
Tumour necrosis factor and PI3-kinase control oestrogen receptor
alpha protein level and its transrepression function

P Bhat-Nakshatri1,5, RA Campbell2, NM Patel2, TR Newton2, AJ King1,3,6, MS Marshall1,3,7, S Ali4 and
H Nakshatri*,1,2,3,5

1Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; 2Department of Surgery, Indiana University School of
Medicine, Indianapolis, IN 46202, USA; 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
46202, USA; 4Department of Cancer Medicine, Imperial College School of Medicine, Hammersmith Hospital, London W12 0NN, UK; 5Walther Cancer
Institute, Indianapolis, IN 46208, USA

Oestrogen receptor alpha (ERa) is an oestrogen-activated transcription factor, which regulates proliferation and differentiation of
mammary epithelial cells by activating or repressing gene expression. ERa is a critical prognostic indicator and a therapeutic target for
breast cancer. Patients with tumours that express higher level of ERa have better prognosis than patients with tumours that are ERa
negative or express lower level of ERa. Better prognosis in ERa-positive patients is believed to be due to repression of proinvasive
gene expression by ERa. Oestrogen receptor alpha represses gene expression by transrepressing the activity of the transcription
factors such as nuclear factor-kappaB or by inducing the expression of transcriptional suppressors such as MTA3. In this report, we
show that ERa transrepresses the expression of the proinvasive gene interleukin 6 (IL-6) in ERa-negative MDA-MB-231 breast cancer
cells stably overexpressing ERa. Using these cells as well as ERa-positive MCF-7 and ZR-75-1 cells, we show that tumour necrosis
factor alpha (TNFa) and the phosphatidylinositol-3-kinase (PI3-kinase) modulate transrepression function of ERa by reducing its
stability. From these results, we propose that TNFa expression or PI3-kinase activation lead to reduced levels of ERa protein in
cancer cells and corresponding loss of transrepression function and acquisition of an invasive phenotype.
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Oestrogen receptor alpha (ERa) expression status is of prognostic
significance for breast cancer. Breast cancer patients with the
highest levels of ERa protein have a 90% 5-year survival rate and
display very few p53 mutations. Patients with lower ERa levels
have B45% 5-year survival and higher p53 mutation rates. The
survival rate in these patients is similar to patients with a subset of
ERa-negative breast cancer (Sorlie et al, 2001). Better prognosis in
ERa-positive breast cancer patients can partly be attributed to
their response to antihormone therapy (Ali and Coombes, 2002).
However, because patients with higher rather than lower ERa
protein have better prognosis, it is likely that some of the ERa-
regulated genes suppress invasion and metastasis of breast cancer.
Consistent with this possibility, it was shown recently that ERa-
dependent expression of metastasis associated protein 3 (MTA3) is
required to prevent invasive growth of breast cancer cells (Fujita
et al, 2003). Furthermore, a recent microarray study has shown

that among B400 genes regulated by ERa/oestrogen in MCF-7
cells, majority of them (70%) are downregulated (Frasor et al,
2003). Some of the downregulated genes are known to be involved
in invasion and homing of metastatic cancer cells (Muller et al,
2001).
Oestrogen receptor alpha is an oestrogen-activated transcription

factor, which modulates gene expression by binding to oestrogen
response elements (ERE) in the responsive promoter and through
protein–protein interactions (Mangelsdorf et al, 1995; Di Croce
et al, 1999). Oestrogen receptor alpha contains a central DNA
binding domain (DBD), C-terminal ligand binding domain (LBD),
as well as ligand-dependent activation function (AF-2) and N-
terminal ligand-independent activation function (AF-1). Upon
binding to oestrogen, ERa homodimers bind to ERE in the
responsive gene promoters and activate gene expression. In
addition, ERa homodimers activate non-ERE containing promo-
ters by interacting with transcription factors such as SP-1 and AP-
1 (Gaub et al, 1990; Paech et al, 1997; Dong et al, 1999).
Transactivation by ERa involves ligand-dependent recruitment of
coactivators, which serve as an intermediate between the receptor
and the RNA polymerase II transcription complex (Horwitz et al,
1996; Glass and Rosenfeld, 2000). Although binding of oestrogen to
LBD is essential for complete activation of ERa, phosphorylation
by extracellular signal-activated kinases is thought to play a role in
oestrogen-dependent and oestrogen-independent activity of ERa
(Ali et al, 1993; Le Goff et al, 1994). Recently, a novel cell-type
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specific nongenomic action of ERa involving oestrogen-dependent
association of ERa with phosphatidylinositol-3-kinase (PI3-kinase)
leading to activation of the cell survival kinase AKT has also been
reported (Simoncini et al, 2000). In addition, ERa localised in the
plasma membrane has been shown to activate the MAP kinase
pathway and contribute to growth regulation of breast cancer cells
(Filardo et al, 2000; Marquez and Pietras, 2001; Razandi et al,
2003).
Transrepression of gene expression through protein–protein

