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Here we report that the OX-TES-1 SEREX antigen, which showed immunological reactivity with serum from four out of 10 diffuse
large B-cell lymphoma (DLBCL) patients, is encoded by a novel gene, PAS domain containing 1 (PASD1). PASD1_v1 cDNA encodes a
639 amino-acid (aa) protein product, while an alternatively spliced variant (PASD1_v2), lacking intron 14, encodes a 773 aa protein,
the first 638 aa of which are common to both proteins. The PASD1-predicted protein contains a PAS domain that, together with a
putative leucine zipper and nuclear localisation signal, suggests it encodes a transcription factor. The expression of PASD1_v1 mRNA
was confirmed by RT–PCR in seven DLBCL-derived cell lines, while PASD1_v2 mRNA appears to be preferentially expressed in cell
lines derived from non-germinal centre DLBCL. Immunophenotyping studies of de novo DLBCL patients’ tumours with antibodies to
CD10, BCL-6 and MUM1 indicated that two patients mounting an immune response to PASD1 were of a poor prognosis non-
germinal centre subtype. Expression of PASD1 mRNA was restricted to normal testis, while frequent expression was observed in
solid tumours (25 out of 68), thus fulfilling the criteria for a novel cancer testis antigen. PASD1 has potential for lymphoma vaccine
development that may also be widely applicable to other tumour types.
British Journal of Cancer (2004) 91, 141–149. doi:10.1038/sj.bjc.6601875 www.bjcancer.com
Published online 25 May 2004
& 2004 Cancer Research UK

Keywords: cancer testis antigen; lymphoma; SEREX; PAS domain

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Diffuse large B-cell lymphoma (DLBCL) is the most common form
of adult non-Hodgkin’s lymphoma and is heterogeneous with
respect to morphology, clinical features and immunophenotype
(Jaffe et al, 2001). Approximately 50% of DLBCL patients relapse
after conventional anthracycline-based CHOP-type treatment (The
Non-Hodgkin’s Lymphoma Classification Project, 1997). Gene
expression studies have identified clinically-relevant subtypes of
DLBCL, showing that patients with a germinal centre-derived
tumour have an improved prognosis compared to those with a
non-germinal centre-derived tumour (Alizadeh et al, 2000;
Rosenwald et al, 2002). Improving the outcome for these patients
requires both the identification of high-risk patients at diagnosis
and the development of alternative effective therapeutic strategies.
There is increasing evidence for the existence of an anti-tumour

immune response against proteins expressed by malignant cells.
Antibodies to tumour-associated proteins have been found in the
blood of cancer patients and these antibodies can be exploited to
enable the identification of tumour-associated proteins using
SEREX (serological analysis of recombinant cDNA expression
libraries). This technique has been used in a number of laboratories
to identify more than 2000 tumour-associated antigens (Türeci et al,
1999; Preuss et al, 2002). Since these antigens have included
molecules that were originally identified by cloning cytotoxic T

lymphocyte (CTL)-recognised epitopes, for example, MAGE-1 and
tyrosinase (van der Bruggen et al, 1991; Brichard et al, 1993; Sahin
et al, 1995), SEREX can be used to detect tumour antigens eliciting
both cellular and humoral immunity.
Cancer testis antigens (CTAs) constitute some of the most

promising tumour-associated antigen candidates for therapeutic
development, being normally expressed only in immunologically-
privileged sites such as the testis, but also in neoplastic cells
(Scanlan et al, 2002). Examples of CTAs currently being used for
immunotherapy include NY-ESO-1 and MAGE-A3 peptides in
melanoma (Coulie et al, 2001; Jäger et al, 2001). However, it should
be noted that other categories of SEREX antigens, such as the
overexpressed HER-2/neu protein, are being targeted with some
success in the treatment of breast carcinomas (Bernhard et al,
2002). SEREX antigens can also be used as adjuvants to boost the
immune response to other tumour antigens (Nishikawa et al, 2001).
We have previously used SEREX to identify 28 proteins whose

expression might be relevant to the pathogenesis of DLBCL, and
which may provide potential novel immunotherapeutic targets
(Liggins et al, 2004). One of the antigens, OX-TES-1, was
recognised by serum from four out of 10 patients with DLBCL,
one out of 20 normal serum samples and no acute myeloid
leukaemia (AML) or chronic myeloid leukaemia (CML) serum
samples (n¼ 10 of each). This report describes the sequence and
genomic organisation of the gene encoding this antigen, PAS
domain containing 1 (PASD1), and the identification of an
alternatively spliced variant, PASD1_v2, both variants being
expressed in DLBCL cell lines. Expression studies indicate that
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PASD1 is a novel CTA showing widespread mRNA expression in
patients with solid tumours and in DLBCL-derived cell lines.

