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Distinct parallel cytogenetic pathways in breast carcinogenesis could be identified in recent years. Nevertheless, it remained unclear as
to which tumours may have progressed in grade or which patterns of cytogenetic alteration may define the switch from an in situ
towards an invasive lesion. In order to gain more detailed insights into cytogenetic mechanisms of the pathogenesis of breast cancer,
the chromosomal imbalances of 206 invasive breast cancer cases were characterised by means of comparative genomic hybridisation
(CGH). CGH data were subjected to hierarchical cluster analysis and the results were further compared with immunohistochemical
findings on tissue arrays from the same breast cancer cases. The combined analysis of immunohistochemical and cytogenetic data
provided evidence that carcinomas with gains of 7p, and to a lesser extent losses of 9q and gains of 5p, are a distinct subgroup within
the spectrum of ductal invasive grade 3 breast carcinomas. These aberrations were associated with a high degree of cytogenetic
instability (16.6 alterations per case on average), 16q-losses in over 70% of these cases, strong oestrogen receptor expression and
absence of strong expression of p53, c-erbB2 and Ck 5. These characteristics provide strong support for the hypothesis that these
tumours may develop through stages of well- and perhaps intermediately differentiated breast cancers. Our results therefore
underline the existence of several parallel and also stepwise progression pathways towards breast cancer.
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Technology for the molecular investigation of breast carcinogen-
esis has evolved tremendously in the last decade with the
introduction of whole-genome assays, focusing on RNA (gene-
expression analysis) (Alizadeh et al, 2001) and DNA levels within
the cell (comparative genomic hybridisation; CGH) (Kallioniemi
et al, 1992). In recent years, the use of CGH led to the proposal of
an integrated morphological/cytogenetic progression model for
breast cancer (Vos et al, 2000; Buerger et al, 2001) with at least two
different, parallel cytogenetic pathways: the well-differentiated and
the poorly differentiated pathways. The loss of 16q thereby seems
to represent the cytogenetic hallmark of the well-differentiated
progression pathway, even though a subset of poorly differentiated
tumours also revealed 16q-losses. For these tumours, it remained
unclear if they are the end stage of a de-differentiation process via
well-differentiated cancers, or if in these cases 16q-losses are
merely secondary events. Nevertheless, it also became clear that
the majority of breast cancers and its ultimate precursor lesions
are characterised by the presence of a distinct genetic alteration

(Buerger et al, 1999a). Our understanding of carcinogenesis in
general (Hanahan and Weinberg, 2000) and breast carcinogenesis
specifically is challenged by the postulation of differential complex
cytogenetic aberration (Buerger et al, 1999b) and RNA expression
patterns (Perou et al, 2000). These postulates may enable a better
explanation of genotype–phenotype correlations, and may lead to
the establishment of new prognostic markers (van’t Heer et al,
2002). The obvious increase of knowledge using these techniques is
mirrored by the huge amount of data requiring complicated
models for biomathematical analysis.
In this study, we would like to show that the re-evaluation of CGH-

data by conventional and biomathematical analysis of 206 cases of
invasive breast cancer cases provides further insights into cytogenetic
events during breast carcinogenesis. These new aspects might close
at least some gaps in our current understanding of breast cancer.

MATERIALS AND METHODS

Material

A total of 206 invasive breast cancer cases were staged according to
the TNM-system. The tumour series represented all subtypes of

Received 15 January 2003; revised 16 December 2003; accepted 5
January 2004; published online 2 March 2004

*Correspondence: Dr H Bürger; E-mail: burgerh@uni-muenster.de

British Journal of Cancer (2004) 90, 1422 – 1428

& 2004 Cancer Research UK All rights reserved 0007 – 0920/04 $25.00

www.bjcancer.com

M
o
le
c
u
la
r
a
n
d
C
e
llu

la
r
P
a
th
o
lo
g
y



invasive breast cancer, and the tumours were graded according to
established protocols (Ellis and Elston, 1998) as G1 (n¼ 32), G2
(n¼ 97) or G3 (n¼ 77). The validation of tumour grade has been
achieved using consensus panels as previously described (Buerger
et al, 2001). In addition, all ductal invasive G3 carcinomas have
been subjected to morphometric analysis and the tumour grades
revealed significant differences concerning tubule formation,
nuclear size, and mitotic rate (Buerger et al, 2001).

Methods

CGH-analysis The method of CGH-analysis, the corresponding
control experiments and the criteria for the evaluation of genetic
alterations were performed as previously described (Kallioniemi
et al, 1994; Buerger et al, 1999b). CGH was performed on fresh
frozen tissue samples.

