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The aim of this study was to treat carcinoembryonic antigen (CEA)-expressing pancreatic carcinoma cells with tumour necrosis factor
alpha (TNFa) and simultaneous radiation therapy (RT), using a bispecific antibody (BAb) anti-TNFa/anti-CEA. TNFa used alone
produced a dose-dependent inhibition of the clonogenic capacity of the cultured cells. Flow cytometry analysis of cell cycle
progression confirmed the accumulation of cells in G1 phase after exposure to TNFa. When TNFa was added 12 h before RT, the
surviving fraction at 2Gy was 60% lower than that obtained with irradiation alone (0.29 vs 0.73, respectively, Po0.00001). In
combination treatment, cell cycle analysis demonstrated that TNFa reduced the number of cells in radiation-induced G2 arrest,
blocked irreversibly the cells in G1 phase, and showed an additive decrease of the number of cells in S phase. In mice, RT as a single
agent slowed tumour progression as compared with the control group (Po0.00001). BAbþTNFaþRT combination enhanced the
delay for the tumour to reach 1500mm3 as compared with RT alone or with RTþTNFa (P¼ 0.0011). Median delays were 90, 93,
and 142 days for RT alone, RTþTNFa, and RTþ BAbþTNFa groups, respectively. These results suggest that TNFa in combination
with BAb and RT may be beneficial for the treatment of pancreatic cancer in locally advanced or adjuvant settings.
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Adenocarcinoma of the pancreas remains one of the most difficult
malignancies to treat. The incidence has steadily increased over the
past four decades (Gudjonsson, 1987), and its prognosis is still
dismal, despite tremendous efforts in early diagnosis and therapy.
The 5-year survival rate is less than 5% with a complete surgical
resection (Gudjonsson, 1987), ranking this cancer fourth among
the leading causes of cancer death (Parker et al, 1996).
Unfortunately, at the time of diagnosis, the majority of patients
(80–90%) have locally or metastatic inoperable tumours. Radia-
tion therapy (RT) alone or in combination with chemotherapy
showed modest efficacy in local control and palliation (Andre et al,
2000; Kornek et al, 2000; Azria et al, 2002). Despite these intensive
efforts to improve the efficacy of conventional therapy, no
satisfactory progress in dealing with this cancer has been made.
Accordingly, new treatment modalities are required for this
tumour.
Current interest has focused on biological response modifiers as

antineoplastic agents. Among them, tumour necrosis factor alpha
(TNFa) was originally identified as a tumoricidal protein effecting
haemorrhagic necrosis of transplanted solid tumours in mice

(Carswell et al, 1975). It is a multipotent cytokine produced mainly
by activated macrophages with the ability to mediate cytotoxicity
both in vitro (Sugarman et al, 1985) and in vivo (Carswell et al,
1975; Helson et al, 1979). TNFa usually does not kill untrans-
formed cells (Sugarman et al, 1985) but shows an antiproliferative
effect on certain tumour cells in vitro by still undefined
mechanisms. Recently, Ruegg et al (1998) reported evidence for
the involvement of endothelial cell integrin avb3 in the disruption
of the tumour vasculature induced by the combination of TNFa
and IFNg.
Several in vitro clonogenic assays suggest that an additive or a

supra-additive interaction may occur between TNFa and ionising
radiation (Hallahan et al, 1990; Gridley et al, 1994a; Azria et al,
2003a) as well as an enhancement of the antitumour effect of
radiation in some murine and human tumours in vivo (Sersa et al,
1988; Nishiguchi et al, 1990; Gridley et al, 1997; Azria et al, 2003a).
The oxidative damage produced by TNFa (Zimmerman et al, 1989)
may enhance cellular damage produced by ionising radiation. In
addition, TNFa and radiation can induce apoptosis in target cells
(Yamada and Ohyama, 1988; Langley et al, 1993) even if cells are
normally highly resistant to the induction of radiation-induced
apoptosis (Kimura et al, 1999).
In different clinical trials using systemic injection of TNFa, the