interaction is also a critical function of ERa. For example,
inhibition of GATA-1-mediated transcription by ERa is respon-
sible for suppression of erythroid differentiation by oestrogen
(Blobel et al, 1995). The protective effect of oestrogen against
sepsis is believed to be due to the suppression of proinflammatory
gene expression (Schroder et al, 1998; Evans et al, 2002). Similarly,
ERa-dependent repression of nuclear factor kappa B (NF-kB)
activity is important for maintaining bone density (Jilka et al,
1992; Pottratz et al, 1994; Stein and Yang, 1995). Evans et al (2002)
have identified several NF-kB-regulated genes that are repressed
by ERa, which include antiapoptotic proteins GADD45b, apoptosis
inhibitor 2, A20 and NF-kB p105 . A recent report suggested that
ERa at higher levels reduces cancer cell growth and angiogenesis
by inhibiting the expression of vascular endothelial growth factor
(Ali et al, 2001). Furthermore, it was reported that unliganded and
liganded ERa reduce cancer cell migration and invasion, through a
mechanism that involves protein–protein interaction (Platet et al,
2000). Unlike the case of the glucocorticoid receptor (GR) where
transrepression function is well characterised (Nissen and
Yamamoto, 2000), the mechanism of ERa-mediated transrepres-
sion is not completely understood. Antagonism of NF-kB activity
has been used as a model system to understand ERa-mediated
transrepression. Repression of NF-kB activity by ERa is cell type
specific (Cerillo et al, 1998). Both the DBD and LBD of ERa are
essential for efficient repression of NF-kB activity (Stein and Yang,
1995; Valentine et al, 2000). It is suggested that ERa interacts
directly with the Rel-homology domains (RHD) of the NF-kB
subunits, p50 and p65, thereby interfering with the transcriptional
activity of DNA-bound NF-kB (Stein and Yang, 1995). Apart from
inhibition through direct protein–protein interaction, competition
for the limiting amount of common coactivators such as SRC-1
and p300/CBP is suggested to play a role in ERa-dependent
repression of NF-kB activity, although studies with ERa harbour-
ing mutations in its transactivation domain fail to support such a
mechanism (Sheppard et al, 1999; Harnish et al, 2000; Valentine
et al, 2000).
The goals of this study were to determine whether ERa

transrepresses the expression of interleukin 6 (IL-6), a cytokine
that is linked to breast cancer cell invasion and motility as well as
resistance to chemotherapy (Tamm et al, 1991; Conze et al, 2001),
and to identify signalling pathways that may modulate transre-
pression by altering the stability of ERa. Using the ERa-negative
breast cancer cell line MDA-MB-231 stably overexpressing ERa, we
show that ERa transrepresses tumour necrosis factor alpha
(TNFa)-inducible expression of IL-6. We also show that TNFa
and PI3-kinase pathway modulate transrepression by reducing the
stability of ERa.