MATERIALS AND METHODS

Tissue samples

This project was approved by the Oxford Clinical Research Ethics
Committee and informed patient consent was obtained prior to the
collection of serum samples used in the SEREX screening. Tissue
biopsies from the DLBCL patients were obtained from the
Department of Pathology, John Radcliffe Hospital, Oxford.

Cell lines and culture conditions

The OCI-Ly3, OCI-Ly10 (activated B-cell-derived), SUDHL-6,
SUDHL-10 and DB (germinal centre-derived) DLBCL cell lines
were a kind gift from Dr Eric Davis and Dr Andreas Rosenwald,
Bethesda, MD, USA, and the LIB, MIEU, DEAU and HLY-1 DLBCL
cell lines were generously provided by Dr Talal Al Saati, Toulouse,
France. These cell lines were maintained in RPMI 1640 medium
(Sigma Aldrich, UK) supplemented with 10% foetal calf serum
and antibiotics (penicillin (5000Uml�1) and streptomycin
(5000 mgml�1), Invitrogen, UK) in an atmosphere of 5% CO2 at
371C. Cells were washed in RNase-free PBS prior to mRNA
extraction.

OX-TES-1 expression cloning and sequencing

A single cDNA clone encoding the full-length OX-TES-1 antigen
was isolated as previously described using SEREX (Liggins et al,
2004). The cDNA insert was commercially sequenced to publica-
tion quality by MWG Biotech (GenBank Accession Number
AY270020).

Hybridisation of the PASD1 cDNA to expression arrays

Multiple tissue expression (MTE) and matched tumour/normal
(MTN) arrays (BD Biosciences Clontech, CA, USA) were
prehybridised according to the manufacturer’s instructions. A
610 bp Pst1 fragment of PASD1_v1, also present in the splice
variant (PASD1_v2) and representing a portion of the 30 UTR,
was radiolabelled using the High Prime DNA Labelling Kit
(Roche Molecular Biochemicals, UK). This probe was hybridised
to both arrays, according to the manufacturer’s instructions,
before exposure to film at �701C for 27 days. Additional
information about the tissues and cases on these arrays can be
obtained from the BD Biosciences Clontech website (www.bdbios-
ciences.com/clontech). Loading of the cDNAs on the MTN and
MTE arrays is normalised for three and eight housekeeping genes
respectively to enable quantitative comparisons between gene
expression in different tissues. As an additional loading control,
a radiolabelled ubiquitin cDNA probe was subsequently hybri-
dised to the stripped array according to the manufacturer’s
instructions.

Reverse transcription–polymerase chain reaction

Reverse transcription–polymerase chain reaction (RT–PCR) was
carried out as follows: Poly(A)þmRNA from the seven DLBCL-
derived cell lines was extracted using mMACS mRNA Isolation kits
(Miltenyi Biotech, Germany). The cDNA was reverse transcribed at
421C for 50min from 20 ng mRNA in a 25 ml reaction containing
200U Superscript IIt RNase H� reverse transcriptase (Invitrogen,
UK), 1� First Strand Buffer, 4mM DTT and 100 ng of either
oligo(dT) primer or random hexamers. The integrity of cDNA
templates was assessed using gene-specific primers to b-actin. 2 ml
of cDNA was amplified in a 25 ml PCR reaction containing 200mM

each dNTP, 4 mM each primer, 1� PCR buffer and 1� Advantage
2 Polymerase mix (BD Biosciences Clontech, CA, USA). Gene-
specific primers were designed to amplify fragments of 211–
1505 bp. Primer pair A: forward: 50-TACAGGAGCGGAA
GAAGTGG-30; reverse: 50-ACAGGAACAATGGGTTGGG-30; primer
pair B: forward: 50-TCTCATCAATAGCAACTTGCTC-30; reverse:
50- TCACACTCACTTCCCTCTTAC-30; and primer pair C: forward:
50-TCCAGAGAGCAGGCTGAACAA-30, reverse: 50-AAGCCGGATG
TAATCCTGTG-30. Cycling parameters were as follows: 5min at
941C (initial denaturation) then 45 s at 941C, 45 s at appropriate
annealing temperature (A 601C, B 551C, C 601C) and 2.5min (A
and B) or 5min (C) at 721C for 30 (A and B) or 35 (C) cycles.
Phagemid DNA containing the appropriate cDNA insert was used
as a positive control, while the negative control was a PCR mixture
with no cDNA template. Reactions were also carried out on cDNA
synthesis reactions that lacked reverse transcriptase. PCR products
were visualised after separation in agarose gels by staining with
ethidium bromide.