results have been disappointing mainly because patients were
found to have significantly lower maximum tolerated doses
(Abbruzzese et al, 1989; Moritz et al, 1989) as compared with
mice (Asher et al, 1987; Havell et al, 1988). These limited results
were probably due to the short circulatory half-life of TNFa and its
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severe systemic side effects. Studies involving regional
(Lienard et al, 1992; Mavligit et al, 1992; Lejeune et al, 1998) or
intratumoral (van der Schelling et al, 1992) injection of TNFa
have demonstrated its potential for cancer therapy, but only
when a high enough therapeutic concentration of TNFa was
obtained in the tumour with a nontoxic systemic concentration.
To overcome this limitation, we used previously a bispecific
antibody (BAb) directed against carcinoembryonic antigen (CEA)
and TNFa to target this cytokine in human CEA-expressing
colorectal carcinoma treated simultaneously with RT (Azria et al,
2003a).
In the present study, we report the results of clonogenic tests of

pancreatic (BxPC-3) cell survival, which confirm a superiority of
the radiation-TNFa combination as compared with radiation
alone. We show here a nonreversible cell cycle arrest of these
cells treated by TNFa alone or in combination with ionising
radiation. Using nude mice-bearing BxPC-3 xenografts, we showed
a significant enhanced tumour growth delay when the BAbþ
TNFaþRT combination was used as compared with RT alone and
with RTþTNFa.

MATERIALS AND METHODS

Cell line and cell culture

The CEA-expressing human pancreatic carcinoma BxPC-3 cell line
(Tan et al, 1986) was obtained from the American Type Culture
Collection (Rockville, MD, USA). The cells were cultured in RPMI-
1640 medium (Gibco Laboratories, France) supplemented with
10% heat-inactivated fetal calf serum (Gibco Laboratories, France),
300mgml�1 glutamine, 0.25mgml�1 fungizone, 100mgml�1 strep-
tomycin, and 100Uml�1 penicillin G. These cells were adherent
and grew as monolayers at 371C in a humidified 5% CO2 incubator.
The BxPC-3 cells were harvested with 0.5 g l�1 trypsin (Gibco
Laboratories, France) and 0.2 g l�1 EDTA (Gibco Laboratories,
France) for 3min. Cultures were checked for the absence of
mycoplasma every month.

TNFa and BAb

Recombinant human TNFa, kindly provided by Dr GR Adolf
(Boehringer Ingelheim, Wien, Austria), was prepared by expres-
sion of a synthetic gene in Escherichia coli. The specific activity of
TNFa, determined in the presence of actinomycin D, was
5� 107 Umg�1 protein as determined by cytolysis of murine
L929 cells. TNFa (at a concentration of 2.5mgml�1) was stored at
–801C until use.
BAb was constructed as previously described (Robert et al,

1996) from the anti-CEA MAb 35A7 (Haskell et al, 1983) and the
MAb tnf18 kindly provided by Dr M Brockhaus (Hoffmann-La
Roche AG, Basel, Switzerland).

Radiation protocols

Cells were plated in 10ml RPMI (to ensure homogeneous energy
deposition within each dish) using 60-mm Petri dishes and
irradiated with a cobalt-60 (60Co) source (g-irradiation, ELITE 100,
Theratronics) in the Radiation Department. The radiation was
delivered as a single dose ranging from 2 to 10Gy in an
11 cm� 11 cm field size at a dose rate of 0.5 Gymin�1. A 3-cm
polystyrene block was used under the Petri dishes during each
irradiation to allow homogeneous back-scattering g-rays. Source-
half depth distance (SHD) was initially calculated to obtain a
constant dose rate of 0.5 Gymin�1 and monthly adapted from the
60Co source radioactivity decrease. Control cells were removed
from the incubator and placed for the same period of time under
the 60Co source but without radiation treatment. In the combined

treatment modality studies, TNFa was added 12 h prior to RT (see
Results, ‘TNFa enhances radiosensitivity’).
For in vivo tumour treatment, the radiation was delivered to the

flank of five mice simultaneously in a 12.5 cm� 12.5 cm field size
at 6 Gy fraction�1 at a dose rate of 0.5 Gymin�1 (SHD of 158 cm),
twice a week, for a total dose of 30Gy. A 6-cm thickness lead block
with eight circular apertures, 3 cm in diameter, was used so that
only the tumours and the underlying normal tissues were exposed
to the radiation. Radiation was measured using dosimetry films
(RA711P, Agfa, Belgium).
Immediately prior to irradiation, the mice were anaesthetised by

intraperitoneal injection of 233 mg g�1 of tribromoethanol dis-
solved in an ethanol : saline combination (1 : 10, v v�1). The
anaesthetic was given to all mice, regardless of treatment group,
to equalise the effects due to stress.