MATERIALS AND METHODS

Generation of ERa-overexpressing cells

MCF-7, ZR-75-1 and MDA-MB-231 cells were purchased from the
American Type Culture Collection (ATCC, Manassas, VA, USA).
The cDNA encoding ERa was cloned into the EcoRI site of the
retroviral vector LxSN (pLxSN-ERa) (Miller and Rosman, 1989).
Packaging of retrovirus and infection of MDA-MB-231 were
performed as described previously (Newton et al, 1999). Briefly,

AM12 cells were transfected with pLxSN or pLxSN-ERa expression
vector and selected in media containing 600 mgml�1 G418. G418-
resistant colonies were pooled and media supernatant with virus
was used for infecting MDA-MB-231 cells. MDA-MB-231 cells were
incubated with viral supernatant for 2 h in the presence of
8 mgml�1 polybrene. The transduced cells were grown in the
presence of G418 (1mgml�1). Individual G418-resistant colonies
were isolated and ERa expression was measured by Western
blotting. The constitutively active PI3-kinase expression vector
(myr-PI 3-Kp110) was purchased from Upstate Biotechnology
(Charlottesville, VA, USA). Constitutively active AKT (CA-AKT)
and kinase-dead AKT (KD-AKT) have been described previously
(Campbell et al, 2001). Cells were transfected with expression
vectors using Lipofectamine 2000 transfection reagent as recom-
mended by the manufacturer and analysed for ERa protein levels
48 h after transfection (Invitrogen, Carlsbad, CA, USA).

Northern blot analysis

Total RNA was prepared using the RNAeasy kit from Qiagen
(Valencia, CA, USA). RNA was subjected to Northern blot analysis
as previously described (Newton et al, 1999). Interleukin-6 cDNA
was purchased from ATCC, whereas tomour necrosis factor
receptor associated protein 1 (TRAF-1) cDNA has been described
previously (Rothe et al, 1994).

Western blot analysis

Whole-cell extracts were prepared in radioimmunoassay buffer
(RIPA; 50mM Tris pH 7.5, 0.25% sodium deoxycholate, 1% NP40,
150mM NaCl, 1mM EDTA, 100 mM sodium orthovanadate, 1mM

sodium fluoride, 1mM b-glycerophosphate, 0.5mM PMSF,
2 mgml�1 each of aprotenin, leupeptin and pepstatin) and
subjected to Western blot analysis as previously described
(Newton et al, 1999). Oestrogen receptor alpha antibody raised
against B-domain of ERa was purchased from Chemicon (MAB463;
Temecula, CA, USA), whereas b-actin antibody was from Sigma
Chemicals (St Louis, MO, USA). MG132, PD98059, LY294002, PP2
and protein kinase A (PKA) inhibitor peptide were purchased from
Calbiochem (San Diego, CA, USA), whereas TNFa was purchased
from R&D systems (Minneapolis, MN, USA). Cells were incubated
with kinase inhibitors for 2 h before addition of TNF. 4-
Hydroxytamoxifen was purchased from Sigma Chemicals, whereas
ICI182780 was purchased from Tocris (Ellisville, MO, USA).

RESULTS

ERa reduces TNFa-inducible IL-6 but not TRAF-1
expression

Previously, we reported constitutive NF-kB activation in the ERa-
negative breast cancer cell line MDA-MB-231, which correlated
with increased expression of several NF-kB-inducible genes
including IL-6, Mn-SOD, cIAP-2 and TRAF-1 (Patel et al, 2000).
In addition, using transient transfection assays, we showed
transrepression of NF-kB activity by ERa in these cells (Nakshatri
et al, 1997). To further characterise the transrepression function of
ERa, we stably overexpressed ERa in MDA-MB-231 cells using
retrovirus-mediated gene transfer (Figure 1A). Oestrogen receptor
alpha-3 and ERa-6 clones overexpress wild-type ERa, whereas
ERa-8 and ERa-9 overexpress mutant ERa (C530R), which cannot
activate transcription of an ERE-containing reporter gene (data not
shown). Cysteine 530 is within the recently identified KCK motif
involved in intramolecular AF-1 and AF-2 interaction and this
mutation reduces the affinity of ERa to oestrogen (E2) (Metivier
et al, 2002). Cells expressing the mutant protein were used to
evaluate transrepression independent of coactivator competition
and by a mutant ERa with reduced affinity to E2. We compared the
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TNFa-inducible expression of NF-kB-regulated genes IL-6 and
TRAF-1 in parental and ERa-overexpressing cells. Inducible IL-6
but not TRAF-1 expression was lower in ERa-3 and ERa-6 cells
compared to LxSN2 cells (Figure 1B). Similarly, IL-6 expression
was lower in ERa-8 cells compared to LxSN23 cells (Figure 1B).
Tumour necrosis factor alpha (TNFa)-inducible expression of
cIAP-2, another NF-kB regulated gene, was not influenced by ERa
suggesting that transrepression is promoter-context dependent
(data not shown). Transrepression of Mn-SOD expression by ERa
was observed with early passage cells but not in late passage cells,
which suggests existence of inherent mechanism to overcome
transrepression (data not shown). As mutant ERa(C530R)
transrepressed IL-6 expression, sequestration of common limiting
coactivators by ligand-activated ERa is not necessary for
transrepression.