Immunohistochemistry

Formalin-fixed paraffin-embedded sections from the DLBCL
biopsies were dewaxed/rehydrated and then antigen retrieval was
performed by microwave pressure cooking for 3min in 50mM Tris;
1mM EDTA (pH 9). Immunostaining was performed using the
DAKO Envision system with primary antibodies to CD10
(Novocastra), BCL-6 (DAKO) or MUM1 (a kind gift from Professor
B Falini, Perugia). The stained sections were counterstained with
haematoxylin and mounted in Aquamount (VWR).

RESULTS

The single cDNA clone encoding the OX-TES-1 antigen was
identified by screening a testis library with serum from a single
patient with aggressive DLBCL as previously described (Liggins
et al, 2004). The 4.2 kb cDNA insert from the phagemid was fully
sequenced. Sequence searches at the time the gene was cloned,
using the BLAST search engine at the National Center for
Biotechnology Information, indicated that the cDNA sequence
represented a novel gene that had not been deposited in the public
databases.

Sequence analysis of PASD1 and identification of an
alternatively spliced form, PASD1_v2

A UniGene folder (Hs.160594) has recently been created for this
gene, which encodes an unnamed protein product and maps to
Xq28. The HUGO gene nomenclature committee has named the
gene PAS domain containing 1 (PASD1). A recently-sequenced
human testis MGC clone (BC040301) contains a smaller cDNA
(2850 bp) encoding a longer PASD1 protein product that we
have named PASD1_v2. Subsequently, when specifically refer-
ring to our variant, we use the name PASD1_v1. A comparison
of both the PASD1_v1 and PASD1_v2 cDNA sequences with the
human genome sequence demonstrated that these are alter-
natively spliced, with the 1.27 kb sequence corresponding to
intron 14 being retained within the PASD1_v1 transcript
(Figure 1).
Translation of the PASD1 cDNA sequence predicted the

existence of two potential methionine start codons for this protein;
since the second (aa3) has a slightly better Kozak consensus
sequence (Kozak, 1987) than the first, it may represent the start of
translation. Both PASD1_v1 and PASD1_v2 encode a predicted
protein product with identical N-terminal sequence (638 aa). The
retained intron in PASD1_v1 introduces a stop codon after aa 639,
while PASD1_v2 encodes an additional 134 aa at the C-terminus
(Figure 2). The poly(A) tail and the presence of upstream stop
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codons before the translated protein sequence indicated that a full-
length PASD1_v1 cDNA had been isolated. A hypothetical gene
similar to LOC139135 in UniGene Mm.295937 may represent the
murine homologue of PASD1 (Figure 2); this gene also maps to the
X chromosome.

Sequence analyses of the PASD1 protein

Analyses of the human PASD1 protein sequence using databases
on the World Wide Web predict the presence of a number of
domains, several of which are illustrated in Figure 3. Analysis

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16

tga

tga
1 kb

atg

atg

A

B

Figure 1 Genomic structure of PASD1_v1 (A) and PASD1_v2 (B). Exons are indicated as open boxes, introns as lines and the retained intron in
PASD1_v1 is indicated with a black box. The position of predicted translational start and stop sites are indicated.

PASD1_v1    1 ------------------------------------------------------------ 
PASD1_v2    1 ------------------------------------------------------------ 
mPASD1      1 MINGMGDTPTDVKCSEDKGFPDRHASALLRQEEDFSISSITTLMERLCLALGNSIVKVAF 

PASD1_v1    1 --------------MKMRGEKRRDKVNP-------------KSSQRKLNWIPSFPTYDYF 
PASD1_v2    1 --------------MKMRGEKRRDKVNP-------------KSSQRKLNWIPSFPTYDYF 
mPASD1     61 DSILREKDDWSLWMDTETAPPVRRASNPSKRPTHEDLRNLLKKLQKMMDRLGYGPSRERP 

PASD1_v1   34 NQVTLQLLDGFMITLSTDGVIICVAENIS-----------SLLGHLPAEIVGKKLLSLLP 
PASD1_v2   34 NQVTLQLLDGFMITLSTDGVIICVAENIS-----------SLLGHLPAEIVGKKLLSLLP 
mPASD1    121 RALPTRYKSTIASGSSQRGMLSVQASYEHNEVPVFNTYEEYHKMALQEDIKGKSLLNFVL 