Clonogenic assay

The colony-forming assay and growth curve analyses were used to
assess the sensitivity of the BxPC-3 cells to TNFa. Cultures were
trypsinised, washed, and cells were plated in quintuplicate at a
density of 100 per 60-mm Petri dishes. TNFa was added at
concentrations ranging from 0.3 to 5000Uml�1 12 h after the cells
were plated to allow for cell attachment. Cells were incubated at
371C in a humidified chamber containing 5% CO2 for 12 days. The
colonies were then fixed with a 1 : 3 (v v�1) acetic acid :methanol
solution and stained with 10% Giemsa (Sigma Chemical Co., St
Louis, MO, USA); colonies of more than 50 cells were scored.
Plating efficiency was calculated with and without TNFa. The
dose–response curves were fitted to a four-parameter logistic
model, where the response, R, varies with the dose, D, according to
the equation: R¼ a/(1þ (D/b)c)þR, where a is the difference
between the maximum and minimum response, b is the
concentration of drug needed to obtain 50% of the maximal effect,
c is a slope factor, and R is the maximal effect. The cytotoxic effect
of irradiation on asynchronous, exponentially growing BxC-3 cells
was also determined by the colony-forming assay. Before
irradiation, cell density was determined using appropriate dilu-
tions (100, 300, 600, and 1600 cells for 0, 2, 4, and 6Gy,
respectively), and five replicates of each dilution were plated in
60-mm Petri dishes. Cells were irradiated as described above, 24 h
after plating to allow for cell attachment prior to the administra-
tion of radiation. The TNFa-containing medium was given at a
concentration of 625Uml�1 12 h before irradiation. A dose of
625Uml�1 of TNFa was chosen because colony-forming assays
showed that this dose was sufficient to induce only partial (48%
survival) cell growth when the cytokine was used alone. Cultures
were irradiated when the drug was in the medium and were
immediately returned to the incubator after irradiation. Colonies
were counted after 14 days. Experimentally derived data points are
the mean of three experiments. The multitarget model survival
curves were fit to the data using a least-squares regression to the
linear-quadratic model, S¼ S0 exp (�aD1�bD1

2), where D1 is the
radiation dose, S the surviving fraction, and S0 a normalising
parameter.

Flow cytometry

Cells were plated in 60-mm Petri dishes at a density of 5� 106 cells
dish�1. Treatment consisted of TNFa (625Uml�1) alone at 24 h
(H24), RT (4Gy) at H36, or TNFa (625Uml�1 at H24)þRT (4Gy
at H36). Cells were collected at 48 and 96 h after cell culture and
processed for cell cycle analysis. Cells were harvested by
trypsinisation, washed with PBS, and then 1� 106 cells dish�1 of
treatments were fixed in 70% ethanol for 2min. After removal of
ethanol by centrifugation, cells were then stained with a solution
containing 40 mgml�1 propidium iodide (Sigma, St Louis, USA)
and 0.1mgml�1 RNase A (Roche, Indianapolis, USA). Stained
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nuclei were analysed for DNA-PI fluorescence using a Becton
Dickinson FACScan flow cytometer. Resulting DNA distributions
were analysed by the CellQUEST software (Becton Dickinson,
Mountain View, CA, USA) for the proportion of cells in sub-G0,
G1, S, and G2–M phases of the cell cycle.
In a second series of experiments, cells were treated with TNFa

(625Uml�1) alone at H24 and then cultured for 3 days. Medium
was then harvested and replaced by RPMI. Cells were stained at
different time points up to 21 days and analysed for DNA content
on a FACScan as described above.

