks proliferation of
EGFR-expressing tumour cells, suggesting a role for EGFR in
tumour cell growth (Lydon et al, 1998). Epidermal growth factor
receptor is necessary for cisplatin-mediated apoptosis in tumour
cells, suggesting a possible involvement of EGFR pathway in
mediating the repair of drug-induced DNA damage(s) (Dixit et al,
1997). On the other hand, overexpression of EGFR family members
suppressed the antiproliferative/cytotoxic activity of tumour
necrosis factor (TNF)-alpha, suggesting that it may have an
antagonistic role in TNF pathway (Perez and Donato, 1996;
Hoffmann et al., 1998). Nonetheless, overexpression of EGFR
observed in human breast/ovarian tumours is associated with poor
prognosis with cancer patients (Baekelandt et al, 1999; Witters
et al, 1999).
In this study, we investigated the genetic alteration of germline

tumours such as altered DNA repair activity and/or damage
signalling pathways that affect the drug sensitivity of cells. We
found no significant change in NER activity or expression of DNA
repair proteins in drug-sensitive germline cells compared to the
drug-resistant ovarian cancer cells. Instead, the expression of a
membrane receptor tyrosine kinase, EGFR, correlated with the
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cells drug resistance. Drug-resistant cancer cells exhibited elevated
level of EGFR expression, while drug-sensitive germline cells
showed a lower EGFR expression. Overexpression of the EGFR
gene significantly enhanced the cells drug resistance, suggesting
that EGFR may be one of the contributing factors that affect drug
resistance of cancer cells.

MATERIALS AND METHODS

Cell lines, cell culture, and drug treatment: NT2/D1 cells were
obtained from American Type Culture Collection (Rockville, MD,
USA) and 833K and 64CP9 GCT cell lines were obtained from G
Sledge (Indiana University School of Medicine, Indianapolis, IN,
USA). PA-1 cells were derived from a human teratocarcinoma,
human ovarian cancer cells (Hey) were from a peritoneal deposit
of a cytoadenocarcinoma of the ovary (from G Mills, MD Anderson
Cancer Center, Houston, TX, USA), and a normal ovarian
epithelial cell (IOSE80) was obtained from JA Hurteau (Depart-
ment of Obstetrics and Gynecology, University of Illinois at
Chicago, Chicago, IL, USA). All germline and ovarian cells were
maintained in MEM supplemented with 10% fetal bovine serum at
371C in a CO2 incubator, while IOSE 80 was maintained in MEM
and 199/MCDB 105 (1 : 1) supplemented with 10% fetal bovine
serum and EGF (10 ngml�1).
Germ cell tumours (GCTs): Tissue sections of biopsy materials

with disseminated GCTs were obtained from the Indiana
University Medical Center, University Hospital, under an Indiana
University Institutional Review Board approved protocol (IU
Study No. 9908-47) as 4% buffered formaldehyde-fixed tissues
embedded in paraffin blocks, which were sectioned at 3mm and
fixed onto slides. Diagnosis was made from morphological
examination of H&E-stained sections of biopsy material.
Proteins, plasmids, chemicals, and antibodies: Glutathione-S-

transferase (GST) fusion form of c-Jun protein containing residues
1–79 of human c-Jun was overexpressed from Escherichia coli and
purified using glutathione-agarose affinity column chromatogra-
phy as described previously (Park et al, 2001). [g-32P]ATP
(4500 Cimmol�1) was obtained from ICN. Adriamycin, EGF
mitomycin C (MMC), and cisplatin were purchased from Sigma
Chemical Co. (St Louis, MO, USA). Antibodies to EGFR,
proliferating cell nuclear antigen (PCNA), c-Abl, Ku70/80, the
catalytic subunit of DNA-dependent protein kinase (DNA-PKcs),
JNK1 and/or JNK1/2 were obtained from either Santa Cruz
Biotechnology (Santa Cruz, CA, USA) or Pharmingen (San Diego,
CA, USA).
Cell survival assay: To examine drug resistance of cells, cells

