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Using comparative genomic hybridisation, we have analysed genetic imbalance in a series of 86 ependymomas from children
and adults. Tumours were derived from intracranial and spinal sites, and classified histologically as classic, anaplastic or
myxopapillary. Ependymomas showing a balanced profile were significantly (P50.0005) more frequent in children than adults.
Profiles suggesting intermediate ploidy were common (44% of all tumours), and found more often (P50.0005) in tumours
from adults and the spinal region. Loss of 22q was the most common specific abnormality, occurring in 50% of spinal
(medullary) ependymomas and 26% of tumours overall. Genetic profiles combining loss of 22q with other specific
abnormalities – gain of 1q, loss of 6q, loss of 10q/10, loss of 13, loss of 14q/14 – varied according to site and histology. In
particular, we showed that classic ependymomas from within the cranium and spine have distinct genetic profiles. Classic and
anaplastic ependymomas with gain of 1q tended to occur in the posterior fossa of children and to behave aggressively. Our
extensive data on ependymomas demonstrate significant associations between genetic aberrations and clinicopathological
variables, and represent a starting point for further biological and clinical studies.
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Ependymomas are gliomas that exhibit degrees of ependymal
differentiation (Burger and Scheithauer, 1995; Ellison, 1998). Typi-
cally, they develop in relation to the ventricular system and the
cauda equina. They account for only 4 – 8% of gliomas, but are
the third most common central nervous system (CNS) tumour
of childhood, after astrocytomas and medulloblastomas. About
90% of paediatric ependymomas are intracranial, but in adults
most are intraspinal (Gilles et al, 1995; Hamilton and Pollack,
1997; Bouffet et al, 1998; Gjerris et al, 1998; Wiestler et al,
2000). The World Health Organisation (WHO) pathological classi-
fication (Wiestler et al, 2000) recognises classic (WHO grade 2),
anaplastic (grade 3) and myxopapillary (grade 1) variants, plus
the subependymoma (grade 1). Classic and anaplastic variants
mainly occur as posterior fossa tumours in children and young
adults, and myxopapillary tumours nearly always present in the
cauda equina of adults (Hamilton and Pollack, 1997; Ellison,
1998; Packer, 2000).

In children with intracranial ependymoma, event-free survival
after 5 years is less than 50% (Bouffet et al, 1998; Robertson et
al, 1998; Horn et al, 1999; Packer, 2000; Grill et al, 2001). Various

factors have been reported to influence prognosis, though clinical
research in this area has produced many conflicting results.
However, gross surgical resection and the use of radiotherapy have
been consistently associated with enhanced event-free and overall
survival (Nazar et al, 1990; Sutton et al, 1990; Healey et al, 1991;
Vanuytsel et al, 1992; Ferrante et al, 1994; Pollack et al, 1995; Bouf-
fet et al, 1998; Robertson et al, 1998; Horn et al, 1999; Grill et al,
2001). Histological features of anaplasia, such as mitoses, microvas-
cular proliferation and necrosis, serve as indicators of biological
behaviour in other gliomas, including diffuse astrocytic tumours
and oligodendrogliomas (Cohadon et al, 1985; Burger and Green,
1987; Ellison, 1998). However, the biological significance of these
morphological features in ependymoma remains unclear; clinico-
pathological studies have provided conflicting evidence on the
prognostic value of dividing ependymomas into classic (WHO
grade 2) and anaplastic (grade 3) variants (Ross and Rubinstein,
1989; Sutton et al, 1990; Schiffer et al, 1991; Gerszten et al,
1996; Bouffet et al, 1998; Figarella-Branger et al, 2000).

With very few definite clinical or pathological markers of biolo-
gical behaviour, the identification of genetic abnormalities
responsible for the generation and maintenance of the malignant
phenotype in ependymomas will be crucial, if there are improve-
ments to be made in the management of patients with this
disease. Not only may such defects serve as markers of aggressive
disease, allowing more efficient use of existing therapies, but they
may also suggest biological targets for novel therapeutic
approaches. Cytogenetic studies have shown that chromosomal
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abnormalities are relatively common in ependymomas (Stratton et
al, 1989; Neumann et al, 1993; Hamilton and Pollack, 1997;
Mazewski et al, 1999; Vagner-Capodano et al, 1999). However,
there are few large studies of genetic abnormalities in this disease,
and their role in tumour behaviour therefore remains unclear.