In vivo model

All the in vivo experiments were performed in compliance with the
French guidelines for experimental animal studies (Agreement No.
A34220) and fulfil the UKCCCR Guidelines for the welfare of
animals in experimental neoplasia.

Mice Athymic 7–9-week-old female Swiss nude mice (nu/nu,
Iffa Credo, l’Arbresle, France) were housed in self-contained filter-
top cages (five mice cage�1) in a facility controlled for
temperature, humidity, and a 12 : 12 h light : dark cycle under
sterile conditions. The animals were given autoclaved food and
water ad libitum.

Experimental protocols The human pancreatic carcinoma BxPC-3
cells were harvested with 0.25% trypsin solution, washed, and
adjusted to 2� 106 150 ml�1 RPMI-1640 medium without fetal calf
serum. Each mouse was injected s.c. in the right flank with 150 ml
of the cell suspension. After 35 days, the mice were grouped
according to tumour size by measuring tumour diameters with a
Vernier caliper to avoid nonhomogeneous groups before begin-
ning treatments. Tumour dimensions were measured twice weekly
and volumes (mm3) were estimated by the formula d1� d2� d3/2,
where d1 is the length, d2 is the width, and d3 is the height of the
tumour.
On day 35, the mice were assigned to seven different treatment

groups (five mice per group) as follows:
Group 1: 0.9% NaCl i.v. injection alone (200 ml injection�1) for

this control group on days 34, 37, 41, 44, and 48.
Group 2: TNFa at 1 mg i.v.�1 injection alone (in 200 ml 0.9% NaCl

injection�1) on days 34, 37, 41, 44, and 48.
Group 3: BAb at 25 mg i.v.�1 injection alone (in 200 ml 0.9% NaCl

injection�1) on days 33, 36, 40, 43, and 47.
Group 4: BAbþTNFa (ratio 25 mg : 1 mg; molar ratio 12.5 : 1) i.v.

injection (in 200 ml 0.9% NaCl injection�1) on days 33, 36, 40, 43,
and 47. BAb–TNFa mixture was prepared 24 h before injection.
Group 5: Local radiation as described above delivered on days

34, 37, 41, 44, and 48þ 0.9% NaCl i.v. injection (200 ml injection�1)
3 h before irradiation.
Group 6: Local radiation as described above delivered on days

34, 37, 41, 44, and 48þTNFa i.v. injection administered using the
same time–dose schedules as for group 2 with TNFa injections 3 h
before irradiation
Group 7: Local radiationþBAbþTNFa administered using the

same time–dose schedules as for group 4 concerning BAbþTNFa
and group 5 in regard to radiation.
All i.v. injections were performed in the heat dilated tail

vein; the day of tumour implantation was day 0. On the basis
of the biodistribution studies of TNFa and BAb–TNFa
complexes (Robert et al, 1996), we decided to inject TNFa 3 h
prior to RT (group 6) and BAb–TNFa complexes 24 h prior to RT
(group 7).
The mice were weighed twice a week and routinely observed for

signs of toxicity throughout the study particularly digestive
toxicity because of the local flank irradiation.

Statistical analyses

The nonparametric Wilcoxon’s signed-rank test was used to
compare the surviving fraction between the two groups (RT alone
and RTþTNFa). For in vivo experiments, the results were
expressed in terms of the time taken for the tumour to reach a
volume of 1500mm3. The Kaplan–Meier method was used to
estimate the median time taken to reach a tumour volume of at
least 1500mm3. Differences among treatment groups were tested
by the log-rank test. All statistical tests were two-sided with an a
level of 0.05. Data were analysed with software STATA 7.0 (Stata
Corporation, College Station, TX, USA).

