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Activation of nuclear factor-kB (NF-kB) can interfere with induction of apoptosis triggered by the tumour necrosis factor-related
apoptosis-inducing ligand (TRAIL; Apo2L). Therefore, agents that suppress NF-kB activation may sensitise cells to TRAIL-dependent
apoptosis. Exposure of Jurkat cells to TRAIL resulted in massive and saturable apoptosis induction, following an initial lag time. This lag
was abolished by pretreatment of the cells with subapoptotic doses of a-tocopheryl succinate (a-TOS) or the proteasome inhibitor
MG132. Exposure of the cells to TRAIL led to a rapid, transient activation of NF-kB, a process that was suppressed by cell
pretreatment with a-TOS or MG132. Activation of NF-kB by TNF-a prior to TRAIL exposure increased resistance of the cells to
TRAIL-mediated apoptosis. We conclude that a-TOS sensitises cells to TRAIL killing, at least in some cases, through inhibition of NF-
kB activation. This further supports the possibility that this semisynthetic analogue of vitamin E is a potential adjuvant in cancer
treatment, such as in the case of TRAIL-mediated inhibition of cancer.
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The tumour necrosis factor-related apoptosis-inducing ligand
(TRAIL, Apo2L), a member of the TNF superfamily, is a recently
discovered potent inducer of apoptosis produced by cells of the
immune system (Wiley et al, 1995). TRAIL transmits its
proapoptosis signal via crosslinking its cognate receptors, death
receptor-4 (DR4), also called TRAIL receptor-1 (TRAIL-R1) and
DR5 (TRAIL-R2) (Pan et al, 1997b; Schneider et al, 1997a;
Sheridan et al, 1997). These receptors recruit and activate the
proximal caspase-8, which in turn activates the effector caspases,
an event culminating in cell death (Muhlenbeck et al, 1998;
Bodmer et al, 2000; Hopkins-Donaldson et al, 2000). The
interaction between TRAIL receptors and the proximal caspase is
likely mediated by a protein containing the Fas-associated death
domain (FADD) (Kischkel et al, 2000; Sprick et al, 2000) and/or via
a GTP-binding adaptor protein (Miyazaki and Reed, 2001). While
mitochondrial signalling in TRAIL-induced apoptosis has been
postulated in some reports (Thomas et al, 2000; Munshi et al,
2001), it may not be involved at all in some cases (Walczak et al,
2000; Keogh et al, 2000), or may act rather as an amplification loop
(Suliman et al, 2001; Alleva et al, 2001).

Two additional receptors for TRAIL have been identified, decoy
receptor-1 (DcR-1) (also known as TRAIL-R3) and DcR-2 (TRAIL-
R4) (Pan et al, 1997a; Schneider et al, 1997a, b; Sheridan et al,
1997; Ashkenazi and Dixit, 1999). These receptors bind TRAIL but
fail to transmit its apoptosis-inducing signal downstream, thereby
acting as competitive inhibitors of TRAIL apoptosis (Ashkenazi
and Dixit, 1999). While the decoy receptors appear unique to the
TRAIL system, apoptosis induced by this ligand can also be
suppressed by inhibition of caspase-8 (FLICE) activity, via
induction of the FLICE-inhibitory protein (FLIP) (Schneider et al,
1997b). The fact that normal cells, compared to malignant cells,

appear to overexpress DcR-1 and DcR-2 and/or FLIP suggest that
TRAIL-induced apoptosis may be selective for cancer cells
(Bonavida et al, 1999; Kim et al, 2000), making TRAIL attractive
as a potential anticancer agent (Nagane et al, 2001). Furthermore,
recent studies indicate that anticancer chemotherapeutics can
sensitise cells to killing by immunological agents, including
TRAIL, by upregulating the cognate death receptors and/or
overcoming TRAIL resistance (Bonavida et al, 1999; Nagane et al,
2001; Nimmanapalli et al, 2001; Matsuzaki et al, 2001).