PASD1_v1   83 DEEKDEVYQKIILKFPLLN-SETHIEFCCHLKRGNVEHGDS------------SAYENVK 
PASD1_v2   83 DEEKDEVYQKIILKFPLLN-SETHIEFCCHLKRGNVEHGDS------------SAYENVK 
mPASD1    181 DEQKDEVSEKIILNLPLTSLVGSLIEFCCYIKKENVGQSGHGRHRYRAMYQGREIYEYVK 

PASD1_v1  130 FIVNVRDICNEFPVVFSGLFSS-HLCADFAACVPQEDRLYLVGNVCILRTQLLQQLYTSK 
PASD1_v2  130 FIVNVRDICNEFPVVFSGLFSS-HLCADFAACVPQEDRLYLVGNVCILRTQLLQQLYTSK 
mPASD1    241 FILYLQDSYDESFMFFGNCAHNRRNNRSSTSRLLWEQQYYLVGNISVLRTPDESAHPVKI 

PASD1_v1  189 AVSDEAVLTQDSDEEPFVGELSSSQGQ---RGHTSMKAVYVEPAAAAAAAAISDDQIDIA 
PASD1_v2  189 AVSDEAVLTQDSDEEPFVGELSSSQGQ---RGHTSMKAVYVEPAAAAAAAAISDDQIDIA 
mPASD1    301 QTNVIAVESNPIRQRRLLKRRQRSEMQRHAQAQAGVVDVEECPESGTEARPPSHSSISTE 

PASD1_v1  246 EVEQYGPQENVHMFVDSDSTYCSSTVFLDTMPESPALSLQDFRGEPEVNPLYRADPVDLE 
PASD1_v2  246 EVEQYGPQENVHMFVDSDSTYCSSTVFLDTMPESPALSLQDFRGEPEVNPLYRADPVDLE 
mPASD1    361 GSASTSISPCVRTSSSTPSTDTTTSTDITTTPAATPTSGQGYVIDPKNMLEPQDMEFEVG 

PASD1_v1  306 FSVDQVDSVDQEGPMDQQDPENPVAPLDQAGLMDPVDPEDSVDLGAAGASAQPLQPSSPV 
PASD1_v2  306 FSVDQVDSVDQEGPMDQQDPENPVAPLDQAGLMDPVDPEDSVDLGAAGASAQPLQPSSPV 
mPASD1    421 PEFVLIDSQDEQASLEQGEFTEADVKKPLEETKVSIIKEDVIDE---DSARQGASSDDDD 

PASD1_v1  366 AYDIISQELELMKKLKEQLEERTWLLHDAIQNQQNALELMMDHLQKQPNTLRHVVIPDLQ 
PASD1_v2  366 AYDIISQELELMKKLKEQLEERTWLLHDAIQNQQNALELMMDHLQKQPNTLRHVVIPDLQ 
mPASD1    478 DSCIIIEDTEDNKDPKIQEATKVQEQGDQKAPDAVPSRPTTPLRAVRP---EAVVEPIPR 

PASD1_v1  426 SSEAVPKKQQKQHAGQVKRPLPHPKDVKCFCGLSLSNSLKNTGELQEPCVAFNQQQLVQQ 
PASD1_v2  426 SSEAVPKKQQKQHAGQVKRPLPHPKDVKCFCGLSLSNSLKNTGELQEPCVAFNQQQLVQQ 
mPASD1    535 RTYQFHRPLLGERFAQLSGPRVMTQVYDLSISRSFHDELPSYIDMEEEDREQEQCEYELA 

PASD1_v1  486 EQHLKEQQRQLREQLQQLREQRKVQKQKKMQEKKKLQEQKMQEKKKLQEQRRQKKKKLQE 
PASD1_v2  486 EQHLKEQQRQLREQLQQLREQRKVQKQKKMQEKKKLQEQKMQEKKKLQEQRRQKKKKLQE 
mPASD1    595 QRIELLRNLPYERPGQQQSGQGPRVYRPREQMVTVIDDLGPRAMNFFGNSNSEYSQSEMH 

PASD1_v1  546 RKKWQGQMLQKEPEEEQQKQQLQEQPLKHNVIVGNERVQICLQNP-----------RDVS 
PASD1_v2  546 RKKWQGQMLQKEPEEEQQKQQLQEQPLKHNVIVGNERVQICLQNP-----------RDVS 
mPASD1    655 RR-WETPVDHAPPLLHHSSRSCQEMAASHQALAAPCQASLPSCQVSLPSCQVSLPSRQVS 

PASD1_v1  595 VPLCNHPVRFLQAQPIVPVQRAAEQQPSGFYQDENCGQQEDESQR--------------- 
PASD1_v2  595 VPLCNHPVRFLQAQPIVPVQRAAEQQPSGFYQDENCGQQEDESQSFYPEAYQGPPVNQLP 
mPASD1    714 LPSCQASLPSCQASALSRQASAVSRQPSTTSRQVSVSQQVAAAACYP------------- 