RESULTS

TNFa inhibits BxPC-3 proliferation

The cytotoxic effects of increasing concentrations of TNFa (0.3–
5000Uml�1) on asynchronous, exponentially growing BxPC-3
cells were determined in colony-forming assays. Cell survival
followed a dose–response curve fitted to a four-parameter logistic
model as described in Materials and Methods.
Cells were killed by concentrations of TNFa as low as 10Uml�1

(Figure 1A). The LC50, defined as concentration of drug that
reduced the cell survival rate to 50% of that of the controls, was
625Uml�1. Next, BxPC-3 cells were treated with TNFa
(625Uml�1)þBAb (molar ratio of 100 : 1, 1 : 1, or 1 : 100) and
plating efficiencies were compared with that obtained with TNFa
alone. No difference in the surviving fraction was observed when
BAb was added to TNFa at the same or lower molar ratio. In
contrast, when BAb was added in a 100-fold excess, the surviving
fraction of cells exposed to 2Gy was 30% greater than that
observed with TNFa alone, probably due to competition between
the anti-TNFa arm of the BAb in solution and the TNFa receptor
on the cell surface.

TNFa enhances radiosensitivity

Cell survival following irradiation (Figure 1B) in aerated medium
fit a linear quadratic model as described in Materials and Methods.
The surviving fraction at 2 Gy (SF2) was 0.73 and a D0 (dose of
radiation giving 37% survival rate) of 4 Gy when irradiation was
used alone. As shown in Figure 2, TNFa added 12 h before RT (H-
12) led to a significant decrease of the surviving fractions as
compared with those obtained when TNFa was added at H-1 or
Hþ 12 (P¼ 0.02) or when RT was delivered alone. For further
experiments using RT with TNFa, we used TNFa at a concentration
of 625Uml�1 added 12 h before RT. In this combination
treatment, SF2 and D0 were 0.29 and 1.2 Gy, respectively. SF2
was 60% lower in combination treatment with a significant test
result (Po0.00001). When the data were analysed according to the
linear quadratic model, the a and b components were 0.18870.08
and 0.01770.011Gy�2, respectively, without TNFa and
0.3970.06Gy�1 and nearly 0Gy�2 in combination treatments.
These data indicate that treatment with TNFa results in a steeper
decline in cell survival due both to a higher initial slope of the
dose–response curve and a major decrease of the quadratic
parameter. These results show possible additivity between the two
treatments, as confirmed by isobologram analysis (Azria et al,
2003b).

TNFa induces G1 cell cycle arrest

The effect of TNFa treatment on cell cycle phase distribution in
BxPC-3 cell line was evaluated using flow cytometry (Figure 3).
Treatment with 625Uml�1 TNFa for 24 h induced accumulation of
cells in G1 phase (72.8%) with a significant decrease in the
percentage of cells in S phase (20.3%) relative to controls (49.6 and
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37.8%, respectively) (Figure 3A and B). No cells with subdiploid
DNA content was observed, consistent with other results on
human colorectal cell line LS174T (Azria et al, 2003b) demonstrat-
ing that TNFa does not induce apoptosis in these cell lines. After 3
days of treatment, cells were washed and further cultured for 21
days in the absence of the cytokine. We observed a nonreversible
G1 cell cycle arrest (nearly 70% at day 21) without any renewal of
activity of the S phase as compared to day 3 after TNFa treatment
(Table 1).
At 1 day after RT alone, we observed a cell cycle arrest in the G2

phase (40%) with a decrease in the percentage of cells in the G0/G1
and S phases as compared with the control (39 vs 50% and 21 vs
38%, respectively). When TNFa was added 12 h before RT, the
radiation-induced G2/M arrest decreased as compared with RT
alone (31 vs 40%, respectively) with a TNFa-induced G0/G1

blockade and a very low S phase (Figure 3C and D).

BAbþTNFa augments in vivo tumour response to
radiation

BxPC-3 tumours growing s.c. in the right flank of nude mice were
used to test the antitumour activity of TNFa alone or in
combination with RT. TNFa was injected i.v. alone or coinjected
with the anti-CEA/anti-TNFa BAb (BAb–TNFa mixture was
prepared 24 h before injection at a molar ratio of 12.5 : 1). Median
pretreatment tumour volumes (day 35) were 128 (6–135)mm3

with no statistical difference between the groups. Tumour growth
was then measured regularly until tumours were larger than
1500mm3. Radiation alone (group 5), but not TNFa alone (group
2), significantly inhibited tumour progression as compared with
the control group (Po0.00001). No difference in growth delay was
observed between the control group and groups without RT
(groups 2–4). During the same period of observation, treatment
with TNFa slowed tumour growth in irradiated groups, particu-
larly when TNFa was coinjected with BAb. At day 93, when mice in
all other groups were killed (tumour 41500mm3), the median
value of the tumour volume was 260mm3 for the RTþBAbþTNFa
group.
The results expressed in terms of the time to reach 1500mm3 are