We have employed comparative genomic hybridisation (CGH)
to study tumours from a large population of patients with ependy-
moma. Specifically, our aims were to identify associations between
patterns of genetic imbalance and the principal histopathological
variants of ependymomas (classic/anaplastic and myxopapillary),
which occur at distinct sites in adults and children. Such findings
may enable future research to be targeted at genetic markers with
potential prognostic significance.

MATERIALS AND METHODS

Tumour samples

Tumours (n=86) came from patients (n=77) treated in three regio-
nal UK neurosurgical units (Newcastle, Nottingham, Southampton,
UK) between 1985 and 1999. Eight patients contributed more than
one sample (seven patients – two samples, one patient – three
samples) from consecutive resections of their tumour. In 16 other
cases, the single sample analysed was not from the first tumour
resection. In all three centres, a portion of each tumour was snap
frozen and stored in liquid nitrogen, while the remainder was fixed
in buffered formalin for histological examination. Frozen tumour
samples were transported on dry ice to a single institution (Wessex
Regional Genetics Laboratory) for CGH analysis.

Surgical resection had been the primary therapy in all cases,
although most patients had received adjuvant chemotherapy and/
or radiotherapy at some stage (Table 1). The male : female ratio
was 1 : 1. Across the entire group, age at presentation ranged from
8 months to 69 years, with a median of 29 years (Table 1). Adults
(median age: 39 years) contributed 58 samples, and children (516
years; median age: 6 years) contributed 28 samples. The
primary site for tumours was: supratentorial – 10 (13%), posterior
fossa – 31 (40%), spinal cord – 14 (18%), cauda equina – 22
(29%). All tumours from children were intracranial, except one
myxopapillary example, which presented in the filum terminale
of a boy aged 15 years. No patients with spinal tumours had meta-
static disease at presentation, but three intracranial tumours were
found, during staging investigations, to be associated with metas-
tases in the CSF pathways.

Histological assessment of each tumour was undertaken by two
neuropathologists (R Allibone and D Ellison), using criteria from
the WHO classification of central nervous system tumours (Wies-
tler et al, 2000); of a total of 86 tumours, 44 (51%) were designated
classic ependymomas, 24 (28%) anaplastic and 18 (21%) myxopa-
pillary. All frozen tumour samples for CGH analysis were examined
histologically to confirm the neoplastic nature of at least 80% of
the tissue.

Comparative genomic hybridisation

CGH was performed on frozen tumour tissue using an indirect
technique modified from those reported by Kallioniemi et al
(1994) and our own group (Nicholson et al, 1999). Genomic
DNA was labelled by nick translation with biotin, and sex-matched
control DNA with digoxigenin (both from Roche Diagnostics Ltd).
Probe mixtures containing 2 mg of labelled tumour and sex
matched control DNA were hybridised with 50 mg Cot 1 DNA
(Gibco – BRL) and 20 mg herring sperm carrier (Sigma) at 378C
for 3 days to sex-matched normal target lymphocyte metaphase
spreads prepared in the Wessex Regional Genetics Laboratory.
Biotin-labelled probes were detected with two rounds of avidin-
FITC interspersed with one of biotinylated anti-avidin (Vector
Laboratories) and digoxigenin-labelled probes were detected with

mouse anti-digoxigenin, rabbit anti-mouse, and finally goat anti-
rabbit TRITC (Sigma). Labelled detected metaphases were then
mounted in antifade solution containing 1.5 mg ml71 4,6’-diami-
no-2-phenylindole (DAPI) counterstain (Vector laboratories).
Each CGH experiment included a control hybridisation using
normal DNA.

Image capture and CGH analysis

Hybridisations were viewed under a fluorescence microscope
and three colour images were captured by a cooled charged
couple device camera (Photometrics), in conjunction with
Macprobe 4.1 software (Perceptive Scientific International Ltd,
Chester, UK). Metaphases were karyotyped and green : red fluor-
escence intensity ratios calculated along the length of each
chromosome. Mean ratio profiles, together with profiles corre-
sponding to +1 standard deviation (s.d.), were constructed
from 5 – 10 metaphases per tumour. Gains or losses of material
in the tumour were inferred by deviation of the mean ratios
beyond thresholds set at 1.15 and 0.85 respectively, providing
the s.d. profile deviated to the same side of the midline.
Selected cases with apparent imbalance on chromosomes 19
and/or 22 were chosen for CGH experiments with reverse label-
ling, because of concerns about artefacts in these regions. All
abnormal results were confirmed by these experiments, using
tumour DNA labelled with digoxigenin and controls with
biotin. Gains associated with ratios greater than 1.5 were inter-
preted as amplifications.

