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Gastrin is a gastrointestinal peptide that possesses potent trophic properties on both normal and neoplastic cells of
gastrointestinal origin. Previous studies have indicated that chronic hypergastrinaemia increases the risk of colorectal cancer
and cancer growth and that interruption of the effects of gastrin could be a potential target in the treatment of colorectal
cancer. Here we demonstrate that gastrin leads to a dose-dependent increase in colon cancer cell proliferation and tumour
growth in vitro and in vivo, and that this increment is progressively reversed by pretreatment with the cyclo-oxygenase-2
inhibitor NS-398. Gastrin was able to induce cyclo-oxygenase-2 protein expression, as well as the synthesis of prostaglandin
E2, the major product of cyclo-oxygenase. Moreover, gastrin leads to approximately a two-fold induction of cyclo-oxygenase-2
promoter activity in transiently transfected cells. The results of these studies demonstrate that cyclo-oxygenase-2 appears to
represent one of the downstream targets of gastrin and that selective cyclo-oxygenase-2 inhibition is capable of reversing the
trophic properties of gastrin and presumably might prevent the growth of colorectal cancer induced by hypergastrinaemia.
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The polypeptide hormone gastrin was identified nearly 100 years
ago, and its role in the physiology of gastric acid secretion is
well-established (Modlin et al, 1997). Another biological property
attributed to gastrin is its trophic effect on gastrointestinal (GI)
mucosa, including its role in the pathogenesis of GI carcinogenesis
(Koh et al, 1999; Stepan et al, 1999; Koh and Chen, 2000). Previous
epidemiological studies have indicated that chronic hypergastrinae-
mia constitutes a risk factor for the development of colorectal
cancer (Hakanson et al, 1986; Sundler et al, 1986; Wolfe, 1992;
Lamberts et al, 1999; Singh et al, 2000; Watson and Smith,
2001). Significant hypergastrinaemia occurs in association with a
number of clinical conditions, including pernicious anaemia and
Zollinger-Ellison syndrome and following the development of
potent acid suppression in response to the administration of
proton pump inhibitors (Klingensmith et al, 1999). The increased
incidence of colorectal cancer in hypergastrinaemic patients
appears to occur as a result of an increased rate of proliferation
of normal colonic epithelium, thus increasing the chance of spora-
dic mutations. Hypergastrinaemia may also enhance the
proliferation and progression of colorectal adenomas (Thorburn
et al, 1998; Watson and Smith, 2001).

Epidemiological studies have demonstrated a 40 – 50% reduction
in mortality from colorectal cancer in individuals taking nonsteroi-
dal anti-inflammatory drugs (NSAIDs), which appears to reduce
the risk of colorectal cancer (CRC) by inhibiting cyclo-oxygenase
(COX), a key enzyme involved in the metabolic conversion of
arachidonic acid to prostaglandins (Giovannucci et al, 1994; Giar-
diello et al, 1995). Numerous studies have shown that the
expression of COX-2, one of the two isoforms of COX, is increased

significantly in colonic neoplasms compared with normal colonic
mucosa, and that COX-2 plays an integral role in colon cancer
tumorigenesis and proliferation (Sheng et al, 1997; Barnes et al,
1998; Barnes and Lee, 1998; Sawaoka et al, 1998; Tsujii et al,
1998). However, the cellular and molecular mechanisms governing
any possible relationship between gastrin and COX during GI
tumour growth have not been elucidated. The purpose of this
study was to examine whether COX-2 inhibition is able to reverse
the trophic properities of gastrin in CRC.

MATERIALS AND METHODS

Cell culture

MC-26 cells, a transplantable mouse colon cancer cell line that
possesses both COX-2 and functional gastrin receptors (Singh et
al, 1986), were obtained from Dr KK Tanabe (Boston, MA,
USA). MC-26 cells were maintained in Dulbecco’s Modified Eagle
Media (DMEM; Life Technologies, Inc, Gaithersburg, MD, USA)
supplemented with 10% fetal calf serum and antibiotics
(100 U ml71 penicillin and 100 mg ml71 streptomycin) at 378C
in a humidified atmosphere of 95% air per 5% CO2.