We and others have found that certain analogues of vitamin E,
in particular a-tocopheryl succinate (a-TOS), are potent inducers
of apoptosis in a variety of cells (Fariss et al, 1994; Neuzil et al,
1999, 2001d; Yu et al, 1999, 2001), and that this action appears to
be specific for malignant cells (Neuzil et al, 2001c). Several reports
suggest that vitamin E analogues sensitise cancer cells to killing by
agents like Fas (Yu et al, 1999) or 5-fluorouracil (Chinery et al,
1997). As a-TOS is an inhibitor of activation of the nuclear factor-
kB (NF-aB) (Suzuki and Packer, 1993; Erl et al, 1997; Neuzil et al,
2001b) and because activation of NF-kB has been shown to
negatively modulate TRAIL-dependent apoptosis in multiple
cancer cells (Bernard et al, 2001; Franco et al, 2001; Oya et al,
2001; Kreuz et al, 2001), we have investigated whether this vitamin
E analogue might sensitise malignant cells to TRAIL killing via an
NF-kB inhibitory activity. In this report, we show that a-TOS
inhibits NF-kB activation in Jurkat T lymphoma cells and that this
amplifies their susceptibility to TRAIL.

MATERIALS AND METHODS

Cell culture and treatment

Jurkat T lymphoma cells were maintained in RPMI-1640 medium
supplemented with 10% FCS and antibiotics. The cells were
regularly split when reaching a density of 1.5� 106 ml�1, and usedRevised 15 August 2002; accepted 20 September 2002
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for experiments at 0.5� 106 ml�1. Cells were treated with a-
tocopherol (a-TOH) or a-tocopheryl succinate (a-TOS) (both from
Sigma) at 25 or 50 mM, 10 mM hydrogen peroxide (Fluka) or
40 ng ml�1 recombinant human TNF-related apoptosis-inducing
ligand (rhTRAIL) prepared as described elsewhere (Alleva et al,
2001; Plasilova et al, 2002). In brief, the extracellular part of human
TRAIL (AA 95-281), obtained by PCR from the HPB T cell line
cDNA library, was subcloned into pBSK, sequenced and further
subcloned into the His-tagged reading frame of pET15b. The
protein was expressed in Escherichia coli and purified using the
TALON (Clontech) and SP-Sepharose columns. In some cases, cells
were treated with the proteasome inhibitor MG132 (Calbiochem)
at 0.5 or 1 mM, or tumour necrosis factor-a (TNF-a; PharMingen) at
100 U ml – 1.

Apoptosis assessment

Apoptosis was routinely assessed by the annexin V-binding
method, which is based on the affinity of annexin V for
phosphatidylserine externalised to the outer leaflet of the plasma
membrane early in the course of opoptosis. In brief, cells were
harvested by centrifugation, washed with PBS, spun down again,
and resuspended in the binding buffer (10 mM Hepes/NaOH,
140 mM NaCl and 25 mM CaCl2, pH 7.4). Cells were then incubated
with 2 ml of annexin V-FITC (PharMingen) for 20 min at room
temperature, and analysed by flourescence-assisted cell sorting
(FACS; Becton Dickinson). Activation of caspase-3 was estimated
by incubating cells with an anticaspase-3 IgG (PharMingen) that
recognises the activated form, followed by incubation with FITC-
conjugated secondary antibody. Fluorescence intensity of the cells
was assessed by FACS (Neuzil et al, 2001b).

Assessment of NF-jB activation

Activation of NF-kB was estimated using the Trans-AM kit (Active
Motif, Carlsbad, CA, USA) according to the manufacturer’s
protocol. In brief 5– 10� 106 cells were treated as specified, and
lysed using the buffer provided by the manufacturer. The lysates
were then transferred into wells containing the immobilised NF-kB
(p65) consensus sequence, and incubated for 1 h at 371C. The wells
were washed and the bound p65 protein was detected by
horseradish peroxidase (HRP)-dependent staining following in-
cubation with anti-p65 lgG and secondary HRP-conjugated
secondary lgG. The level of absorbance at 450 nm, assessed in a
microplate reader, reflected the level of bound p65.