Fluorescence in situ hybridisation (FISH)

In a number of tumours the pattern of loss and gain was suggestive
of intermediate ploidy (Rosenberg et al, 1997). This term is used
where an increased copy number applies to some, but not all, chro-
mosomes, and overall ploidy lies between one level and the next
(usually diploidy and triploidy). Fluorescence in situ hybridisation
(FISH) was performed on extracted nuclei from selected cases to
confirm this. Loss/gain thresholds were then skewed to normalise
for individual diploid chromosomes and the results interpreted
with respect to the diploid state.

The FISH methodology allows an accurate and reproducible
analysis of formalin fixed, paraffin wax embedded tumour material,
and has been described in detail elsewhere (Nicholson et al, 2000).
Briefly, cytospin preparations of nuclei were produced from
sections (2 – 3615 mm) of tumour. Digoxigenin-labelled or
biotin-labelled plasmid probes to the centromeric regions of chro-
mosomes 4, 6, 7, 8, 10, and 17 were applied singly or in pairs to
preparations of nuclei. Probe hybridisation was conducted over-
night at 378C in a humidified chamber followed by stringency
washes at 438C using 0.1 – 0.56SSC plus 30% formamide to
remove non-specifically bound probe. Probes were visualised using
a mixture of Texas red-labelled avidin and FITC-conjugated anti-
digoxigenin antibody.

Data analysis

Relationships among variables were assessed using standard statis-
tical techniques: 262 contingency tables (Fisher’s exact test), Log
Rank analysis to produce Kaplan – Meier survival curves, and
multivariate Cox analysis. Survival analysis of patients with spinal
tumours was impossible because three of only five patients in the
uncensored category had died in the immediate post-operative
period.

RESULTS

The results of CGH analysis are detailed by age/site in Tables
1 – 4, alongside clinical parameters, and by histology in Figure
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Genetics and Genomics

Table 3 CGH data for spinal classic and anaplastic ependymomas

Age at Adjuvant Survival

No. Recurrence? Site biopsy (years) Sex therapy Surgery Variant Karyotype Ploidy Status (months)

33 – me 45 F RT alone complete anaplastic rev ish enh(9) DF 40
43 – me 45 F RT alone subtotal classic rev ish enh(X,5,7,12,15,17,18), dim(22) IP DF 14
44 – me 44 F RT alone complete classic rev ish dim(13,22) DF 163
54 – me 61 F none complete classic rev ish enh(X,2,5,7,9,12), dim(14q13qter) IP DF 88
57 – me 29 F none complete classic rev ish enh(7), dim(22) DF 56
64 – me 17 F RT alone complete classic rev ish enh(4,5,7,9,11,16,19,20) IP DF 172
85 – me 47 F RT alone complete classic rev ish enh(X,1p34qter,5,6q,7,9,12,18), dim(1p34pter,13,14q13qter,21,22) IP DF 44
45 yes – 6 years me 57 M none complete classic rev ish enh(5,7q,9,11,16,17,18,19,20), dim(22) IP DOD 148
49 – me 24 M none complete classic rev ish enh(1,2,3,5,7,8,9,10,12,13,15,18,20,21) IP AWD 118
59 – me 32 M none complete classic rev ish enh(X,2,7,8,12,13,15,18) IP DF 52
60 – me 32 M none complete classic rev ish enh(X,2,7,8,9,10,12), dim(22) IP DF 41
86 – me 50 M RT alone subtotal classic rev ish enh(X,2,3,7,9,12,15,21), dim(22) IP DF 113
61 – fi 40 M RT alone subtotal anaplastic rev ish dim(7) Df 35
38 – fi 54 F none complete classic rev ish enh(1,2,4,5,7,9,15,16,17,18), dim(22q12qter) IP DF 28
52 – fi 70 F none complete classic rev ish amp(19q13), enh(X,3,5,7,9,18) IP DOD 0
53 – fi 29 F none complete classic – DF 94
37 yes – 16 years fi 46 M RT alone subtotal classic rev ish enh(1,4,5,7,8,9,12,15,16,17,18,19,20,21), dim(2q36qter) IP AWD 224
42 yes – 4 years fi 29 M RT alone subtotal classic rev ish enh(X,5,7,15,16,17,18,19,20), dim(8) IP AWD 71
50 – fi 23 M none n/a classic rev ish enh(X,7,9,12,15), dim(22) IP DOD 0

me=medullary; fi=filum; RT=radiotherapy; IP=intermediate ploidy; DF=disease free; AWD=alive with disease; DOD=died of disease; n/a=not available.