Pure antioestrogen ICI182780 reverses transrepression
function of ERa

To further confirm the role of ERa in reducing TNFa-inducible
expression of IL-6 in ERa-overexpressing cells, we preincubated
cells with E2, tamoxifen or ICI182780 for 2 h and measured IL-6
expression with or without TNFa treatment for 16 h. Binding of E2
leads to activation and subsequent proteosome-dependent degra-
dation of ERa (Lonard et al, 2000). Previous studies have shown
that binding of tamoxifen to ERa leads to stabilisation, whereas
binding to ICI182780 leads to degradation of ERa without
activation (Ali et al, 1993). Tamoxifen stabilised, whereas E2 and
ICI182780 reduced ERa level in ERa-6 cells (Figure 2A). The effect
of various ligands on basal and TNFa-inducible IL-6 and TRAF-1
expression was examined. Oestrogen reduced basal IL-6 expression
in ERa-6 cells compared to LxSN2 cells (Figure 2B, middle panel).
This could be due to sequestration and subsequent degradation of
common coactivators by ERa. Interestingly, TNFa-inducible IL-6
expression was not influenced by E2. TNFa-induced IL-6 expres-

sion was still lower in tamoxifen-treated ERa-6 cells compared to
tamoxifen-treated LxSN2 cells, suggesting that tamoxifen-bound
ERa is capable of transrepression, consistent with our previous
transient transfection studies (Nakshatri et al, 1997). In contrast,
TNFa-inducible IL-6 expression was similar in ICI182780-treated
ERa-6 and LxSN2 cells (Figure 2B, compare lanes 8 and 16). Note
that none of the ligands altered TNFa-inducible TRAF-1 expres-
sion, which suggests that the observed effect of ligands on IL-6
expression is not due to toxicity. From these results, we conclude
that ERa is responsible for lower IL-6 expression in ERa-6 cells
compared to LxSN2 cells, and antioestrogens that destabilize ERa
can overcome ERa-mediated suppression of IL-6 expression.

TNFa reduces the stability of ERa protein

We consistently observed a lower level of ERa in TNFa-treated
cells compared to untreated cells and a further enhancement of
ICI182780-dependent degradation of ERa by TNFa (Figure 2A). In
early passage cells, TNFa reduced ERa protein level by as much as
60% (data not shown). This raised the possibility that TNFa
modulates transrepression function of ERa by inducing its
degradation. Towards this end, ERa-6 and ERa-8 cells with or
without prior treatment with TNFa for 16 h were incubated with
cyclohexamide to block protein synthesis. Cells were harvested at
specific time intervals and ERa protein was measured by Western
blotting. Oestrogen receptor alpha stability was much lower in cells
pretreated with TNFa compared to untreated cells (Figure 3A).
Oestrogen receptor alpha undergoes proteosome-mediated degra-
dation in TNFa-treated cells as the proteosomal inhibitor MG132
prevented ERa degradation (Figure 3B). Neither caspase inhibitors
nor calpain inhibitors altered the stability of ERa under untreated
and TNFa-treated conditions (data not shown). Oestrogen receptor
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alpha transcript levels were similar in untreated and TNFa-treated
cells, suggesting that the effect of TNFa on ERa is at the level of
protein stability (Figure 3C). None of the effects of TNFa on ERa is
due to TNFa-induced apoptosis of MDA-MB-231 as these cells
were resistant to TNFa irrespective of ERa overexpression (data
not shown). Tumour necrosis factor alpha-induced destabilisation
of ERa was not restricted to MDA-MB-231 cells as TNFa reduced
ERa protein in ERa-positive MCF-7 and ZR-75 cells (Figure 3D).
Consequences of ERa degradation on transrepression in MCF-7
cells could not be studied because of lack of IL-6 expression in
these cells and their sensitivity to TNFa-induced apoptosis (data
not shown).