(1.0� 104 cells well�1) were plated in a 96-well plate and incubated
for 24 h. Cells were treated with drugs and further incubated at
371C and 5% CO2 for 72 h. After 72 h incubation, cell survival was
measured using a colorimetric cell survival assay from Boehringer
Mannheim (MTT Cell Proliferation Kit). Alternatively, clonogenic
assay was used to measure the ability of cells to form colonies on
100mm2 tissue culture dishes following treatment with ionising
radiation or cisplatin. Controls consisted of cells untreated
with peptides or DNA-damaging agent, or with neither. Cells
were continuously exposed for 5 days to the indicated concentra-
tions of the peptide, and colonies were stained with crystal
violet and then colonies greater than 50 cells were counted. Each
point represents mean values 7s.e., each conducted with triplicate
plates.
Immunohistochemistry: Tissue sections were visualised for

EGFR expression using an anti-EGFR monoclonal antibody (Santa
Cruz Biotech., Santa Cruz, CA, USA). The Dako Universal Staining
system (Dako Corp., Carpinteria, CA, USA) was used to automate
the immunostaining procedure (Robertson et al, 2001). Sections
were treated with 3% H2O2 for 10min and incubated with an anti-
EGFR antibody (1 : 1000) for 25min, the biotinylatd goat anti-
mouse antibody IgG secondary antibody for 10min, streptavidin–

horseradish peroxidase for 10min, and diaminobenzidine for
5min, according to Dako recommendation and empiric determi-
nation.
JNK immunocomplex assay: For JNK assay, cells were grown in

culture media containing 0.5% fetal bovine serum for 16 h prior to
the treatment with EGF or genotoxic agents. Cells were washed in
ice-cold phosphate-buffered saline (PBS) and 0.5ml of JNK lysis
buffer (25mM HEPES, pH 7.5, 0.3 M NaCl, 1.5mM MgCl2, 0.2mM

EDTA, 0.5mM dithiothreitol (DTT), 0.5% Triton X-100, 20mM b-
glycerophosphate, 1mM sodium vanadate, 0.1mM okadaic acid,
1mM phenylmethylsulphonyl fluoride, 20 mgml�1 aprotinin, 50 mg/
ml�1 leupeptin, and 10 mM pepstatin) added to the dishes
(150� 25mm) before scraping. After 30min incubation on ice,
insoluble materials were removed by centrifugation for 30min at
12 000 r.p.m. JNK activity was determined by an immunocomplex
assay essentially as described (Litz-Jackson et al, 1992; Duyster
et al, 1995). Briefly, cell extracts (200 mg) were mixed with 1.5 ml of
anti-JNK1/JNK2 polyclonal antibody for 1 h, and then 15 ml of
protein A–Sepharose beads was added and further incubated for
3 h at 41C. The immunocomplex was washed three times with JNK
lysis buffer and once with JNK kinase reaction buffer (20mM

HEPES pH 7.5, 10mM MgCl2, 7mM MnCl2, 1mM EGTA, 1mM

sodium fluoride, 1mM sodium vanadate, and 1mM DTT). The
precipitate was then resuspended in 30 ml of JNK reaction buffer
containing 2 mg of GST-c-Jun (Park et al, 2001) and 50 mM ATP and
the reaction was initiated by the addition of 1.0 ml of [g-32P]ATP
(45 000 Cimmol�1). After incubation for 20min at 301C, the
reaction was terminated by the addition of 8 ml of 4� SDS sample
buffer (Laemmli, 1970) and heating to 951C for 5min. Samples
were analysed on a 12% SDS–PAGE.
Western blot analysis: Extracts (40mg) from various ovarian