Proliferation studies

DNA synthesis was estimated by the measurement of [3H]thymi-
dine incorporation into cellular DNA. Cells (100 000 ml71)
were seeded onto 12- or 24-well plates and allowed to attach over-
night, after which they were incubated in serum-free medium for
another 24 h. This incubation was followed by treatment with
different concentrations of gastrin-17 (G-17; Peninsula Labora-
tories, San Carlos, CA, USA) in the presence or absence of the
specific COX-2 inhibitor, NS-398 (Cayman Chemical, Ann Arbor,
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MI, USA). NS-398 and gastrin-17 were dissolved in DMSO and
30 mM NH4HCO3, respectively, as stock solutions. One mCi ml71

of [3H]thymidine (New England Nuclear Products, Boston, MA,
USA) was added and allowed to incorporate for 6 h at 378C. Cells
were washed with cold phosphate buffered saline (PBS) three
times. Cold 10% trichloracetate (TCA) was added to cells and
maintained at 48C 30 min, after which cells were washed again
with cold PBS three times and lysed in 0.1 N NaOH per 10%
SDS. Radioactivity was counted in a liquid scintillation counter,
and data were expressed as percentage of control+standard error
(s.e.) of several experiments.

Mouse colorectal cancer model

Six- to ten-week old male BALB/C mice were obtained from Taco-
nic (Germantown, NY, USA). MC-26 cells were harvested from
subconflent cultures using trypsin-EDTA, followed by centrifuga-
tion at 300 G for 15 min at room temperature. Cells were then
resuspended in serum-free DMEM or Hank’s Balanced Salt Solu-
tion (Life Technologies, Inc, Gaithersburg, MD, USA), and the
cell number was adjusted to a final concentration of 100 000 cells
per ml. Using a 27-gauge needle and a 1 ml syringe, 100 ml of
tumour cell suspension was injected subcutaneously into the flanks
of mice. All animal studies were conducted using a protocol
approved by the Animal Care and Use Committee at Boston
University Medical Center and in accordance with UKCCCR
Guidelines (Workman et al, 1998).

Animal study procedure

NS-398, dissolved in DMSO, was administered by oral gavage once
daily. G-17 was dissolved in 0.9% NaCl and was administrated using
an implanted Alzet1 osmotic pump (Alza corporation, Palo Alto,
CA, USA). For osmotic pump insertion, animals were anaesthetised
using intraperitoneal pentobarbital (65 mg kg71) injection. An inci-
sion *0.8 cm in length was made, and the osmotic pump was
implanted subcutaneously. After tumour cell injection, mice were
randomly divided into four groups (10 animals per group) on day
0, followed by treatment with different test reagents:

Group 1 (control group): Infusion of 0.9% NaCl by osmotic
pump and DMSO (vehicle) 0.1 ml by gavage;

Group 2: Infusion of G-17 10 nmol kg71 h71 by osmotic pump
and DMSO 0.1 ml by gavage;

Group 3: Infusion of G-17 10 nmol kg71 h71 by osmotic pump
along with NS-398 1 mg kg71 body weight by gavage; and

Group 4: Infusion of G-17 10 nmol kg71 h71 by osmotic pump
along with NS-398 10 mg kg71 body weight by gavage.

Subcutaneous tumour size was determined after day 7 by meas-
uring the longest and shortest diameters of the tumour at 2 – 3
day intervals. Tumour volume (mm3) was calculated using the
standard formula: tumour volume=(shortest diameter)26(longest
diameter)60.5. After sacrificing the mice on day 18, tumours were
excised and weighed and measured. Tumour tissue was flash frozen
in liquid nitrogen and stored at – 708C, and a portion of the tissue
was fixed with 10% formalin for histological examination.

Prostaglandin E2 assay

MC-26 cells (100 000 ml71) were seeded onto six-well plates and
allowed to attach overnight. Cells were then cultured in serum-free
medium for another 24 h, followed by treatment with 20 nM of G-
17. To evaluate the activity of COX, prostaglandin E2 (PGE2), the
major metabolite of arachidonic acid metabolism, was measured by
an enzyme immunoassay (EIA) kit (Cayman Chemical, Ann Arbor,
MI, USA) in culture media maintained at 208C using the protocol
provided by manufacturer. Measurements were made in triplicate
in three separate experiments.