Table 4 CGH data for spinal myxopapillary ependymomas

Age at Adjuvant Survival

No. Recurrence? Site biopsy (years) Sex therapy Surgery Karotype Ploidy Status (months)

39 – me 25 M RT alone subtotal rev ish enh(Y,1,2,4,5,7,8q,9,11,12,15,16,18) IP AWD 28
76 – me 48 M RT alone subtotal rev ish enh(X,2,7,9,11,12,15,20) IP DF 88
18 yes – 3 years fi 44 F RT alone subtotal rev ish enh(X,5,7,8,9,16,17,18) IP DF 101
41 – fi 49 F RT alone subtotal rev ish enh(16), dim(X,10,13) AWD 26
48 – fi 44 F none n/a rev ish dim(16,22) DF 115
51 – fi 31 F RT alone complete rev ish enh(5,7,9,15,16,17,18,20,21) IP DF 103
62 – fi 35 F none complete rev ish enh(7,16,17,18), dim(8,10,13,14) DF 24
84 – fi 32 F none complete rev ish dim(10,13q11q14,14) DF 68
1 – fi 16 M none subtotal rev ish enh(18), dim(13) AWD 178
9 – fi 23 M RT alone subtotal rev ish enh(Y,4,5,7,8,9,18), dim(10,14q214qter) IP DF 115
12 – fi 65 M none complete rev ish dim(22) DOD 0
14 – fi 15 M none subtotal rev ish enh(5,6,7,8,9,11,15,16,18,20) IP AWD 114
15 yes – of 14 fi 24 M RT alone subtotal rev ish enh(5,6,7,8,9,11,15,16,18,20) IP AWD 30
23 – fi 50 M RT alone subtotal rev ish enh(5,7,9,16,17,18) IP DOD 331
32 – fi 28 M RT alone subtotal rev ish enh(5,7,9,16,17,18,19,20) IP AWD 48
34 – fi 18 M none subtotal rev ish enh(7,16,18), dim(X,6,10,13,14,22) DF 37
35 – fi 58 M none subtotal rev ish dim(22) DF 35
40 – fi 41 M none complete rev ish enh(X,Y,5,7,9,11,15,16,17,18,20), dim(10,22) IP DF 26

me=medullary; fi=filum; RT=radiotherapy; IP=intermediate ploidy; DF=disease free; AWD=alive with disease; DOD=died of disease; n/a=not available.
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1. Balanced karyotypes were particularly prevalent among child-
hood tumours (P50.0005), and were not found in
myxopapillary variants. Ependymomas showing imbalance had
a mean of six abnormalities. The progressive acquisition of
genetic abnormalities was demonstrated by only one of eight
ependymomas for which successive biopsies were available. This

tumour acquired gain of 1q and loss of 16q, having shown a
balanced profile at first surgery. This change accompanied
progression of the tumour’s histological features from classic
to anaplastic.

A high proportion of tumours (44%) demonstrated particular
patterns of gain, and occasionally loss, across multiple chromo-
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somes that were highly suggestive of intermediate ploidy. This
interpretation was confirmed by FISH in a number of representa-
tive cases (Figure 2). Certain chromosomes, 2/5/7/9/12/15/18/X,
were commonly involved in these patterns. Such aberrations were