cancer cells were loaded onto a 6 or 10% SDS–PAGE, and
following gel electrophoresis proteins were transferred to nitro-
cellulose membrane and immunoblotted with primary antibody
followed by a peroxidase-coupled secondary antibody (Amersham)
and an enhanced chemiluminescence (Amersham) reaction prior
to visualisation on a Kodak-o-mat film.
Transfection and selection of stable cell lines: Cells were

transfected with either pEGFR-GFP or pEGFP-N3 using Lipofect
AMIINE method (Life Technologies Inc.). Following antibiotic
selection with G418 (600mgml�1, Geneticin-Life Technologies,
Gaithersburg, MD, USA), several EGFR-expressing clones were
isolated and expanded into cell lines. Individual clonal lines
expressing EGFR-GFP were established by plating a single cell into
96-well dishes. Cell clones expressing EGFR-GFP were utilised for
the drug resistance study.
Immunofluorescence microscopy: PA-1 cells were grown on cover

slides, washed twice with PBS, fixed in �101C methanol for 5min,
air dried, and washed three times again with PBS. Fixed cells were
incubated with an anti-EGFR polyclonal antibody (Santa Cruz
Biotech.; 2 mgml�1) at room temperature for 1 h. After washing
with PBS three times, cells were incubated for 1 h in the dark at
room temperature with a 1 : 10 dilution of the secondary antibody
(fluorescein-conjugated goat anti-mouse antibody; Oncogene
Science) in PBS with 3% (w v�1) milk. Following extensive washing
with PBS (five times), slides were prepared using 90% glycerol in
PBS and stored in the dark at 41C. Images were collected using a
CCD 4910 camera with NIH image on a Zeiss Axiophot
microscope.
In vitro NER activity: Reaction mixtures (50ml) contained 0.2 mg

each of UV-irradiated (450 Jm�2) pBS (3 kb) and nonirradiated
pBS (4.5 kb), 40mM creatine phosphate-di-Tris salt (pH 7.7), 1 mg
creatine kinase, 50mM HEPES-KOH (pH 7.8), 70mM KCl, 7.5mM

MgCl2, 0.5mM DTT, 0.4mM EDTA, 2mM ATP, 20mM of dGTP,
dCTP, dTTP, 8 mM of [a-32P dATP (25 000 cpmpmol�1), 5 mg of
BSA, and increasing amount of cell extracts (150 and 300 mg) from
various cells (Stigger et al, 1998). After incubation for 3 h at 301C,
DNA was isolated from the reaction mixtures, linearized with
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BamH1, and separated on a 1% agarose gel electrophoresis in the
presence of 0.5 mgml�1 ethidium bromide. Repair products were
analysed by both fluorography and exposure to X-ray film.

RESULTS

Germline cells exhibit hypersensitivity to DNA-damaging
drugs

To analyse drug resistance of germline cells, four established
germline tumour cells (PA-1, NT2/D1, 833K, and 64CP9) were
compared with a normal ovarian epithelial cell line (IOSE80) and
drug-resistant ovarian cancer cells (Hey) derived from a peritoneal
deposit of a cytoadenocarcinoma of the ovary (Figure 1). The
established ovarian cancer cells (Hey) showed a marked resistance
to cisplatin treatment, while the germline tumour cells were
remarkably sensitive to the drug treatment (Figure 1). All four
germline tumour cells showed extreme sensitivity to cisplatin
treatment (5mM) with a survival rate of less than 10%, whereas 80%
of Hey cells survived under the same conditions. Meanwhile, a
primary epithelial ovarian cell (IOSE80) showed a medium level of
cell survival following cisplatin treatment (Figure 1). Adriamycin is
a DNA-intercalating agent that causes DNA strand break damage,
while MMC mainly causes DNA damage by forming a DNA
crosslink. Similar to the cisplatin treatment, germline tumour cells
were highly sensitive to both MMC and adriamycin treatment
(Figure 1B and C).