Phosphatidylinositol-3-kinase inhibitor LY294002
stabilises ERa protein in MDA-MB-231 cells and inhibits
TNFa-induced but not E2-induced degradation of ERa in
MCF-7 cells

MAPK, cyclin A/cdk2, AKT, RSK2, PKA, PAK1, p38 kinase and Src
phosphorylate ERa (Ali et al, 1993; Lee and Bai, 2002; Wang et al,
2002). Phosphorylation leads to ligand-independent activation in
most cases, and activated ERa undergoes coactivator-ubiquitin-
dependent degradation (Lonard et al, 2000). Phophatidylinositol-

3-kinase, which is upstream of AKT, as well as MAPK are
constitutively active in MDA-MB-231 cells and may promote
phosphorylation-dependent degradation of ERa (Ma et al, 2001;
Sliva et al, 2002). Consistent with this possibility, ERa showed
ligand-independent activity in ERa-3 and ERa-6 cells (data not
shown). To investigate whether any of these kinases determine the
stability of ERa and thus modulate transrepression function, we
treated cells with various inhibitors for 16 h with or without TNFa
treatment and measured ERa protein. The MAP kinase inhibitor
PD98059, PKA inhibitory peptide or Src kinase inhibitor did not
alter ERa protein level in ERa-6 cells (Figure 4A). In contrast, the
PI3-kinase inhibitor LY294002 stabilised ERa protein under both
untreated and TNFa-treated conditions. Similar results were
obtained in ERa-8 cells. Increase in ERa protein in LY294002-
treated cells was not due to increased transcription of ERa in
LY294002-treated cells (Figure 4B). To further confirm the role of
PI3-kinase on ERa stability, we examined the effect of LY294002 on
TNFa-induced degradation of ERa in MCF-7 cells. Although
LY294002 reduced the basal ERa protein level possibly due to its
effects on general transcription, it blocked TNFa-induced but not
E2-induced degradation of ERa (Figure 4C). Recent studies have
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shown that LY294002 inhibits both PI3-kinase and casein kinase II
(Davies et al, 2000). We used apigenin, a casein kinase II inhibitor
(Critchfield et al, 1997), to support our conclusion that PI3-kinase
is involved in TNFa-induced degradation of ERa. Apigenin failed
to inhibit TNFa-induced degradation of ERa in MCF-7 cells
(Figure 4D). In fact, apigenin on its own reduced ERa level. To
further confirm the role of PI3-kinase in destabilisation of ERa, we
transfected MCF-7 cells with constitutively active PI3-kinase and
measured ERa protein 48 h after transfection. Oestrogen receptor
alpha protein levels were lower in cells transfected with PI3-kinase
expression vector (Figure 4E). Similar results were obtained in 293
and MDA-MB-231 cells transfected with ERa and constitutively
active PI3-kinase (data not shown). Activation of AKT alone is
sufficient for PI3-kinase-mediated destabilisation of ERa as a
constitutively active AKT (CA-AKT) but not kinase-dead AKT
(KD-AKT) reduced ERa levels (Figure 4E). It is possible that PI3-
kinase-mediated destabilisation of ERa involves AKT-dependent
phosphorylation of ERa followed by activation-coupled degrada-
tion. Our repeated attempts to establish MDA-MB-231 cells
overexpressing ERa mutants that cannot be phosphorylated by
cyclin A/cdk2 (S102N,104P,106A), MAPK/cdk7 (S118A), AKT/RSK
(S167A), PKA (S236A) or SRC (Y537F) were not successful. In
transient transfection assays, phosphorylation-defective mutants
were always expressed at a higher level than wild-type ERa
(although expressed from a same promoter), suggesting that
phosphorylation-defective mutants are more stable than wild-type
ERa (data not shown).