Transfection and reporter gene assays

To examine transcriptional regulation of the COX-2 promoter by
gastrin, MC-26 cells were transiently transfected with 742-kb
COX-2 promotor (kindly provided by Dr H Herschman, UCLA)
or control plasmid pGL3-Luc (Promega, Madsion, WI, USA) in
the presence of G-17 using LipofectamineTM Reagent (Life Tech-
nologies, Inc, Gaithersburg, MD, USA). A b-galactosidase-
expressing plasimd was included in each transfection to monitor
the transfection efficiency. For luciferase assay, transfected cells
were washed twice with phosphate buffered saline (PBS, pH 7.4)
and lysed in 200 ml of lysis buffer following the manufacturer’s
instructions (BD PharMingen, San Diego, CA, USA). b-galactosi-
dase activity in 50 ml of the cell lysate was determined after 5 –
20 min incubation at 378C with 2 mM chlorophenol red b-galacto-
pyranoside (Boehringer Mannheim, Indianapolis, IN, USA) in
20 mM MgCl2, 0.1 mM MnCl2, 45 mM 2-mercaptoethanol, and
100 mM NaHPO4, pH 8.0. The reaction was stopped by adding
500 ml of 0.5 M EDTA, pH 8.0, and the absorbency at 570 nm
measured using a spectrophotometer. With each experiment, luci-
ferase activity was determined in duplicate and normalized to b-
galactosidase activity for each dish.

Western blot hybridization

Mouse COX-2 and cyclin D1 monoclonal antibodies were
purchased from BD transduction laboratories (Lexington, KY,
USA). To extract protein from cells, MC-26 cells cultured under
different conditions were harvested and lysed in RIPA buffer
(PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS,
100 ng ml71 PMSF, 66 ng ml71 aprotinin). To extract protein
from tissues, 0.1 g of tumour tissue was placed in 2.0 ml of cold
RIPA buffer and homogenized for 1 min with Polytron-Aggregate
(Kinmatica, Luzern, Switzerland). After removal of cell debris by
centrifugation, total protein of cells or tissues was determined by
BCA protein assay (Pierce chemical, Rockford, IL, USA). Protein
was mixed with gel loading buffer (50 mM Tris pH 6.8, 2% SDS,
10% glycerol, 2% 2-mercaptoethanol, 0.1% bromphenol blue)
and heated for 10 min at 1008C. Samples containing 20 – 40 mg
protein were loaded on a 10 – 12% SDS – PAGE gel and then elec-
trophoretically transferred to a polyvinylidene difluoride membrane
in transfer buffer (25 mM Tris, 190 mM glycine, 20% methanol).
The blots were blocked with 7% dry milk for 1 h at room tempera-
ture and incubated with the primary antibody overnight. They
were then washed three times for 15 min each in Tris-buffered
saline, containing 0.05% Tween-20. The blots were further incu-
bated with the anti-mouse IgG antibody (Sigma) for 1 h at room
temperature. After washing three times, blots were incubated with
luminous ECL reagent (Pierce chemical, Rockford, IL, USA) for
10 s to 2 min and exposed to Kodak X-ray film. Protein bands
were quantified by laser densitometry.

Immunohistochemistry

Proliferating cell nuclear antigen (PCNA) monoclonal antibodies
were purchased from BD transduction laboratories (Lexington,
KY, USA). Paraffin-embedded specimens were deparaffinized and
incubated with PCNA antibody for 2 h at 378C. The specimens
were then incubated with the secondary antibody, anti-mouse
IgG, for 1 h at 378C and stained by the avidin-biotin peroxidase
complex (ABC) method using the ABC staining system (Santa
Cruz Biotech, Santa Cruz, CA, USA). They were visualized by
3,3-diaminobenzidine (DAB) staining and counterstaining with
haematoxylin. To confirm the specificity of the mouse PCNA anti-
body, tonsil specimens was used as a positive control. The PCNA
index was evaluated by counting the number of PCNA-positive
staining cells out of a total of 500 tumour cells: PCNA index=
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(number of PCNA-positive-staining cells per 500 cells
counted)6100%.

Statistical analysis

One-way ANOVA was performed to compare [3H]thymidine
incorporation, tumour volume and weight, PCNA index, and
densitometric values of Western blot bands among the different
animal groups, followed by Tukey’s procedure for paired compar-
ison. The two-tailed t-test was used to compare PGE2 levels in the
different conditions. Statistical significance was assigned if P50.05.

RESULTS

Cell proliferation

The addition of G-17 led to an increase in [3H]thymidine incor-
poration, with *40% increase detected using at a G-17
concentration of 20 nM. NS-398, a COX-2 selective inhibitor,
decreased [3H]thymidine incorporation in a dose-dependent
manner. When MC-26 cells were incubated in culture media
containing both 20 nM G-17 and 10 mM NS-398, [3H]thymidine
incorporation was 110.0% of control (Figure 1), indicating that
the enhancement in cell proliferation induced by gastrin could be
partially attenuated by COX-2 inhibition with NS-398.