Drug sensitivity of germline cells correlates with the lack
of EGFR expression

To better understand the hypersensitivity of germline tumour cells
to DNA-damaging drug, we analysed expression of various
proteins that are involved in the drug sensitivity of cells. No
noticeable difference was observed between drug-sensitive germ-
line tumour cells and a drug-resistant cell (Hey) in the expression
of DNA repair proteins (PCNA, TFIIH, DNA-PKcs, and Ku70/80)
(Figure 2). We noticed however some difference in the expression
of DNA-PKcs (Figure 2), although this subtle difference was not
consistently observed in multiple experiments (data not shown).

Also, we did not see any significant difference between germline
cells and Hey cells in the in vitro NER activity (data not shown).
Interestingly, a significant difference was observed in the
expression of EGFR between germline tumour cells and ovarian
cancer (Hey) cells, while the expression of JNK1 and JNK2 showed
no difference between them (Figure 2).

Expression of EGFR enhances the drug resistance of
germline cells

To further examine whether the lack (or low level) of EGFR
expression in germline tumour cells (Figure 3A) contributes to
their drug sensitivity, cells were transfected with plasmid DNA
expressing either green fluorescence protein (GFP) or GFP-EGFR
fusion protein and analysed for their effect on drug resistance of
cells. After initial selection of cells expressing GFP or GFP-EGFR,
protein expression and cellular localization were analysed by
Western blot (Figure 3B) and by fluorescence microscopy
(Figure 3C), respectively. Germline tumour cells harbouring
pEGFR-GFP plasmid showed a high level of EGFR expression,
which was comparable to that in drug-resistant ovarian cancer
(Hey) cells (Figure 3B). Cells harbouring pEGFR-GFP not pEGFP-
N3 showed EGF-dependent activation of JNK1, suggesting that
GFP-EGFR fusion protein is functionally active (data not shown).
Germline cells transfected with pEGFR-GFP showed only a

marginal increase in their cell survival following cisplatin
treatment, while cells expressing GFP (pEGFP-N3) exhibited a
slight decline in cell survival (Figure 4 and Table 1). When a stably
transfected cell instead of transient system was examined for drug
sensitivity, however, it not only showed a significant increase in
EGFR expression, but also enhanced survival of germline tumour
cells following cisplatin treatment (Figure 5 and Table 1). Although
EGFR kinase is activated by EGF, we did not see a substantial
increase in cell survival in the presence of EGF probably because
EGFR can also be activated by cisplatin. The difference in cell
survival between transiently transfected cells (Figure 4) vs stable
transfectants (Figure 5) following drug treatment may be due to
the lower transfection efficiency in transient system, where only
30% of cells expressed GFP-EGFR (data not shown). Together, our
results suggest that (1) a lack (or lower level) of EGFR expression
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in germline tumour cells contributes to their drug sensitivity and
(2) EGFR may play a positive role in protecting cells following
treatment of cells with DNA-damaging agent.

Lack (or lower level) of EGFR expression in primary
germline cells

To see whether lack or lower level of EGFR expression is a
common property of germline tumour cells, a number of primary
GCTs were selected and tested for EGFR expression. Among 61
GCTs tested, 35 showed undetectable level of EGFR expression,
while the remaining samples expressed very low level of EGFR
compared to a control ovarian cancer cells (Table 2), supporting
the observation with established cells (PA-1, NT2/D1, 833K, and
64CP9) that germline tumours express lower level of EGFR
(Figure 3). In fact, the probability of all 61 GCT samples having
EGFR expression no higher thanþ is extremely low (2� 10�25).