Transmission electron microscopy (TEM)

For TEM, Jurkat cells were grown in complete RPMI medium at
0.5� 106 ml�1, and treated for 12 h with 40 ng ml�1 rhTRAIL or
buffer alone (control cells). The cells (107) were briefly rinsed with
PBS, centrifuged, fixed overnight in 2% glutaraldehyde, and
postfixed with 1% OsO4 for 1 h. Both fixatives were made up in
0.1 M cacodylate buffer supplemented with 0.1 M sucrose (pH 7.2,
300 mOsmol) and applied at room temperature. After standard
dehydration in ascending concentrations of ethanol, the cells were
embedded in Epon-812 monomer and polymerised. Ultrathin
sections were cut with a diamond knife mounted in a Reichart
ultramicrotome, contrasted with uranyl acetate and lead citrate,
and examined in a Jeol 1200 EX transmission electron microscope
operated at 80 kV (Brunk et al, 1995).

RESULTS AND DISCUSSION

The aim of the present study was to determine whether the
semisynthetic vitamin E analogue, a-TOS, could enhance the
sensitivity of Jurkat T lymphoma cells to the induction of

apoptosis by the immunological agent TRAIL. For initiation
of apoptosis, we used rhTRAIL that was expressed in bacterial
cells. As shown in Figures 1 and 2, our rhTRAIL preparation
caused massive apoptosis in Jurkat cells, as documented by
both morphological changes evaluated by TEM, and by PS
externalisation and caspase-3 activation. Figure 2 also demon-
strates that apoptosis induction was saturable with regard to the
rhTRAIL used, with rhTRAIL being maximally effective at ca
20 ng ml�1.

We next investigated whether preincubation with a-TOS might
sensitise Jurkat cells to TRAIL. As shown in Figure 3, a-TOS–but
not a-TOH–rendered the cells more susceptible to TRAIL-induced
apoptosis at a concentration at which the vitamin E analogue itself
did not cause substantial cell death. To determine whether this
potentiation of TRAIL killing might invlove inhibition, by a-TOS,
NF-kB activation, the cells were pretreated with the proteasome
inhibitor, MG132, or with TNF-a, a potent activator of NF-kB.
Figure 3 shows that preincubation with MG132 sensitised cells to
TRAIL, as did a-TOS, and that MG132 itself did not cause
apoptosis. On the contrary, pretreatment with TNF-a increased
resistance of the cells to TRAIL, consistent with the idea that
activation of NF-kB may be antiapoptotic (Bernard et al, 2001;
Franco et al, 2001). Finally, we used hydrogen peroxide as a
negative control. At a low concentration (10mM) that does not
interfere with NF-kB activation (see below), hydrogen peroxide did
not induce substantial apoptosis nor did it sensitise cells to TRAIL
(Figure 3).

More direct studies of NF-kB activation revealed that Jurkat cells
exposed to rhTRAIL did activate NF-kB. Figure 4 shows a
substantial activation of NF-kB, 30 min following addition of
rhTRAIL to the cells, although this activation was less pronounced
than that caused by treatment with the strong NF-kB activator,
TNF-a. This activation was transient and lasted for about 1 h, after
which it declined. Pretreatment with a-TOS or MG132 abolished
the initial NF-kB activation observed with TRAIL alone. Once
again, hydrogen peroxide at 10 mM had no effect on NF-kB, either
alone or in combination with TRAIL (Figure 4).

We demonstrate in this communication that vitamin E
succinate, but not vitamin E itself, potentiates killing of Jurkat T
lymphoma cells by the immunological inducer of apoptosis,
TRAIL. These data are consistent with, and further extend, the
earlier observations that a-TOS promotes apoptosis caused by a
variety of agonists. This is true, for example, of Fas-dependent
killing of breast (Yu et al, 1999) and prostate cancer cells (Israel
et al, 2000). In these instances, the vitamin E analogue sensitised
the cells to Fas ligand by causing plasma membrane translocation
of Fas. Furthermore, a-TOS also promotes TRAIL-induced
apoptosis in colon cancer cells, apparently by modulating
different, converging signalling pathways, thereby maximising
the apoptotic potential of the cells (Weber et al, 2002).
Importantly, this cooperation was also reflected in the inhibition
of colon cancer in an animal model (Weber et al, 2002).