Prolonged exposure of ERa-overexpressing cells to TNFa
leads to loss of transrepression, which can be reversed
partially by LY294002

To determine the consequences of stabilisation of ERa by
LY294002 on transrepression, we treated parental and ERa-
overexpressing cells with TNFa for 16 h or 3 days and measured
IL-6 expression levels. Interleukin-6 expression in ERa-8 cells was
lower than in parental cells after 16 h of TNFa treatment (Figure 5).
However, IL-6 expression was similar in both LxSN23 and ERa-8
cells after 3 days of TNFa treatment. Interestingly, LY294002 was
more effective in reducing TNFa-inducible IL-6 expression in ERa-
8 cells compared to LxSN23 cells. Similar results were obtained in
ERa-6 cells. Note that LY294002 had no effect on TNFa-inducible
expression of TRAF-1. Thus, inhibition of TNFa-inducible IL-6
expression by LY294002 is less likely due to reduction in AKT/
PKB-mediated activation of NF-kB or toxicity. We propose that
LY294002 reduces TNFa-inducible IL-6 expression in ERa-over-
expressing cells by enhancing transrepression function of ERa. In
contrast to enhanced transrepression, LY294002 reduced transac-
tivation by ERa (data not shown, Kishimoto and Nakshatri,
submitted). Surprising specificity of LY294002 in inhibiting IL-6
but not TRAF-1 expression is encouraging as inhibitors with
similar properties can be used to reduce invasion of breast cancer
cells, more so of ERa-positive cancer cells, by specifically reducing
IL-6 expression.

DISCUSSION

In this report, we show that the ERa protein level in breast cancer
cells is regulated by TNFa and PI3-kinase, which has important
implications on the transrepression function of ERa. Transrepres-
sion by ERa is believed to be responsible for reducing invasion and
metastasis of ERa-positive breast cancers (Platet et al, 2000).
Repression of gene expression appears to be a major function of
ERa as recent studies show that among B400 genes regulated by
ERa in MCF-7 cells, B70% of them are downregulated (Frasor
et al, 2003). By lowering the ERa protein level, TNFa and PI3-
kinase can overcome transrepression by ERa, thus promoting

invasion and metastasis of breast cancers. Recent molecular
profiling data with patient samples is consistent with the above
observation. Patients with lower levels of ERa protein in their
tumours have shorter disease-free survival rates than patients with
higher levels of ERa in their tumours (Sorlie et al, 2001). It is
interesting that PI3-kinase levels are higher in highly invasive and
metastatic breast cancer cell line MDA-MB-231 cells compared to
nonmetastatic MCF-7 cells (Sliva et al, 2002), which can explain for
LY294002-induced stabilisation of ERa in MDA-MB-231 cells
overexpressing ERa. Although our efforts to generate MCF-7 and
MDA-MB-231 cells lacking PI3-kinase using siRNA technique were
not successful, the failure of other kinase inhibitors including
PD98059, PP2 and apigenin to alter the stability of ERa suggests
that specific inhibition of PI3-kinase is responsible for LY294002-
induced stabilisation of ERa. The PI3-kinase pathway appears to
be involved in destabilisation of ERa by TNFa but not E2, as
LY294002 inhibited TNFa-induced but not E2-induced degrada-
tion of ERa in MCF-7 cells (Figure 4). Our results differ to some
extent from a recent report, which showed enhanced turnover of
unliganded and liganded ERa in MCF-7 cells treated overnight
with LY294002 (Marsaud et al, 2003). Authors suggested that PI3-
kinase activity is required for stabilisation of ERa in MCF-7 cells.
Some of the effect of LY294002 on ERa protein level in MCF-7 cells
could be at the level of ERa transcription from the endogenous
promoter as we also observed similar decrease in ERa protein in
MCF-7 cells treated with LY294002. However, this is not the case
when ERa is expressed through a heterologous promoter as
LY294002 stabilised ERa in MDA-MB-231 derivatives ERa-6 and
ERa-8 cells (Figure 4A). Several recent studies suggest that data
generated using LY294002 alone should be interpreted cautiously.
For example, LY294002 inhibits both PI3-kinase and casein kinase
II at same concentration (Davies et al, 2000). LY294002 has been
shown to bind to the LBD of ERa and inhibit its activity (Pasapera
Limon et al, 2003). To ensure a direct role for PI3-kinase in
destabilisation of ERa, we determined the effect of overexpression
of constitutively active PI3-kinase on ERa protein levels in MCF-7
cells. PI3-kinase reduced ERa protein level in these cells
(Figure 4E).
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Figure 5 LY294002 inhibits TNFa-induced IL-6 but not TRAF-1
expression. Cells were treated with TNFa for 16 h or 3 days with or
without LY294002. The media was changed daily with the addition of fresh
TNFa and LY294002. Interleukin-6 and TRAF-1 expression levels were
measured by Northern analysis.
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A major implication of this study is on sensitivity of
breast cancer cells to chemotherapy. Interleukin-6 has been
shown to increase motility and confer multidrug resistance
to breast cancer cells (Tamm et al, 1991; Conze et al, 2001).
By reducing basal and/or TNFa-induced IL-6 expression, ERa
can reduce multidrug-resistant growth of breast cancer cells.
Consistent with this possibility, in preliminary studies, we
have observed increased sensitivity of ERa-overexpressing MDA-
MB-231 cells to doxorubicin (data not shown). PI3-kinase
inhibitors may further enhance the sensitivity of ERa-expressing
cells to chemotherapy by stabilising ERa. We have recently
observed inhibition of the transactivation function of ERa in
tamoxifen-resistant breast cancer cells by PI3-kinase inhibitors
(Kishimoto and Nakshatri, submitted). From these results, we
propose that PI3-kinase inhibitors have the potential to overcome
the multidrug resistance of ERa-positive breast cancers by
simultaneously increasing transrepression and reducing transacti-
vation by ERa.
How TNFa and PI3-kinase promote degradation of ERa remains