Biomathematical analysis The CGH ratio profiles and IHC raw
data were tabulated in a range from 1 to 2 and from 1 to 3,
respectively. Missing IHC data (9% of all IHC data) were replaced
by the median of that specific score. This procedure approximated
the real values in a reasonable manner, and did not bias the
evaluation (data not shown here). In the analysis of CGH data
combined with IHC data, the scales of both categories were
adapted to achieve equally weighted variables. The different
lengths of the CGH and IHC data in the feature vector were not
changed. To analyse the independent behaviour of the CGH and
IHC feature vectors, both categories were also analysed separately.
Hierarchical cluster analysis based on a Euclidean distance
measure was applied (Alaiya et al, 2002; Harris et al, 2002) with
the underlying and tested rationale that our case’s set did not
include extreme outliers. We used here ‘Complete Linkage’ as
hierarchical cluster method, but we have tested the behaviour of
similar methods (above all ‘Ward’). The comparative analysis of
these further algorithms showed that the basic message in the
result sets was the same. Therefore, we decided to choose the
common method ‘Complete Linkage’ because of the comparability
to other data. Our evaluations were performed with the statistical
platform SPlus6.1-r2 using the functions ‘hclust’ and ‘agnes’ –
based on algorithms as previously described (Kaufman et al, 1999;
Struyf et al, 2002). The results are visualised in a dendrogram
showing in a graphical way the similarity of the cancer cases.
Coloured labels on a branch show the major characteristics of that
case.

Flow cytometry DNA ploidy analysis was performed on single-
cell suspensions prepared from 50-mm-thick paraffin samples with
a PAS II (Partec Instruments, Arlesheim, Switzerland) mercury
lamp-based flow cytometer. DNA histograms were analysed using
the MultiCycle (Phoenix Flow Systems, San Diego, CA, USA) cell
cycle analysis software according to the previously established
protocols (Bergers et al, 1996, 1997).

Tissue microarrays and immunohistochemistry A tissue micro-
array was constructed according to the standard procedures
(Kononen et al, 1998), containing 153 invasive breast cancer cases
that were representative of the whole tumour group and were fully
characterised by CGH.
Immunohistochemical staining procedures for ER, PR, bcl-2,

p21, Ck 5/6, Cyclin D1, Ki-67, p53, Cyclin A, p27 and c-erbB-2 have
been performed as previously described. The pretreatment
conditions, the source and the dilution of the commercially
available primary antibodies, as well as the guidelines for a
semiquantitative evaluation have been published elsewhere
(Korsching et al, 2002).
In brief, expression was binary graded for ER and PR, bcl-2, p21,

Cyclin D1, and Ck 5/6, Ck 8/18 and SMA. Expression was graded
from 0 to 3 for Ki-67, p53, Cyclin A and p27 according to the

percentage of positive cells. c-erbB-2 was classified according to
the Dako-Score (Korsching et al, 2002).

RESULTS

A detailed description of cytogenetic alteration patterns of the
invasive breast cancer cases subjected to biomathematical analysis
has been presented before (Buerger and Boecker, 2002). Further
detailed characterisation is presented for ductal invasive grade 3
carcinomas only.

DNA flow cytometric and cytogenetic characteristics of
ductal invasive grade 3 breast cancer cases with 16q-losses

A total of 15.5 alterations per case were seen in ductal invasive
grade 3 breast cancers with 16q-losses. Three out of 12 tumours
(25%) were DNA diploid, one tumour was tetraploid; 66% were
aneuploid. ER and PR were expressed in 70 and 54% of the cases,
respectively. The most frequent chromosomal alterations were 1q-
gains (84%), 3q-gains (50%), 5p-gains (33%), 7p-gains (41%), 8p-
losses (64%), 8q-gains (84%), 9q-losses (58%), 11q-losses (50%),
13q-losses (58%), 15q-losses (33%), 17q-gains (33%) and 20q-
gains (50%).

Biomathematical modelling of cytogenetic alteration
patterns in breast cancer

Biomathematical modelling revealed the presence of multiple
clusters in invasive breast cancer as indicated in Figure 1. Distinct
clusters included, for example, 1q-gains/16q-lossses, 9q-losses/5p-
gains/7p-gains/15q-losses or 3q-gains/17q-gains, 20q-gains and
13q-losses, respectively, besides a multitude of other clusters
(Figure 1).

Immunohistochemical characterisation of all ductal
Invasive grade 3 carcinomas/with 16q-losses/with 7p-gains/
with 5p-gains/with 9q-losses

An overview of the absolute numbers of the respective subgroups
and the associated immunohistochemical findings in these
subgroups is given in Table 1. Interestingly, for most of the
markers a clear difference of the immuno-profile could be
observed for the five different groups. Despite high proliferation
indices (Mib-1 and Cyclin A) and the high degree of cytogenetic
instability in ductal invasive grade 3 carcinomas with 7p-gains, the
frequency of 16q-losses and the percentage of ER/PRþ tumours
were significantly higher compared to other subgroups. Similar
data were obtained by the re-evaluation of ductal invasive grade 3
carcinomas with 5p-gains or 9q-losses, respectively, even though
the percentage, especially of ER and PRþ tumours, was lower
(Table 1).