more frequent in myxopapillary and classic tumours than in
anaplastic variants (P=0.0199), in spinal relative to intracranial
ependymomas (P50.0005), and in tumours from adults vs chil-
dren (P50.0005).
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Figure 1 CGH ideograms divided according to histological variant/site: (A) Intracranial classic tumours; (B) Spinal classic tumours; (C) Anaplastic tumours;
(D) Myxopapillary tumours. Loss and gain bars are on the left and right sides of each chromosome respectively.
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The acquisition of certain genetic abnormalities: gain 1q, loss 6q,
loss 10q/10, loss 13, loss14q/14 and loss 22 appeared distinct from
the gains and losses of whole chromosomes that reflect intermediate
ploidy, and the characteristics of tumours with these abnormalities
were analysed. Loss of 22 was the commonest abnormality, detected
in 20 tumours (26%). This change was found in all histological
variants, though relatively less in the anaplastic tumours. However,
loss of 22 was significantly (P=0.0154) associated with a spinal
rather than an intracranial location. Gain of 1q and loss of 6q were
particular features of classic/anaplastic ependymomas of the poster-
ior fossa. Nearly all (11 of 13) tumours showing gain of 1q had
come from the posterior fossa, and eight of the 13 were designated
as anaplastic. Of all the posterior fossa anaplastic ependymomas
with gain of 1q (n=8), all but one was from a child. All tumours
with loss of 6q were from the posterior fossa. In contrast, seven
of nine ependymomas showing loss of 13 and all showing loss of
14q/14 were spinal. Myxopapillary ependymomas were associated
with both loss of 13 and loss of 14q/14. Loss of 10q/10 was present

across histological variants, but significantly (P=0.0192) more often
in myxopapillary tumours. All of the spinal tumours with losses on
chromosome 10 were myxopapillary (P=0.006).

From data on the selected genetic abnormalities above, we tested
the hypothesis that non-myxopapillary spinal ependymomas have
different genetic profiles from those of myxopapillary and intracra-
nial ependymomas. We compared the profiles of classic
ependymomas from intracranial and spinal sites (Figure 1A,B),
finding significant differences (P50.0001). Both adults and chil-
dren contributed intracranial tumours to this cohort (to ensure
adequate numbers for the analysis), but all spinal tumours in this
analysis were from adults (only one spinal tumour in the series was
from a child). We also compared the profiles of classic plus
anaplastic ependymomas from intracranial and spinal sites, again
finding distinct profiles (P50.0001). All tumours in this cohort
were from adults. Finally, our analysis of spinal ependymomas
from adult patients revealed significantly different profiles for clas-
sic and myxopapillary ependymomas (P50.0001).
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Figure 2 CGH profiles and FISH from case 38. Standard thresholds (A) imply a severely hypodiploid karyotype, but none of the profiles follows the mid-
line. This is characteristic of intermediate ploidy cases, and FISH with centromere probes (B) confirms that there were two copies of chromosome 8 (green)
in all cells and three copies of chromosome 17 (red) in many. Skewing the midline to the left to give a chromosome 8 profile midway between the gain and
loss thresholds (i.e. normal) produces a profile (C) that implies gain of a large number of chromosomes, although distal 22q is still clearly lost. By this inter-
pretation chromosomes 4 and 16 could have two extra copies compared to a single extra copy of the other gained chromosomes, or could be gained in all
cells while a smaller proportion of cells have the other gains.
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High level gain (CGH ratio 41.5 : 1) was infrequent, and mostly
implied gain of several copies of the whole, or most of, a chromo-
some arm. It occurred in only six tumours, five of which were
anaplastic (Table 1). Half of these tumours, showing gain of 1q,
were from children. Single, focal high level gains were located at
6q27 and 13q33q34 in one child’s tumour, and at 17q21qter and
19q13 in the remaining two tumours.

Because of the association between gain of 1q and anaplastic
ependymomas, we examined the effect of histological diagnosis
and gain of 1q on the survival of patients with intracranial
tumours. Survival curves comparing intracranial tumours split into
classic and anaplastic groups and those comparing intracranial
tumours with and without gain of 1q showed clear differences
(Figures 3 and 4), and the difference (Figure 5) between patients
with anaplastic ependymomas showing gain of 1q and others with
intracranial tumours was even more significant (P=0.0032).
However, when the effect of multiple variables on the survival of
patients with posterior fossa tumours was analysed (Cox propor-
tional hazard ratios), trends towards a poor outcome were seen
for children rather than adults, presence of metastases, no adjuvant
therapy, and subtotal surgical resection in multivariate analyses
(Table 5), but none of these effects reached statistical significance.

DISCUSSION

This is the largest CGH study of ependymomas to be reported so
far, and demonstrates that particular genetic profiles in these
tumours reflect the principal division in their biology; specifically,
that classic and anaplastic ependymomas occur mainly in the
posterior fossa of children and young adults, and the myxopapil-
lary variant occurs mainly in the region of the cauda equina in
adults (Hamilton and Pollack, 1997; Ellison, 1998). In addition,
we provide evidence to support the proposal that classic (WHO
grade 2) ependymomas from the region of the spinal cord are
genetically distinct from intracranial classic (grade 2) and anaplas-
tic (grade 3) tumours (Ebert et al, 1999; Hirose et al, 2001).