shown in Figure 4. In the control group and the groups treated
with TNFa, BAb, or BAbþTNFa, the median delay for the mice to
reach a tumour volume greater than 1500mm3 was 62, 62, 65, and
62 days, respectively, with no statistical difference between the
groups. In the RT-treated groups, the median delays were 90, 93,
and 142 days for the RT alone, the RTþTNFa, and the
RTþBAbþTNFa groups, respectively. No statistical difference
was observed between the RT and RTþTNFa groups. However, in
the presence of the BAb, the curve for group 7 was shown to be
statistically different from the growth curves for tumours treated
with RT alone or RTþTNFa (P¼ 0.0011).
At the end of all treatments, no significant differences were

found in mouse body weight between the seven groups. The
mean7s.e.m. were 23.170.47, 22.470.87, 23.670.61, 2470.65,
2470.37, 24.470.41, 23.770.54 for groups 1, 2, 3, 4, 5, 6, 7,
respectively. No diarrhoea was observed in any group, suggesting
the absence of digestive toxicity. No significant fluid retention,
respiratory distress, or other signs of toxicity were observed in any
of the animals during the course of the study.
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Figure 1 Dose–response curves of the effects of TNFa and irradiation
treatment of BxPC-3 cells. (A) Response of BxPC-3 cells to TNFa. Cells
were grown in the presence of increasing concentrations of TNFa (0.3–
5000Uml�1). Plating efficiencies were compared with controls grown
without TNFa (100% survival). (B) Response of BxPC-3 cells, treated or
not with TNFa, to radiation. BxPC-3 cells treated with TNFa (625Uml�1)
added 12 h prior to irradiation showed a surviving fraction at 2Gy, which
was statistically lower (Po0.00001) than when combination treatment was
used. When the data were analysed according to the linear quadratic
model, the a and b components were, respectively, 0.18870.08Gy�1 and
0.01770.011Gy�2 without TNFa and 0.3970.06Gy�1 and about 0Gy�2

in combination treatments.
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are expressed in terms of the surviving fraction as described in Materials
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DISCUSSION

Pancreatic carcinoma is the fourth leading cause of cancer deaths.
Patient survival of this devastating disease is bleak with less than
5% of patients surviving 5 years after the time of diagnosis

(Greenlee et al, 2000). The current treatment includes a combina-
tion of surgery, chemotherapy, and radiation without any major
improvement in survival (Azria et al, 2002). Over 10 years ago, it
was hypothesised that TNFa could increase tumour response to
radiation through stimulation of the host antitumour immune
responses, direct tumour-cell kill, or through the increase in
tumour-cell sensitivity to radiation (Sersa et al, 1988; Hallahan
et al, 1990; Gridley et al, 1994a, b; Kimura et al, 1999; Azria et al,
2003a). However, early clinical trials were generally disappointing,
with hypotension and vascular leakage frequently being the dose-
limiting side effects (Chapman et al, 1987; Sherman et al, 1988). To
overcome these limitations, we used a BAb directed against CEA
and human TNFa to target this cytokine to the human pancreatic
carcinoma cells BxPC-3 treated simultaneously with RT.
In the first part of our study, we demonstrated direct

cytotoxicity of TNFa on BxPC-3 cells in culture using a clonogenic
assay: TNFa-treated BxPC-3 cells showed reduced plating effi-
ciency (Figure 1), confirming that TNFa can be tumoristatic or
tumoricidal as described for a variety of neoplastic cell types
(Hallahan et al, 1990; Manetta et al, 1990; Gridley et al, 1994a;
Kimura et al, 1999; Azria et al, 2003a). In a time-course experiment
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Figure 3 Effect of TNFa or/and RT on BxPC-3 cell cycle progression. BxPC-3 were harvested after 36 h exposure to TNFa and compared with control
cells ((B) and (A), respectively). In the case of RT treatment, cells were harvested 12 h after RT with or without TNFa (added 12 h before RT) (C and D).
Cells were fixed and stained with PI for flow cytometry analysis as described in ‘Materials and Methods.’ Percentages of G0/G1, S, and G2/M were determined
by CellQUEST analysis software on the basis of DNA content of the histogram. Data represent mean values of duplicate samples. Similar results were
obtained in replicate experiments.