to be determined. Although TNF-induced degradation of ERa has
been reported, to our knowledge, this is the first report
demonstrating a role for PI3-kinase in ERa degradation (Danforth
and Sgagias, 1993). Phosphatidylinositol-3-kinase has recently
been shown to be required for degradation of b-arrestin-1 in
response to chronic insulin treatment (Dalle et al, 2002). It is
possible that TNFa and PI3-kinase induces the expression of a
protein that targets ERa for proteosome-mediated degradation or
it may induce the activity of proteosomal subunits, which alters the
specificity of the proteosome. In this regard, it has been shown that
TNFa increases ubiquitin-conjugating activity by increasing the
expression of UbcH2 through NF-kB (Li et al, 2003). The other
possibility is that TNFa alters the NEDD8 pathway, which has
recently been shown to be involved in ERa degradation (Fan et al,
2003). Peroxisome proliferator-activated receptor gamma (PPARg)
and aryl hydrocarbon receptor also promote proteosomal degra-
dation of ERa (Qin et al, 2003; Wormke et al, 2003). It is possible
that TNFa utilises these receptors to promote ERa degradation. In
this regard, kinetics and degree of TNF and aryl hydrocarbon

receptor-induced degradation of ERa are similar. The other
possibility is that TNFa, like IFNa, induces the replacement of
proteosomal subunits, resulting in altered proteolytic specificity
(Hisamatsu et al, 1996).
Although interaction between NF-kB and ERa was reported

about 8 years ago (Stein and Yang, 1995), how that interaction
leads to either transactivation or transrepression is not known.
Initial studies suggested that competition for limiting coactivators
is responsible for transrepression. However, subsequent studies by
Parker’s group and this study with a mutant ERa rule out
coactivator competition as being the primary mechanism of
transrepression, at least in breast cancer cells (Sheppard et al,
1999; Harnish et al, 2000; Valentine et al, 2000). Also, our studies
show that not all NF-kB-regulated genes are transrepressed by
ERa, which suggests that transrepression involves specific
promoter context. There may be similarity in transrepression by
GR and ERa. Expression of IL-8 upon TNFa stimulation involves
NF-kB-dependent assembly of the transcription preinitiation
complex followed by phosphorylation of the RNA polymerase II
carboxyl terminal domain. Glucocorticoid receptor has been
shown to interfere with phosphorylation of the RNA polymerase
II carboxyl terminal domain without interfering with the
preinitiation complex formation (Nissen and Yamamoto, 2000).
Transrepression by GR in some instances involves corecruitment
of the coactivator molecule GRIP1, and the coactivators SRC-1 and
SRC-3 cannot substitute this function of GRIP1 (Rogatsky et al,
2002). Promoter specificity in ERa-mediated transrepression may
also involve a similar mechanism.
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