Many previous cytogenetic or CGH studies of ependymomas
have targeted tumours in children, and this may account for the
paucity of genetic data on myxopapillary ependymomas; only
one child from our series, a boy aged 15 years, presented with a
myxopapillary spinal tumour. The consensus from previous studies
is that about 40% of childhood ependymomas show no chromoso-
mal imbalances (Reardon et al, 1999; Ward et al, 2001). This
mirrors our data, which show a balanced chromosomal profile in
41% of childhood ependymomas, in contrast to only 9% of adult
tumours. In this respect, a distinction is also seen between intracra-
nial and spinal tumours; balanced profiles are evident in 32% of
intracranial ependymomas, but in only one spinal tumour (3%).
Another recent CGH study demonstrated balanced profiles in
21% of intracranial ependymomas, but none of the spinal tumours
(Hirose et al, 2001). A common pattern of abnormalities across
spinal (64%) and adult (56%) tumours in our study is gain across
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Figure 3 Kaplan – Meier plots showing a significant difference
(P=0.0472) in the survival of patients with intracranial classic ependymomas
and intracranial anaplastic ependymomas.
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Figure 4 Kaplan – Meier plots showing a significant difference
(P=0.0492) in the survival of patients with intracranial ependymomas with
and without gain of 1q.
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Figure 5 Kaplan – Meier plots showing a significant difference
(P=0.0032) in the survival of patients with intracranial anaplastic ependy-
momas with gain of 1q and patients with intracranial classic ependymomas
or anaplastic ependymomas without gain of 1q.

Table 5 Cox hazard ratios for posterior fossa tumours

Unadjusted Adjusted

Hazard P Hazard P

(coeffic.) value (coeffic.) value

Pathology – classic 0.65 0.45 0.63 0.55
Age group – adult 0.36 0.14 0.09 0.06
Sex – male 0.96 0.94 1.20 0.81
Metastases – present 14.66 0.03 13.08 0.13
Adjuvant therapy – RT/RT & CT 0.53 0.37 0.09 0.08
Surgery – complete 0.35 0.18 0.17 0.10
Gain 1q – present 1.15 0.84 1.46 0.71
Loss 6q – present 1.03 0.97 2.45 0.55
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multiple whole chromosomes. This pattern suggests intermediate
ploidy, and we confirmed this in a number of tumours using FISH.
Such widespread imbalance was shown by the only myxopapillary
ependymoma in one previous CGH study (Reardon et al, 1999),
and by many spinal tumours in another (Hirose et al, 2001). Over-
all, the data indicate that spinal ependymomas, which present
almost entirely in adult patients, and intracranial childhood
tumours differ significantly in their genetic profiles. The former
is characterised by widespread copy number aberrations, generally
without evidence of rearrangement, and the latter by restricted
specific gains or losses. The corollary of this is that low-grade
tumours, which in practice are easier to treat, have more wide-
spread abnormalities than the high-grade tumours, a situation
that also pertains to neuroblastomas (Plantaz et al, 1997).

Loss of 22q has been the commonest abnormality in several genetic
studies of ependymoma (Ransom et al, 1992; Mazewski et al, 1999;
Vagner-Capodano et al, 1999), though gain of 1q or loss of 6q
assumes predominance in others (Reardon et al, 1999; Ward et al,
2001). If the changes suggestive of intermediate ploidy are
discounted, loss of 22q is the most frequent genetic abnormality in
our series of ependymomas, occurring in 26% of ependymomas,
which is in line with data from other CGH studies (Reardon et al,
1999; Hirose et al, 2001; Ward et al, 2001). However, the frequency
of loss of 22q in ependymomas varies greatly (up to 71%) in previous
studies that have used a variety of methods (Ransom et al, 1992;
Neumann et al, 1993; Kramer et al, 1998; Vagner-Capodano et al,
1999; Zheng et al, 2000). This variability is likely to reflect ascertain-
ment bias, because the frequency of loss of 22 in ependymomas varies
according to histological variant, anatomic site, and age of the
patient. The discrepancy between its occurrence in adults and chil-
dren has been recorded in a large cytogenetic series (Mazewski et
al, 1999), and several lines of evidence link loss of 22 to spinal epen-
dymomas. There is an increasing susceptibility to gliomas in patients
with neurofibromatosis type 2 (NF2), the gene for which, NF2, is at
22q12 (Wiestler et al, 2000). Most gliomas in NF2 (80%) are ependy-
momas, and three quarters of NF2 gliomas are spinal (Rodriguez and
Berthrong, 1966). Mutations in the NF2 gene are uncommon in
sporadic ependymomas (von Haken et al, 1996), and appear to be
restricted to spinal tumours. In a study of 62 ependymomas (Ebert
et al, 1999), twelve showed allelic loss on 22q and six of them also
had NF2 mutations. All six ependymomas with mutations were clas-
sic variants from around the spinal cord.