PASD1_v1      ------------------------------------------------------------ 
PASD1_v2  655 LIDTSNSEAISSSSIPQFPITSDSTISTLETPQDYIRLWQELSDSLGPVVQVNTWSCDEQ 
mPASD1    761 ------------SAMPHNASS--------------------------------------- 

PASD1_v1      ----------------------------------------------------------- 
PASD1_v2  715 GTLHGQPTYHQVQVSEVGVEGPPDPQAFQGPAAYQPDQMRSAEQTRLMPAEQRDSNKPC 
mPASD1    770 ------------------DHGRENRPRFLPPGQDHAGYFQAEEDTNPHP---------- 

Figure 2 PASD1_v1 and PASD1_v2 proteins, along with the murine homologue, mPASD1. Identical residues are highlighted while similar residues are
shaded in grey. The murine protein shows 35.7% similarity (25.2% identity) with PASD1_v1 and 34.1% similarity (24.2% identity) with PASD1_v2.
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using the programme MotifFinder identified two overlapping N-
terminal PAS (Per ARNT Sim) domains (using the Pfam and
Prosite databases) between aa 32–94 and aa 41–137. Analysis

using the PSORT II programme identified an R-2 motif at aa 14
(which is a predicted cleavage site for mitochondrial presequence),
a nuclear localisation signal at aa 539, an ER membrane retention

Nuclear
localisation signal

Nuclear
receptor box 

Leucine
zipper

Nuclear
receptor box 

Leucine
zipper

Nuclear
localisation signal

PAS domain Coiled coil domain ER retention signal 

A

B

Figure 3 Schematic illustration of the domains within the PASD1_v1 (A) and PASD1_v2 (B) proteins (not to scale). Additional domains are underlined.
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Figure 4 Results obtained from hybridising the PASD1 cDNA (A) or the ubiquitin cDNA control probe (B) to BD Biosciences’ MTE array. The identity
and position of tissues on the array is shown in the lower panel (C). The positive signals for PASD1 are arrowed.
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signal at the N-terminus, a C-terminal leucine zipper pattern
between aa 482–503 and a coiled-coil domain between aa 476–
557. An LXXLL motif or nuclear receptor (NR) box was also
detected in the N-terminus of the PASD1 protein between aa 77–
81. In addition to the domains illustrated, there is a proline-rich
region between aa 478–639, a lysine-rich region between aa 508–
548, and a glutamine-rich region between aa 479–638. There is
only one domain, an ER membrane retention signal between aa
769–772, in the additional region encoded by PASD1_v2.
Database searches using the PASD1 protein sequence have

shown that the most closely related proteins, other than the murine
homologue, are the neuronal PAS domain protein 2 of the

zebrafish Danio rerio (34% identity) and the CLOCK protein of the
Korean rock fish Sebastes schlegeli (32%).

Expression of PASD1 mRNAs in normal human tissues

A normal tissue-derived MTE cDNA array, prepared from pooled
individuals that are non-diseased victims of sudden death/trauma,
was probed with a cDNA fragment that is common to both
PASD1_v1 and PASD1_v2. The expression of the PASD1 mRNA in
both adult and foetal normal human tissues was shown to be
restricted to testis (Figure 4A). This gene is expressed at very low
levels requiring a long exposure time to obtain the data illustrated

1 2 3 4 5 6 7 8 9 10 12 14 16 18
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Figure 5 Results obtained from hybridising the PASD1 cDNA (A) or the ubiquitin cDNA control probe (B) to BD Biosciences’ MTN expression array.
The identity and position of tissues on the array are shown. Rows A, D, G, J, and M are normal tissue while B, E, H, K, an N are tumour tissue, K*¼ kidney.
Row P indicates the human cancer cell lines: 1 – HeLa, 2 – Daudi (Burkitt’s lymphoma), 3 – K562 (chronic myeloid leukaemia), 4 – HL-60 (promyelocytic
leukaemia), 5 – G361 (melanoma), 6 – A549 (lung carcinoma), 7 – MOLT-4 (lymphoblastic leukaemia), 8 – SW480 (colorectal adenocarcinoma), and 9 –
Raji (Burkitt’s lymphoma).
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and repetition confirmed this result. Our expression data are
supported by the normal tissue sources of EST sequences in
UniGene folders Hs.160594 and Mm.295937, all of which have been
isolated from testis (or pooled samples containing testis).
Furthermore, both the PASD_v1 and PASD1_v2 cDNAs were
isolated from testis cDNA libraries. The other positive signals seen
on this array are those from a colorectal adenocarcinoma cell line
and the human DNA (500 ng) control.