Table 1 Cell cycle distributionsa at different times after treatment by
TNFa in comparison with control (day 0)

Cycle phases Day 0 Day 1 Day 3 Day 7 Day 14 Day 21

G0/G1 50b 73 72 80 78 72
S 38 20 16 12 12 14
G2/M 12 7 12 8 10 14

aAfter 3 days of treatment, cells were washed and further cultured for 21 days in the
absence of the cytokine. Cells were fixed and stained with PI for flow cytometry
analysis at different time points up to 21 days. DNA histograms were modelled with
CellQUEST analysis software and phase percentages for G0/G1, S, and G2/M were
determined. bResults are expressed as mean values (%) of triplicate samples. Similar
results were obtained in six independent experiments.
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(Figure 2), we demonstrated that maximal cell killing increase was
obtained when TNFa was added to the cells 12 h before RT as
compared with 1 h before and 12 h after RT. These data confirmed
those published by Hallahan et al (1990), who demonstrated that
addition of TNFa 4 to 12 h prior to irradiation maximally increases
cell killing.
We also observed that TNFa induced a G1 cell cycle arrest and

that cell exposure for 24 h to TNFa was sufficient to obtain this
effect, which could be considered as irreversible since the G1 arrest
was maintained up to 21 days after elimination of TNFa from the
culture medium (Table 1). This effect can probably be explained by
modifications of the expression of cell-cycle-related proteins
(ongoing research), as described for other cytokine such as
interferon g (Matsuoka et al, 1999; Gooch et al, 2000), and by the
fact that TNFa induces BxPC-3 cycle distribution modification
which may render the cells more radiosensitive. In the RT–TNFa
combination treatment, we observed a 25% decrease of BxPC-3
cells arrested in the G2 phase as compared with RT alone, a
proportional redistribution in the G1 phase, and an interrupted
synthesis phase. We did not observe any induction of apoptosis in
BxPC-3 cells, as previously suggested in another model (Gridley
et al, 1994a) and recently described in a human prostate carcinoma
cell line (Kimura et al, 1999). This cell cycle redistribution
phenomenon may also explain the decrease in the surviving
fraction in the combination treatment presented in the present
study (Figure 1B). To our knowledge, these results are the first to
confirm that TNFa is a biological cell cycle modifier, which is
responsible for a cell cycle redistribution in the more radio-
sensitive (G1) phase rather than in the S phase. Recently, Dormond
et al (2002) described that TNFa alone or in combination with
IFNg induced a G1 arrest in endothelial cells (HUVEC), which was
associated with reduced levels of cyclin D1 and cdk2, and with
increased expression of the cdk inhibitors p16INK4a, p21WAF, and
p27Kip1.
In the present study, the in vitro growth-inhibitory effect of

TNFa was accompanied by a marked enhancement of the
radioresponse of the tumour in vivo, particularly, when TNFa
was concentrated in the tumour xenografts thanks to our BAb. In
addition to the in vitro cytotoxic effect of TNFa, indirect in vivo
mechanisms could be responsible for this synergistic rather than
additive effect of the combination (Ruegg et al, 1998). Several
studies have demonstrated the antitumour activity of RTþTNFa,
but this treatment was given before the tumours reached a palpable

volume, making a comparison with our results difficult (Gridley
et al, 1994b, 1997). In mammary carcinoma and sarcoma models,
TNFa was shown to significantly increase tumour radiocurability
even when TNFa was injected 3 h after RT (Sersa et al, 1988;
Nishiguchi et al, 1990). Our data demonstrate the interest of
targeting TNFa to tumours to improve RT and finally to keep a
large differential effect between tumour and normal tissues.
Various methods have recently tried to concentrate TNFa into
tumour such as Cu2þ -dextran (Tabata et al, 1999), TNFa-biotin
conjugates (Moro et al, 1997; Gasparri et al, 1999), or liposomal
encapsulated-TNFa (Kim et al, 2001) which are less specific
targeting than our BAb and were not tested with concomitant
radiotherapy.
Another approach currently in clinical evaluation uses an