Tumour growth

In animal studies, 6- to 10-week old BALB/C mice were inoculated
with MC-26 cells subcutaneously on day 0. Figure 2 depicts the
effects of G-17 and NS-398 on tumour volume and tumour weight
at the end of the period of observation (day 18). Twenty per cent
of G-17 treated mice died as a result of heavy tumour burden.
Both tumour volume and weight in mice treated with G-17

(10 nmol kg71 h71) were significantly greater than those in the
control group (tumour volume 1761.8+427.6 mm3 vs
1220.2+224.0 mm3, tumour weight 0.53+0.04 g vs 0.38+0.07 g,
P50.05). In contrast, no significant differences in tumour volume
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Figure 1 [3H]thymidine incorporation of colon cancer cells (MC-26)
treated with gastrin-17 (G-17) in the absence or presence of the COX-
2 selective inhibitor NS-398. DNA synthesis was estimated by [3H]thymi-
dine incorporation into cellular DNA, as described in the Materials and
Methods section, under various conditions: gastrin-17 (A) and the combi-
nation of G-17 and NS-398 (B). *P50.05.
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Figure 2 Effect of gastrin-17 (G-17) or/and the COX-2 selective inhibi-
tor (NS-398) on colon cancer growth in vivo. MC-26 cells were injected
subcutaneously in the flank of 6 to 10-week old male BALB/c mice. Subcu-
taneous tumour size was determined from day 7 by measuring the longest
and shortest diameter of the tumour at 2 – 3 days intervals. (A) Tumour
volume (mm3) was calculated by a standard formula: Volume=(the shortest
diameter)2 6(the longest diameter)60.5. (B) Tumour weight was mea-
sured on day 18 after tumour was removed from sacrificed mice.
*P50.05. **P50.01.
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and weight from control was detected in mice treated with both
NS-398 (1 mg kg71) and G-17 (10 nmol kg71 h71). Moreover,
tumour growth stimulated by G-17 was reversed by both low-
(1 mg kg71) and high-dose (10 mg kg71) NS-398. The latter not
only suppressed gastrin-induced tumour growth, but also unstimu-
lated (control) tumour growth (tumour volume: 955.8+325.1
mm3 vs 1220.2+224.0 mm3, P50.05; tumour weight:
0.15+0.09 g vs 0.38+0.07 g, P50.01).

Consistent with tumour growth, cyclin D1 protein and PCNA
index in tumour tissues were significantly greater in the tumour
tissue of G-17 treated mice. Low-dose NS-398 (1 mg kg71)
partially attenuated gastrin-induced cyclin D1 and PCNA, while
high-dose NS-398 (10 mg kg71) significantly decreased both of
them to values significantly less than unstimulated conditions
(Figures 3 and 4).

COX-2 promoter activity, COX-2 protein expression and
prostaglandin E2 (PGE2) levels

To study whether G-17 is capable of inducing COX-2 transcription,
cells were transiently transfected with a COX-2 promoter luciferase

construct, and luciferase assays were performed, as described above.
COX-2 promoter activity was induced approximately two-fold in
transfected cells incubated in presence of G-17 (100 nM) at 24 h. In
addition, COX-2 protein expression was significantly increased in
MC-26 cells incubated in the presence 10, 20, 50 and 100 nM G-17
at 24 h. When cells were incubated with 20 nM G-17, levels of
PGE2, the major product of cyclo-oxygenase, were significantly
increased at 24 h (215.9+13.6 pg well71 vs 170.8+27.9 pg well71,
P50.05) and 48 h (350.8+39.7 pg well71 vs 272.2+35.6 pg well71,
P50.05) (Figure 5).

DISCUSSION

Previous studies have reported that gastrin and NSAIDs possess
opposing effects on cell proliferation. Gastrin has long been recog-
nized as a mitogenic factor that stimulates the growth of pre-
existing tumours of GI origin (Baldwin and Shulkes, 1998; Smith
and Watson, 2000; Dockray et al, 2001). Interruption of the effects
of gastrin as a potential target in the treatment of colorectal cancer,
using several different approaches, such as the gastrin (CCK-B or
CCK-2) receptor antagonists, proglumide and benotript, has been
assessed (Watson et al, 1992a,b). The major drawback of these
compounds is their lack of potency, with relatively high concentra-
tions required to displace amidated G-17. L-365,260 has a greater
affinity for the gastrin receptor than proglumide and has been
shown to reverse gastrin-stimulated growth of GI tumour cell, both
in vitro and in vivo (Piontek and Hengels, 1993; Watson et al,
1991). However, this antagonist does not appear to inhibit basal
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growth of the tumour and lacks the capacity to interact with alter-
nate gastrin receptor subtypes. In contrast, the effectiveness of anti-
gastrin antibodies in inhibiting tumour growth has been demon-
strated in several animal models of colorectal cancer (Watson et
al, 1995, 1996, 2000).