DNA flow cytometric and cytogenetic characteristics of
ductal invasive grade 3 carcinomas with 7p-gains

Since 7p-gains with 16q-losses were among the most frequent
alterations, these ductal invasive grade 3 carcinomas were further
characterised under this new perspective.
All these tumours were nondiploid, one was DNA tetraploid and

the remaining were DNA aneuploid. On average, 16.6 CGH
alterations per case were detected.
16q-losses, 9q-losses, 8q-gains and 1q-gains were present in

more than 70% of these tumours. 5p-gains were detected with a
frequency of 52%. In all, 84% of these tumours were oestrogen
receptor positive and 70% were progesterone receptor positive.
None of the tumours revealed a strong c-erbB2 or p53-accumula-
tion. In all, 20% displayed a Ck 5/6 positive phenotype.
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Figure 1 Dendrogram of cytogenetic alteration patterns revealed from CGH results from 206 invasive breast cancer cases. p and m indicate gains and
losses of the short (p) and long (q) arm of the respective chromosome. Three clusters of interest are indicated by a frame. Whereas for example the 1q-
gain/16q-loss cluster is indicative of highly differentiated tumours (Tsuda et al, 1997), two other clusters are indicative of high-grade carcinomas.
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Figure 2 Dendrogram of 153 invasive breast cancer cases, clustered by their protein expression patterns. Two major clusters were formed. One cluster
arm (indicated by a frame) is characterised by a significantly higher number of 16q-losses and 7p-gains. 16q-losses and 7p-gains are indicated in red and
green, respectively.
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Biomathematical clustering of immunohistochemical
expression patterns in invasive breast cancer

Two major cluster arms could be identified (Figure 2). One of these
major cluster arms (indicated by a frame in Figure 1) revealed a
lower average number of genetic alterations per case (7.6876.08 vs
8.9775.96), and a significantly higher frequency of 16q-losses
(Po0.001), 7p-gains (Po0.05) and combined 7p-gains/16q-losses
(Po0.001). This cluster contained no tumours with strong
(þ þ þ ) overexpression of c-erbB2, p53 or expression of Ck 5/6.

DISCUSSION

In recent years, cytogenetic progression models for various
epithelial neoplasms have been postulated (Jiang et al, 2000;
Boecker et al, 2001). However, straightforward statistical inter-
pretation of the complex aberration patterns by conventional
analysis of CGH-ratio-profiles provided many limitations. Con-
temporary bioinformatics procedures can better handle these
complex patterns, which may provide a better understanding of
mechanisms of carcinogenesis.
In general, the nuclear grade does not seem to change much

during tumour progression. Well-differentiated DCIS are asso-
ciated with invasive carcinomas of low nuclear grade (Holland et al,
1994), while recurrences of breast cancer closely resemble the
cytological pattern of their primary (Millis et al, 1998). Despite
these general rules, some cases exist with an obvious intratumoral
heterogeneity of the nuclear grade, pointing to the possibility of an
occasional progression in nuclear grade (Cserni, 2002). Based on
our present data on invasive breast cancer cases, we are only able
to draw indirect conclusions.
Since this series does not allow a prospective evaluation, the

retrospective evaluation of ductal invasive grade 3 carcinomas
seemed the most promising approach. This was carried out under
the rationale that these tumours, as the extreme end of tumour de-
differentiation, harbour 16q-losses in 20–30% of cases (Buerger
et al, 1999a; Roylance et al, 1999). According to these results, a
stepwise evolution via well-differentiated carcinomas could not be
excluded theoretically for at least a subgroup of these tumours.
From a cytogenetic point of view, these tumours seem to represent
the extreme end of tumour de-differentiation with an accumula-
tion of cytogenetic alterations that are rather rare in breast cancers
of lower tumour grade. When subjecting the cytogenetic data to a
biomathematical approach, alterations mainly seen in ductal
invasive grade 3 cancers clearly formed different clusters
(Figure 1). The importance of 13q-losses, 17q-gains and 20q-gains

in breast cancers and their correlation with morphometric and
other cytogenetic features have been discussed in detail before
(Buerger et al, 2001). No data exist so far with respect to the
meaning of 7p and 5p-gains or 9q-losses in breast cancer, but they
are definitely part of far advanced and complex cytogenetic
alteration patterns. The immunohistochemical profile of these
tumours gave hints that especially 7p-gains are the major hallmark
of this alteration pattern. Ductal invasive grade 3 carcinomas with
7p-gains were mainly aneuploid, displayed 16q-losses in 71% of
the cases and displayed a high average number of cytogenetic
alterations. Even more important was the oestrogen receptor
status. Contrary to expectations for these morphologically far-
advanced tumours, 84% of these tumours were oestrogen receptor
positive, 70% were progesterone receptor positive and none
revealed a strong c-erbB2 overexpression or p53 accumulation
(hallmarks of gene amplification or mutations, respectively). The
whole cytogenetic and immunohistochemical pattern of tumours
with 7p-gains, and to a lesser extent 5p-gains as well as 9q-losses
(see also cluster in Figure 2), therefore puts them forward as
putative examples of poorly differentiated tumours originating
from well-differentiated tumours that have acquired a high degree
of cytogenetic instability (Figure 3). Even though the exact overall