There are several possible mechanisms by which a-TOS may
sensitise leukemic cells towards TRAIL killing. TRAIL crosslinks
two cognate, death-signalling receptors. One of these, DR4
(TRAIL-R1), has been shown to transiently activate NF-kB. This
leads to an initial expression of survival signals including the
inhibitor of apoptosis protein (IAP) family members (Degli-
Esposti et al, 1997; Schneider et al, 1997b; Bernard et al, 2001).
Perhaps by this mechanism, activation of NF-kB can protect
leukemic cells from apoptotic killing (Jeremias et al, 1998).
Activation of NF-kB also leads to upregulation of the caspase-8
inhibitor, cFLIP (Kreuz et al, 2001). Jurkat cells express both DR4
and DR5, although the level of expression of the former receptor
is lower than that of the latter (JN et al, unpublished). In spite of
this, the level of DR4 expression appears to be sufficient to activate
NF-kB upon exposure of the cells to TRAIL (this report).
We hypothesised that inhibition of NF-kB activation –likely
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responsible for the lag phase in apoptosis induction by TRAIL in
Jurkat cells– could be inhibited by a-TOS. In support of this,
preincubation of the cells with a-TOS suppressed TNF-a-
dependent NF-kB activation (cf. Fig. 4). The exact mode of
suppression of NF-kB activation by a-TOS is not yet clear but there
are several possibilities. For example, activation of NF-kB might be
suppressed by a-TOS by affecting degradation of the inhibitory
subunit, IkB. Indeed, cleavage of, or mutations in, IkB can
accentuate apoptosis (Jeremias et al, 1998; Keane et al, 2000) and a
recent report documents a caspase-dependent cleavage of IkB in
TRAIL-resistant cells, thereby sensitising them to killing by TRAIL
(Kim et al, 2002).

The concept that a-TOS can inhibit NF-kB activation is not new
(cf. Erl et al, 1997), but the precise structural requirements are not
fully known. It is clear, however, that a-TOH, the redox-active

counterpart of a-TOS, fails to exert such activity (Erl et al, 1997;
Neuzil et al, 2001b). One possibility is suggested by the observation
that a-TOS activates caspases that cleave the NF-kB subunit p65,
while not killing the cells (Neuzil et al, 2001b), probably via a
mitochondria-dependent pathway (Neuzil et al, 2001d; Weber et al,
2002). We have earlier suggested that under certain circumstances,
a-TOS can cause ‘subapoptotic’ signalling that may lead to
activation of early apoptotic events while not bringing the cell
into the execution phase of apoptosis, a possibility also suggested
by others (Harvey et al, 2000). Such a mechanism may underlie the
inhibitory activity of a-TOS towards activation of NF-kB in Jurkat
cells, thereby sensitsing the cells to killing by TRAIL.
a-TOS is not just another example of an inducer of apoptosis

that senstises cells to TRAIL killing, a principle that has been
published in multiple reports (see, e.g. Bonavida et al, 1999;