Expression of PASD1 mRNAs in neoplastic tissues

The same cDNA probe was used to analyse the expression of
PASD1 mRNA in human tumours and adjacent histologically-
normal tissue (taken from the same cancer patients) on the MTN
array (Figure 5A). Although PASD1 expression was restricted to
testis in normal individuals, the histologically ‘normal’ tissues were
frequently found to express this gene. In some tissues, most
notably breast, uterus, small intestine and lung, there was often
higher expression in the ‘normal’ tissues than was observed in the
paired tumour tissue. The results obtained after rehybridising the
array with a ubiquitin probe confirmed that this was not caused by
differences in sample loading (Figure 5B). A possible explanation
for this observation is that changes in PASD1 expression may be

an early event in carcinogenesis that occurs before histological
changes are apparent. The PASD1 mRNA is shown to be expressed
in 25 of the 68 solid tumour tissues included on the MTN array.
PASD1 expression was also seen in the human cancer cell lines
(Figure 5A, Row P), with the melanoma (P5) and colorectal
adenocarcinoma (P8) cell lines showing the highest expression
levels. Incidentally, the colorectal adenocarcinoma cell line on the
MTN array is the same as that on the MTE array, where it also gave
a positive signal (Figure 4A). Other cell lines common to both
arrays showed very weak expression on the MTN array, while no
signal was observed on the normal tissue MTE array. However,
probing the arrays with ubiquitin as a loading control indicated
that the cDNAs for these cell lines were under-represented on the
MTE array.

Expression of the PASD1_v1 and PASD1_v2 mRNAs
in DLBCL cell lines

Since the PASD1 cDNA was originally cloned from a testis cDNA
library, RT–PCR was used to confirm whether the PASD1 mRNA
was expressed in a panel of DLBCL-derived cell lines. Products
were obtained with all cell lines using primers to b-actin
(Figure 6A), indicating the integrity and suitability of the cDNAs
as templates for PCR. Analysis of PASD1 mRNA expression with
primer set A successfully amplified fragments of the same size as
the positive control (211 bp) in all DLBCL cell lines tested
(Figure 6B). Primer set A was designed to amplify a region of
cDNA common to both PASD1_v1 and PASD1_v2 and therefore
does not distinguish these two mRNA species.
To confirm the expression of the PASD1_v1 mRNA, RT–PCR

was carried out with primers designed to the retained intronic
sequence that is absent in PASD1_v2 (primer set B). Figure 6C
shows that a fragment of the same size as the positive control
(360 bp) was successfully amplified in all DLBCL cell lines. This
confirms that the PASD1_v1 mRNA is transcribed in DLBCL-
derived cell lines.
The PASD1_v2 cDNA does not contain any unique sequence that

could be used to determine whether both variants are transcribed
in DLBCL. Therefore, RT–PCR was carried out with primers
designed to regions in exons 14 and 15 that flank the retained
intronic sequence (primer set C). With these primers, a 1505 bp
fragment indicates the expression of PASD1_v1, while a 238 bp
fragment indicates the expression of PASD1_v2. Figure 6D shows
that a product of B1500 bp is amplified in all the DLBCL cell lines.
A smaller product of B240 bp, was observed in the OCI-Ly3, OCI-
Ly10 and HLY-1 cell lines suggesting that PASD1_v2 is transcribed
in DLBCL-derived cell lines of a non-germinal centre phenotype.
No products were obtained when PCR was performed on cDNA
synthesis reactions that lacked reverse transcriptase (data not
shown) indicating that there was no genomic DNA contamination
and the products obtained are amplified from cDNA.

Immunophenotyping of patients

In the original SEREX study, serum from 10 DLBCL patients was
tested for the presence of antibodies to the PASD1 protein. Three
of these patients had DLBCL transformation from follicular
lymphoma, which generally has a poor prognosis; one of these
patients showed a humoral immune response to the PASD1
protein. The remaining patients, including the patient whose
serum sample was used for SEREX screening, were diagnosed with
de novo DLBCL. According to Hans et al (2004), immunohisto-
chemical labelling using monoclonal antibodies to the germinal
centre markers CD10, BCL-6 and the non-germinal centre marker
MUM1 can be used to distinguish good prognosis (germinal
centre) and high-risk (non-germinal centre) derived subtypes of de
novo DLBCL (Table 1). Paraffin-embedded DLBCL biopsy sections
were available for subtyping six of the seven patients with de novo