adenoviral vector that contains radio-inducible DNA sequences
from the early growth response gene (EGR1) promoter and cDNA
for the gene encoding human TNFa. While avoiding the systemic
side effects of TNFa, this method involves injections in or near the
tumour, which might be difficult to perform in the case of pelvic or
retroperitoneal tumours (Weichselbaum et al, 2002).
Concerning the immunotargeting strategy, two attractive

methods have been recently described. Cooke et al (2002) tested
a genetic fusion of human recombinant TNFa with MFE-23, a
single-chain Fv antibody fragment directed against CEA. Radi-
olabelled fusion protein binds both human and mouse TNF
receptor 1 in vitro and in vivo and is able to localise effectively in
nude mice-bearing human LS174T xenografts with a tumour/tissue
ratios of 21 : 1 and 60 : 1 achieved 24 and 48 h after i.v. injection,
respectively. The maximum % injected dose (ID) g�1 LS174T
tumour (4.33) was obtained 6 h postinjection. At that time, in T380
human colon carcinoma nude mice, our BAb was able to
concentrate up to 7.15% ID g�1 of tumour as compared to 2.2%
when BAb was injected alone (Robert et al, 1996). Wüest et al
(2002) described a TNFa fusion protein designated TNF-Selecto-
kine, which is a homotrimeric molecule comprised of a single-
chain antibody (scFv) targeting molecule, a trimerisation domain
and TNFa. Membrane targeting dependent immobilisation of this
TNF-Selectokine induced cell death in TNFR1 and TNFR2
dependent manner. The authors constructed, also, a TNF-
Selectokine prodrug by insertion of a TNFR1 fragment separated
from TNF by a protease-sensitive linker in order to restrict TNF
activity to the tumour. Both studies suggest interests but are in the
early phase of development without any indications of their
capacity of radiation enhancement.
The results of our study should be of potential clinical interest.

They provide a rational for the combination of TNFa, BAb, and RT
in the treatment of adenocarcinoma of the pancreas. One of the
advantages of our BAb strategy, namely, the potential decrease of
TNFa systemic toxicity, cannot be addressed in our nude mice
model, which lacks T cells. The difference between the TNFa þRT
and the BAbþTNFaþRT combination treatments will probably
be even more evident in an immunocompetent model or in a
clinical setting. Such an immunocompetent situation is also
needed for the entire expression of TNFa antitumour action,
including immunological (production of IL-1 and IFNg, activation
of macrophages, and NK cells; Dinarello et al, 1986; Ostensen et al,
1987; Talmadge et al, 1987) and nonimmunological mechanisms
such as damage to the tumour vasculature (Gamble et al, 1985;
Sato et al, 1986; Cavender et al, 1987; Ruegg et al, 1998).
In conclusion, we demonstrated that an anti-CEA/anti-TNFa

BAb can markedly enhance the radioresponse of pancreatic
tumour xenografts in nude mice. Presently, we are testing the
antitumour effect of BAb, TNFa, and RT combination in an
immunocompetent CEA-transgenic mice transplanted with a
syngenic CEA-expressing tumour in which all the effects of the
targeted cytokine can be analysed. The next step will be the
opening of a phase I clinical study in locally advanced pancreatic
cancer.
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Figure 4 Kaplan–Meier survival curves obtained as a function of time for
all groups: group 1: dotted line (J) no treatment (62 days); group 2:
dotted line (}) TNFa (62 days); group 3: dotted line (X) BAb (65 days);
group 4: dotted line (W) BAbþTNFa (62 days); group 5: solid line (X) RT
(90 days); group 6: solid line (}) RTþTNFa (93 days); group 7: solid line
(&) RTþTNFaþ BAb (142 days). The number in parentheses corre-
sponds to the median delay (time taken for the tumour to reach a volume
of 1500mm3 in 50% of the mice).
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