Table 1 Overview of immunohistochemical staining patterns and incidence of 16q-losses in subgroups of ductal invasive grade 3 breast cancers

Grade3 all Grade3 with 16q-losses Grade3 with 7p-gains Grade3 with 5p-gains Grade3 with 9q-losses

Average number of cytogenetic
alterations per case 11.7 15.5 16.6 16.8 13.0

ER all (+) cases 58 70 84 75 66
PR all (+) cases 63 54 70 30 58
Mib-1 (++)– (+++) 90 90 100 100 90
c-erbB2 (�) – (++) 74 80 100 80 100
p53 (�) – (+) 85 100 100 80 81
Cyclin D1 all (+) cases 25 33 40 22 44
bcl-2 all (+) cases 24 60 60 44 50
p21 all (+) cases 41 50 60 45 40
p27 (�) – (++) 87 50 40 88 80
Cyclin A (++)– (+++) 75 80 100 90 72
Ck 5 all (+) cases 23 20 20 44 20
16q-losses 27 100 71 50 58

The frequencies are indicated in %. The average number of cytogenetic alterations per case is given in absolute numbers.

Clonal
proliferation

G1 and G2
in situ and invasive

breast cancer

G2 and G3
in situ and invasive

breast cancer

erbB2 +++
p53-mut.

Ck5+ 

Aneuploid

+7p
+5p, −9q

−16q

Diploid
Aneuploidisation

ER+

ER−

Figure 3 Extended hypothetical model of breast carcinogenesis with
evidence for the existence of parallel and stepwise progression pathways. A
limited subgroup of well-differentiated breast cancers, characterised by
16q-losses and ER-expression might progress towards poorly differentiated
breast cancers, typically not belonging to the c-erbB2 overexpressing, Ck 5/
6 expressing or p53 accumulating subgroups. This subgroup is characterised
by the gain of chromosome 7p, and to a lesser extent by gains and losses of
5p and 9q, respectively. Whereas the step of progression is associated with
aneuploidisation, the ER-expression remains stable. It will be a focus of
further research work to define the frequency of transition between grades.
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number of tumours following this pathway cannot be reliably
delineated from this approach, this assumption is further
supported by the cluster analysis of breast carcinomas based on
their immunohistochemical expression pattern. Including a multi-
tude of markers besides ER and PR, similar hints for the meaning
of 7p-gains could be shown. 7p-gains were again predominantly
present in a cluster characterised by a low average number of
cytogenetic alterations and a significantly higher frequency of 16q-
losses. It is known that distinct chromosomal alteration patterns
seem to be associated with distinct protein expression patterns
(Isola et al, 1999) and this also seems to hold true for 7p-gains and
its associated alterations. The responsible genes involved in this
cytogenetic instability associated with 7p-gains are largely
unknown. The epidermal growth factor receptor (EGFR), located
on 7p12-13, is an unlikely candidate gene (Briand et al, 1996),
since the overexpression of EGFR in invasive breast cancer is
associated with oestrogen receptor negativity (Harris et al, 1992).
Gene expression analysis studies were able to show that multiple
ER-positive breast cancer groups exist, at least one with a very
unfavourable prognosis (Perou et al, 2000). Further studies have to
show if this specific cytogenetic subgroup with 7p-gains and a high
degree of genetic instability represents the cytogenetic homologue
for these ER-positive tumours defined by gene expression analysis.

Especially, the finding of a high average number of cytogenetic
alterations, shown by itself to be a bad prognostic marker (Isola
et al, 1995), and the association with 9q-losses (Gray, 2001) make
this likely.
In summary, our results on the one hand show that existing

explanation models of breast carcinogenesis are at least partially
verified by independent methods, but can also be extended by
additional biomathematical procedures. With the introduction of
other high-throughput methods such as tissue-arrays (Kononen
et al, 1998; Korsching et al, 2002) for the determination of distinct
protein expression patterns, or gene expression-profiling (Perou
et al, 2000), it will be possible to gain a more complete picture of a
single tumour, allowing a more detailed analysis of mechanisms in
the pathogenesis of breast cancer.
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