1 2 3 4 5 6 7 a b c M

M 1 2 3 4 5 6 7 + −
A

B

C

D

Figure 6 PASD1 products amplified by RT–PCR from DLBCL cell lines:
(A): b-actin control; (B): PCR with primer set A (detects both transcripts,
same size product); (C): PCR with primer set B (PASD1_v1 specific):
M¼ 100 bp ladder; 1–7¼ cell lines (in order): OCI-Ly3; OCI-Ly10; HLY-1;
SUDLH6; MIEU; LIB; DEAU; þ ¼ positive control; �¼ negative control;
(D): PCR with primer set C (PASD1_v1 large product and PASD1_v2 small
product) M¼ 100 bp ladder; 1–6¼ cell lines (in order): OCI-Ly3; OCI-
Ly10; HLY-1; SUDLH6; SUDHL10; DB; 7¼ genomic DNA; a¼ PASD1_v1
positive control; b¼ PASD1_v2 positive control; c¼ negative control.
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DLBCL. The tumour from the patient whose serum was used for
library screening was negative for CD10 and BCL-6 and positive
for MUM1, suggesting that the patient had a poor prognosis non-
germinal centre-derived subtype of DLBCL; this is consistent with
the short survival time. Of the remaining five de novo DLBCL
patients, four appeared to be non-germinal centre-derived, while
the other was germinal centre-derived. Thus, the two de novo
patients that showed serum reactivity with PASD1 were of a non-
germinal centre-derived subtype of DLBCL. No biopsy material
was available for the fourth patient mounting a humoral immune
response to the PASD1 protein.

DISCUSSION

Using SEREX, we previously identified a novel antigen, OX-TES-1,
that is recognised by circulating antibodies present in the serum of
multiple patients with DLBCL. A full-length cDNA clone encoding
OX-TES-1 had been cloned and this novel gene was named PAS
domain containing 1 (PASD1). An alternatively-spliced form
encoding a longer polypeptide has been named PAS domain
containing 1 transcript variant 2 (PASD1_v2), with our sequence
being transcript variant 1 (PASD1_v1).
Data in the UniGene folder Hs.160594 suggest that the PASD1

gene maps to chromosome band Xq28. A number of immunogenic
tumour antigens with the characteristic CTA expression pattern
have been mapped to this region, including MAGE-A, NY-ESO-1,
LAGE-1, TRAG-3, CSAGE and SAGE (Scanlan et al, 2002). In
addition, Xq28 has been identified as a genetic region that is
altered in lymphomas and may contain lymphoma-associated
oncogenes (Goyns et al, 1993; Vineis et al, 1999), one example
being the high level amplification of Xq28 identified in some
blastic mantle cell lymphomas (Bea et al, 1999).
Analyses of the gene structure indicated that the longer

PASD1_v1 cDNA appeared to have retained the sequence from
intron 14, whereas this is removed in PASD1_v2. This alternative
splicing results in the immediate introduction of a translational
stop codon that truncates the PASD1_v1 protein. Many cancer-
associated genes are alternatively-spliced, and it has been
suggested that these may be extremely useful as cancer markers
since there may be striking differences in the usage of
alternatively-spliced variants between normal and tumour tissue
(Caballero et al, 2001). There are also numerous publications
reporting mRNAs containing retained intronic sequences, includ-
ing the retention of CD44 introns in bladder cancer (Cooper,
1995), and the recently-described upregulation of the novel
proapoptotic BH3-only splice variant of BIM in prostate cancer
cells (Liu et al, 2002). It should be noted that both PASD1
transcripts have been identified in testis, indicating that both
forms are expressed in this normal tissue.
Both the PASD1 polypeptides share the same N-terminal 638-aa

sequence, and analysis of the shared N-terminal protein sequence
indicated that PASD1_v1 and PASD1_v2 are novel PAS domain
proteins. They are most closely related to the PAS family members
CLOCK and NPAS2 that play an important role in regulating
eukaryotic circadian rhythms (Dunlap et al, 1999; Dioum et al,
2002). Overlapping the PAS domains was a partial aryl-hydro-

carbon receptor nuclear translocator domain (ARNT), aa 3–187.
ARNT is the central heterodimerization partner of several
transcription factors, including those containing the aryl-hydro-
carbon (dioxin) receptor (AhR) and the hypoxia-inducible factor
1alpha (HIF-1alpha). A report that the AhR/ARNT heterodimer
directly associates with oestrogen receptor-a and -b is interesting
in light of our identification of an LXXLL motif or nuclear receptor
box in the N-terminus of the PASD1 protein that might mediate
similar interactions (McInerney et al, 1998). While no studies
have directly implicated AhR/ARNT in lymphomagenesis, it has
been linked to leukaemogenesis (Salomon-Nguyen et al, 2000;
Hayashibara et al, 2003). Recently, the AhR pathway has also been
proposed as a novel drug target to control cell proliferation
(Elferink, 2003).
Additional domains detected in the PASD1 protein suggest that