Figure 1 TRAIL is a potent inducer of apoptosis in Jurkat cells. Jurkat T lymphoma cells (0.5� 106ml�1) were exposed to the vehicle (A–C) or
40 ngml�1 rhTRAIL (D–F), processed for TEM, observed, and images taken at the following magnifications: A, D–1800� ; B–5000� ; C, F–18 000� ;
and E–7000�; M-mitotic cell; I – cell in the interphase; Mi–mitochondrium; Nu–nucleolus; V–vacuole; *apoptotic cell; **nucleus with condensed
chromatin.
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Nagane et al, 2001). Unlike many chemotherapeutic agents, a-TOS
appears to be selective for malignant cells (Neuzil et al, 2001c, d;
Weber et al, 2001). a-TOS, which has proapoptotic activity
in vitro and antineoplastic effects in vivo (Neuzil et al, 2001d;
Malafa et al, 2002; Weber et al, 2002), is carried within the
bloodstream by circulating lipoproteins (Pussinen et al, 2000),
which are cleared in the liver. Here, a-TOS is hydrolysed to a-TOH,
at least some of which is released into the circulation, thereby
boosting the antioxidant defence system (Neuzil et al, 2001a).
Because both a-TOS and TRAIL are relatively nontoxic to normal
cells (Bonavida et al, 1999; Jo et al, 2000; Kim et al, 2000; Nagane
et al, 2001; Neuzil et al, 2001c, d; Nesterov et al, 2002; Weber et al,
2002), the two agents, that is, a-TOS and TRAIL, would seem to
represent an exciting partnership of potentially high therapeutic
relevance.

In conclusion, we have shown that a-TOS potentiates TRAIL-
induced apoptosis in Jurkat T lymphoma cells by inhibiting
transient activation of the transcription factor NF-kB. In practical
terms, this finding could be utilised for devising strategies of
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Figure 2 Apoptotic effect of rhTRAIL on Jurkat cells is saturable. Jurkat
cells at 0.5� 106ml�1 were exposed to increasing concentrations of
rhTRAIL for 12 h, and the extent of apoptosis (annexin V-FITC staining)
and caspase-3 activation was assessed.

A
nn

ex
in

 V
-p

os
iti

ve
 c

el
ls

 (
%

)

0

50

100

0                      5 10
Time (h)

MG0.5/TRAIL40
TOS25/TRAIL40
TRAIL40
MG0.5
TOS25
ControlA

A
nn

ex
in

 V
-p

os
iti

ve
 c

el
ls

 (
%

)

0

50

100

rhTRAIL 40

C
on

tr
ol

T
O

S
 2

5

M
G

 0
.5

T
O

S
 5

0

T
O

H
 5

0

M
G

 1

C
on

tr
ol

T
O

S
 2

5

M
G

 0
.5

T
O

S
 5

0

T
O

H
 5

0

M
G

 1

B

H
2
O

2
10

H
2
O

2
10

T
N

F
10

0

T
N

F
 1

00

Figure 3 a-TOS sensitises Jurkat cells to TRAIL killing. Jurkat cells
(0.5� 106ml�1) were pretreated with a-TOH, a-TOS, MG132 or
hydrogen peroxide at the concentrations indicated (mM) for 4 h, or to
TNF-a at 100Uml�1 for 1 h, after which they were exposed to rhTRAIL at
40 ngml�1. At time points indicated (A) or at 6 h (B) following TRAIL
addition, cells were evaluated for apoptosis.
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Figure 4 a-TOS abolishes transient activation of NF-kB by TRAIL. Jurkat
cells (0.5� 106ml�1, 107 total) were treated as specified in the legend to
Figure 3 (concentrations in mM except Uml�1 for TNF-a, rhTRAIL at
40 ng 1�1). At a 2-h time point (A) or as specified (B), cells were washed
with PBS, spun down, the pellet resuspended in the lysis buffer, and the
lysate probed for NF-kB activation using the TRANS-AM kit as detailed in
Materials and Methods. The level of NF-kB activation (p65 binding to its
cognate DNA sequence) is expressed as a relative absorbance at 450 nm.
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treatment for potentially fatal disorders like lymphomas or
carcinomas on two levels: first, by coadministration of a-TOS
and TRAIL; second, by administration of a-TOS alone, as the agent
could be expected to sensitise cancer cells to endogenously
produced TRAIL, thereby potentiating the immune defences
against neoplasia. This principle may be especially useful for
suppressing cancer involving malignant cells with a high expres-
sion of DR4. Further exploration of these possibilities may lead to
an effective approach to the treatment of malignancies.
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