Gain of 1q is a relatively frequent abnormality in ependymomas,
and has been emphasised in CGH studies of paediatric tumours,
where it has been reported in up to 22% of cases (Reardon et al,
1999). In our series, ependymomas with gain of 1q represent
17% of the total, but are significantly associated with childhood,
posterior fossa location, and anaplastic histological features.
Evidence for several extra copies of 1q is found in three of the
tumours in our series, all anaplastic ependymomas from children.
A similar phenomenon was reported in the study by Ward et al
(2001), who also described three tumours with a combination of
gain of 1q and loss of 16q as the only abnormalities. We found this
combination once, in the anaplastic recurrence of a classic ependy-
moma that originally showed a balanced CGH profile. This
combination strongly suggests a der(16)t(1;16), which is a well
recognised secondary chromosomal change in a variety of tumours.
This is the only instance of a change in genetic profile between two
successive biopsies. Gain of 1q and loss of 10q as sole abnormalities
occur twice in our cohort of intracranial tumours, both times in

anaplastic ependymomas from children, and in one anaplastic
tumour with other genetic abnormalities, which included amplifi-
cation of 17q21qter. Further investigation is required to
determine the significance of the association between gain of 1q
and loss of 10q or loss of 16q in ependymomas. However, this
phenomenon appears to occur in anaplastic childhood tumours
with an aggressive behaviour. The association between gain of 1q
and anaplastic ependymomas prompted us to look at the survival
of patients with posterior fossa tumours divided according to
histological variant and the presence of 1q. While numbers of
tumours in the analysis are small, the designation of a tumour as
anaplastic in the presence of gain of 1q was associated with a
significantly worse survival curve. However, it is important to note
that these variables were not significant prognostic indicators in a
multivariate analysis, and this may reflect the need for a greater
number of patients in such analyses.

Loss of 6q has been found in ependymomas with variable
frequency (Reardon et al, 1999; Hirose et al, 2001; Ward et al,
2001). We demonstrate an overall frequency of 6%, matching the
results of Ward et al (2001), but this is lower than results of up
to 22% in some CGH/cytogenetic studies (Reardon et al, 1999).
Again, the analysis of small numbers of patients, or of patients with
tumours from a certain site, may account for this. For example,
loss of 6q in our study attained its greatest frequency (26%) in
adults with posterior fossa ependymomas, which was also a feature
of another CGH study (Zheng et al, 2000).

Abnormalities of chromosomes 10 have featured prominently in
the study of genetic abnormalities in gliomas. Loss of part or most
of chromosome 10 is common in glioblastomas, and many of them
also harbour mutations of the PTEN tumour suppressor gene at
10q23 (Bostrom et al, 1998; Duerr et al, 1998). Abnormalities of
chromosome 10 appear less commonly in ependymomas, but
among spinal tumours in our series clearly differentiate classic
tumours from myxopapillary tumours. Microsatellite analysis has
shown loss of 10q to be uncommon in ependymomas, and no
mutation of the PTEN gene has been reported (Duerr et al,
1998; Ebert et al, 1999; Tong et al, 1999).

In summary, our study provides genetic data on a large range of
ependymomas. We show that distinct genetic profiles characterise
intracranial and spinal tumours, and tumours categorised by histo-
logical variant. In particular, we demonstrate that classic
ependymomas from intracranial and spinal sites should be distin-
guished on the basis of genetic information. While our data
suggest that gain of 1q is a possible marker for aggressive biological
behaviour, further research is indicated to define clinically useful
ways to incorporate histological and genetic assessments in the
classification of ependymomas.
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