this protein may be a nuclear PAS domain transcription factor.
The predicted leucine zipper motif provides a potential nucleic
acid-binding domain and there is a predicted nuclear localisation
signal. Furthermore, proline- and glutamine-rich regions are
commonly found in transcriptional activation domains, while
activation domains rich in basic amino acids have also been
described (Triezenberg, 1995).
Our studies of the combined expression of PASD1_v1 and

PASD1_v2 mRNAs point towards PASD1 being a novel CTA,
showing somatic tissue expression restricted to normal testis
while also showing widespread expression in cancer patients.
However, the PASD1 expression levels seen in the histologically-
normal tissues from patients with uterus, lung and small
intestine cancer may indicate that PASD1 expression is an early
event in carcinogenesis occurring before histological changes are
apparent. Indeed, the expressions of many CTAs, including
those that map to Xq28, have been linked to the DNA
hypomethylation that occurs early during tumorigenesis. An
association between p53 hypomethylation in peripheral blood
lymphocytes and the development of lung cancer among male
smokers has been reported (Woodson et al, 2001). This raises
the possibility that changes in the hypomethylation of other
genes might also be detectable in non-malignant tissues. We are,
however, currently unable to explain why, for example, the
uterine tissue from cancer patients should show PASD1
expression, while the tumour tissue does not, although one
difference could be the cellular composition of normal and
malignant tissue. Further studies will concentrate on character-
ising the expression of the PASD1 protein as this will have more
significance as to the clinical utility of this molecule;
monoclonal antibodies are currently being raised to both the
short and long forms of the protein.
The PASD1 cDNA was cloned from a testis cDNA library,

therefore it was necessary to confirm that the serum reactivity of
DLBCL patients resulted from the expression of this gene. RT–
PCR studies confirmed the expression of PASD1_v1 in all DLBCL-
derived cell lines tested, while PASD1_v2 appeared to be expressed
only in the cell lines derived from a poor prognosis non-germinal
centre subtype of DLBCL. Expression of the longer PASD1_v2
protein may be a useful subtyping marker for the identification of
high-risk DLBCL patients. Interestingly, Scanlan et al (2002)
reported that the frequency of mRNA expression of CTAs such as
NY-ESO-1, MAGE-A1, MAGE-A3 and SSX-2 was higher than the
humoral response observed against the protein. This is consistent
with our RT–PCR data, showing expression of PASD1_v1 in all
seven DLBCL cell lines, although serum reactivity was only
detected in 40% of patients. Of the four patients mounting a
humoral immune response to PASD1, three (no biopsy material
was available for subtyping the fourth patient) were associated
with high-risk groups of DLBCL.
Until very recently, the SEREX technique had not been

employed to identify B-cell lymphoma antigens. However, a study
using serum from lymphoma patients, including those with

Table 1 Scoring system for subtyping de novo cases of DLBCL

CD10 + � � �
BCL-6 � + +
MUM1 � +
Subtype GC non-GC GC non-GC

Cases were scored as positive when more than 30% of the tumour cells were
positive. GC¼ germinal centre and non-GC¼ non-germinal centre. Empty boxes
reflect that the presence or absence of this marker does not influence the scoring
outcome.
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DLBCL, to screen a testis library has recently been published
(Huang et al, 2002). This study identified two known CTAs, HOM-
TES-14/SCP-1 and NY-ESO-1, and two novel antigens with a
restricted normal expression pattern (HOM-NHL-21 and HOM-
NHL-23) that were not widely expressed in lymphomas or in solid
tumours (Huang et al, 2002). The authors suggested that any new
CTAs are likely to be expressed only infrequently in malignant
tumours. This group also investigated the mRNA expression of 10
known CTAs in a range of non-Hodgkin’s lymphomas and found
that, while their expression in T-cell lymphomas was frequent,
their expression in B-cell non-Hodgkin’s lymphoma patients was
comparatively rare (Xie et al, 2003). Such studies emphasise the
importance of the identification of a novel CTA, particularly one
that shows a relatively high frequency antibody response in B-cell
lymphoma patients.

In conclusion, we have identified a novel CTA, PASD1, that
warrants further study since its expression in both haematopoietic
and nonhaematopoietic malignancies raises the possibility that
this antigen may have a diagnostic or therapeutic use in a variety
of cancers.
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