DISCUSSION

Alteration of DNA repair factors or damage response proteins has
been associated with drug resistance of cancer cells (Mohrenweiser
et al, 2003). For example, a tumour suppressor gene, p53, is a key
DNA damage mediator that plays a dual role following exposure to
cytotoxic treatment (Ferrera et al, 1999); it is involved in damage-
induced apoptosis, but also plays a role in cell cycle arrest and
DNA repair, cellular processes that can affect the sensitivity to
chemotherapeutic drug. However, a consensus on the role for DNA
repair genes in drug resistance of various cancer cells has not been
reached, mainly because the complicated nature of drug-induced
resistance with various tumours made it difficult to delineate a
single mechanism (such as DNA repair) that contributes to the
resistance.
Compared to drug-resistant ovarian cancer cells, germline

tumour cells showed a marked sensitivity following the treatment

IOSE80 Hey PA-1 NT2/D1 833K 64CPg

PCNA

DNA-Pkcs

TFIIH (XPB)

Ku70
Ku80

JNK1/2

EGFR

Actin

Figure 2 Expression of various proteins in germline cells. Extracts
(100mg) from various germline tumour cells (PA-1, 833K.NT2/D1, and
64CP9) and ovarian cells (Hey and IOSE-80) were analysed for the
expression of DNA repair factors or damage signalling proteins by Western
blot.

Hey PA-1 NT2/D1833K 64CPg

Hey PA-1 833K 64CPg

EGFR

GFP-EGFR
EGFR

Actin

Actin

− − pGFP-N3 pEGFR-GFP pEGFR-GFP pEGFR-GFPpEGFPFP-N3 pGFP-N3

pGFP-N3

B

A C pEGFR-GFP

Figure 3 Whole-cell lysates (30 mg) from various germline tumour cells (PA-1, 833K, NT2/D1, and 64CP9) and Hey cells were examined for the
expression of EGFR by Western blot (A). In (B), PA-1 cell lines were stably transfected with either pEGFP-N3 vector or pEGFR-GFP, while 833k and 64CP9
cells were transiently transfected for 36 h with pEGFP-N3 or pEGFR-GFP (see ‘Materials and Methods’ for the details). Expression of EGFR-GFP was
monitored by Western blot. (C) shows the expression of GFP (left) or GFP-EGFR (right) in PA-1 cells that were stably transfected with pEGFP-N3 or
pEGFR-GFP, respectively. For immunofluorescence, cells were fixed and permeabilised briefly with methanol incubated with anti-EGFR antibody as
described under ‘Materials and Methods’.
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with cisplatin, adriamycin, or MMC (Figure 1). Examination of the
established cell lines as well as primary germcell tumours for
genetic alteration of several key repair factors and damage
signalling factors indicated that drug sensitivity of germline
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pEGFP-N3 vector or pEGFR-GFP and examined for their cell survival
following cisplatin treatment. At 24 h after transfection, cells were exposed
to the indicated amount of cisplatin for 72 h. The percentage of surviving
cells was monitored by MTT assay.

Table 1 Effect of EGFR expression on cisplatin resistance of germline
tumour cells (833 K) following cisplatin treatment

Cisplatin (lM) Mean cell survival rate (%)

(�EGF) pEGFP-N3 pEGFP-GFP P-value from t-test

0.1 81.25 95.5 0.006
0.5 69.25 78 0.008
1.0 49.25 57.25 0.002

(+EGF)
0.1 93.25 98 0.047
0.5 87.75 97.5 0.001
1.0 64.25 75.25 0.004

Cells expressing EGFR (pEGFR-GFP) were compared with control cells (pEGFP-N3)
for cell survival following cisplatin treatment in the presence and absence of EGF
(n¼ 4).
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Figure 5 Overexpression of EGFR markedly increased the survival of
PA-1 cells following cisplatin treatment. Control cells (PA-1) were
compared with those stably transfected with either pEGFP-N3 vector or
pEGFR-GFP for their cell survival in the presence (A) and absence (B) of
EGF following cisplatin treatment. At 24 h after the seeding, cells were
exposed to the indicated amount of cisplatin for 7 days before counting
colonies (450 cells colony�1). Each point is the mean value of triplicate
experiments.
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tumour cells may not be due to an alteration of repair factors or
DNA repair activity (Figure 2). Instead, there was a good
correlation between EGFR expression (or EGF-induced JNK
activation) and drug resistance among ovarian and germline
tumour cells. Low level of EGFR expression in germline tumour
cells may be linked to their drug sensitivity and supports a positive
role for EGFR in drug resistance of cancer. The latter may be
explained by the fact that EGF and its receptor activate the JNK
signalling pathway that leads to the induction of genes involved in
DNA repair and cellular redox (Adler et al, 1992; Foltz et al, 1998;
Roulston et al, 1998).
Epidermal growth factor receptor is a 170 kDa transmembrane