The benefit of nonselective COX inhibitors in preventing
tumorigenesis and tumour growth has been demonstrated in
numerous studies (DuBois and Smalley, 1996; Levy, 1997).
However, the use of these agents is often associated with the
development of serious adverse GI events. COX-2 selective inhibi-
tors are thought to exert similar anti-inflammatory and
antimitogenic effects, but with diminished toxicity (Wolfe et al,
1999). N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulphonamide
(NS-398) is a sulfonamide derivative that inhibits COX-2 specifi-
cally with an IC50 of 30 nM. It does not affect COX-1 enzyme
activity at concentrations exceeding 100 mM, and it inhibits
COX-1 dependent prostanoid production only minimally even
at doses 4200 mg kg71 (Futaki et al, 1994; Gierse et al, 1995).
The results of these studies suggest the possibility of a functional
relationship between gastrin and COX-2 expression and demon-
strate that COX-2 selective inhibition is capable of reversing the
trophic properties of growth on colorectal adenocarcinoma.
Because COX-2 selective inhibition has been shown to possess
antineoplastic properties with few adverse GI events, the use of
these agents may potentially represent a novel therapeutic
approach to reduce the risk of colon cancer associated with
hypergastrinaemia.

Despite these observations, the cellular and molecular mechan-
isms governing any potential relationship between COX-2 and
gastrin require further clarification. In this study, when MC-26
colorectal cancer cells were incubated in the presence of gastrin,
significant increases in COX-2 protein levels and COX-2 promoter
activity was detected, compared with control conditions. Further-
more, using a sensitive enzyme immonoassay (EIA) for the
measurement of PGE2, modest, but significant, increases in PGE2

levels in response to 20 nM gastrin were observed. While further
studies are necessary to clarify any possible functional relationship,

the present results do imply that a COX-2 mediated pathway may
be stimulated by gastrin and may contribute to its trophic effects
on colorectal cancer.

Cyclin D1 is a protein involved in cell cycle regulation in both
normal and neoplastic cells (Hunter and Pines, 1994). In the G1
(resting) phase of the cell cycle, cyclin D1 along with its cyclin
dependent kinase (CDK) partner, is responsible for transition to
the S (DNA synthesis) phase (Sherr, 1996). Overexpression of
cyclin D1 releases a cell from its normal control and causes trans-
formation to a malignant phenotype. Previous studies have
demonstrated that cyclin D1 is increased in adenomatous polyps
and in both sporadic and familial forms of colorectal cancer
(Motokura and Arnold, 1993; Bartkova et al, 1994; Arber et al,
1996, 1997). Consistent with these prior observations, in the
present study, gastrin increased cyclin D1 levels in vivo and in vitro,
an effect that was reversed with NS-398. In addition to cyclin D1,
PCNA functions as an auxiliary protein to DNA polymerase
gamma and as a co-factor in DNA synthesis. The synthesis and
expression of PCNA are enhanced in proliferating cells including
those that are tumour-derived. Determination of PCNA represents
one of the most reliable methods for evaluating proliferation in
cells and tissues (Prosperi, 1997). In the present study, the PCNA
index was significantly increased in gastrin-treated tumours when
compared with control. Moreover, similar to studies assessing
cyclin D1, the addition of NS-398 (10 mg kg71 body weight)
reversed the gastrin-induced increase in PCNA expression.

In conclusion, the results of these studies demonstrate that
COX-2 might represent one of the downstream targets of gastrin
and that selective COX-2 inhibition is capable of reversing the
trophic properties of gastrin and presumably prevent growth of
CRC induced by hypergastrinaemia. In addition to its effects on
cyclin D1 and PCNA, it is certainly possible that other intracellular
pathways are involved in mediating the trophic properties of
gastrin on neoplastic proliferation. Although the therapeutic impli-
cations are obvious, further studies will be necessary to elucidate
the cellular and molecular mechanisms governing any potential
functional relationship between COX-2 and gastrin.
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