glycoprotein with tyrosine kinase activity. Although EGFR was
shown to have no independent prognostic significance in advanced
cancer (Baekelandt et al, 1999), the EGFR and HER2/neu were
frequently overexpressed in malignant tumours. Recent micro-
assay analysis revealed that amplification of EGFR gene was found
in many tumours including ovarian cancer (Lei et al, 1999),
glioblastoma (Hui et al, 2001), pancreatic cancer (Bruell et al, 2003;
Schreiner et al, 2003), gastric cancer (Garcia et al, 2003), prostate
cancer (Skacel et al., 2001), and lung adenocarcinoma and head/

neck squamous cell carcinoma (Haedicke et al, 2003; Shintani et al,
2003), suggesting that overexpression of EGFR may be linked to
the oncogenesis of various cancers. High level of EGFR expression
also correlates with increased tumour resistance to radiation
(Shintani et al, 2003), suggesting that EGFR may mediate
radioresistance of cancer cells (Liang et al, 2003). Epidermal
growth factor receptor is also a cellular receptor for human
cytomegalovirus, a cancer-causing virus that causes severe and
fatal disease in immune-comprimised individuals (Wang et al,
2003).
Epidermal growth factor receptor-associated protein tyrosine

kinase complexes also have vital antiapoptotic functions in human
breast cancers (Modjtahedi et al, 1998; Witters et al, 1999) and the
blockade of EGFR not only adversely affected cell growth, but also
showed a sign of terminal differentiation and induces apoptosis in
the human cancer cells (Modjtahedi et al, 1998). Similarly, drug-
induced apoptosis in human breast cancer cells was abrogated by
using EGFR antisense RNA (Dixit et al, 1997), suggesting that a
critical level of EGFR signalling, which is amplified in some
common cancers, may be necessary for DNA-damaging drug-
mediated apoptosis in tumour cells and suggest an inhibitory effect
of this pathway on the repair of cisplatin-damaged DNA. In fact,
cancer cells expressing higher levels of EGFR were much more
resistant to the growth inhibitory effect of DNA-damaging agents
than were control cells (Dixit et al, 1997).
Various strategies have been developed to target EGFR and to

deter cancer cell growth (Zhang et al, 2000; Bruell et al, 2003;
Heimberger et al, 2003). For example, the treatment of cancer cells
with EGFR tyrosine kinase inhibitor markedly potentiates the
efficacy of many cytotoxic agents against several human cancer
xenografts (She et al, 2003). The use of antisense oligonucleotides
or monoclonal antibodies to EGFR also showed significant
inhibition of cancer cell growth (Modjtahedi et al, 1998; Witters
et al, 1999), while activation of EGFR family members suppresses
the cytotoxic effects of TNF-alpha (Hoffmann et al, 1998).
Although mutations in proto-oncogenes (c-ret) as well as DNA

MMR genes have been linked to germline tumours (van
Puijenbroek et al, 1997; Leung et al, 2000), alteration of EGFR in
germcell tumours has not been reported. This study showed that
germline tumour cells not only exhibited lower EGFR expression
but also were highly sensitive to DNA-damaging drugs, suggesting
that the lack of EGFR expression contributes at least in part to the
drug sensitivity of germline cells.
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