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The potential of Mitomycin C in combination with fractionated irradiation to inhibit tumour cell repopulation of a fast growing
squamous cell carcinoma after fractionated radiotherapy was investigated in vivo. A rapidly growing human squamous cell
carcinoma (FaDudd) was used for the study. For experiments, NMRI (nu/nu) mice with subcutaneously growing tumours were
randomly allocated to no treatment, Mitomycin C, fractionated irradiation (ambient: 11x4.5 Gy in 15 days), or fractionated
irradiation combined with Mitomycin C. Graded top up doses (clamped blood flow: 0 – 57 Gy) were given at day 16, 23, 30
or 37. End point of the study was the time to local tumour progression. Data were examined by multiple regression analysis
(Cox). Mitomycin C alone resulted in a median time to local tumour progression of 23 (95% confidence limits: 17 – 43) days,
fractionated irradiation in 31 (25 – 35) days and combined Mitomycin C plus fractionated irradiation in 65 (58 – 73) days
(P=0.02). Mitomycin C decreased the relative risk of local recurrence by 94% (P550.001) equivalent to 31.7 Gy top up
dose. Repopulation accounted for 1.33 (0.95 – 1.72) Gy per day top up dose after fractionated irradiation alone and for 0.68
(0.13 – 1.22) Gy per day after fractionated irradiation+Mitomycin C (P=0.018). Mitomycin C significantly reduces the risk of
local recurrence and inhibits tumour cell repopulation in combination with fractionated irradiation in vivo in the tested tumour
model.
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Repopulation of surviving clonogenic tumour cells during fractio-
nated radiotherapy has been identified as an important factor
associated with clinical failure in squamous cell carcinoma of the
head and neck (Withers et al, 1988; Fowler and Lindstrom,
1992). According to the results of randomized clinical trials
(Dische et al, 1997; Dobrowsky and Naude, 2000) the dose needed
to counteract tumour cell repopulation accounts for approximately
0.4 Gy per day longer overall treatment time. In experimental
human tumour models, it was shown that the repopulation rate
is tumour cell line dependent, varying over a wide range between
0.5 – 4.6 Gy per day (Trott, 1990; Baumann et al, 1994; Budach
et al, 1997). Moderately and excessive accelerated radiation sche-
dules have been employed to overcome resistance induced by
tumour cell repopulation. These studies gave evidence that one
can decrease the total radiation dose in accelerated radiation sche-
dules without compromising local tumour control (Dische et al,
1997; Dobrowsky and Naude, 2000). An improvement of local
tumour control was observed only in studies that did not decrease
the total radiation dose in the accelerated arm. However, in the
latter studies acute and late radiation toxicity was also significantly
enhanced in the accelerated treatment arms, indicating that an
unambiguous therapeutic benefit for accelerated treatment sche-

dules in head and neck cancer has not been proven (Beck-
Bornholdt et al, 1997; Haffty et al, 1997; Horiot et al, 1997).

Squamous cell carcinomas of the head and neck have been
shown to be a chemosensitive disease. Cisplatin and taxane based
regimens in combination with 5-fluorouracil render overall
response rates of 80 – 90% in locally advanced disease (Khuri et
al, 2000). In spite of this high efficacy, induction chemotherapy
before definitive radiation therapy was unable to improve the
patients’ outcome (Rosenthal et al, 1994). However, simultaneous
or alternating chemo-radiotherapy has been shown to improve
locoregional tumour control and survival compared to radiother-
apy alone (Pignon et al, 2000) no matter whether conventional
or hyperfractionated – accelerated radiation schedules were used
(Merlano et al, 1996; Brizel et al, 1998; Calais et al, 1999; Jeremic
et al, 2000). The reason for this discrepancy in the clinical findings
is not well understood. It has been speculated that induction
chemotherapy kills preferentially well oxygenated tumour cells leav-
ing a smaller but more hypoxic and more radioresistant tumour at
the start of radiotherapy (Rosenthal et al, 1994). Another conjec-
ture is that clonogenic tumour cells surviving the induction
chemotherapy exhibit accelerated repopulation already before or
at the beginning of radiation therapy, whereas with radiotherapy
alone, accelerated repopulation is thought to start not before week
3 or 4 of the radiation series.

According to the results of a large set of experimental data, the
benefit of simultaneous chemo-radiation is regarded to result
mainly from radiosensitization of tumour cells, additive tumour
cell kill, and, for certain drugs like Mitomycin C (MMC), the kill-
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ing of hypoxic tumour cells (Rockwell, 1982). The impact of
another potentially important mechanism that may also be respon-
sible for the beneficial effect of simultaneous chemo-radiation, the
inhibition of repopulation during the 5 – 7 week course of radiation
therapy by cytostatic drugs, has not been systematically investi-
gated. We, therefore, designed a set of experiments using a
rapidly growing human head and neck squamous cell carcinoma
to test the hypothesis whether inhibition of repopulation is an
important mechanism of action for simultaneous chemo-radiation.

MATERIALS AND METHODS

Tumour cell line

The human hypopharyngeal squamous cell carcinoma cell line
FaDudd was used for the study. The cell line was kindly provided
by M Baumann (Dresden, Germany). FaDudd is a well character-
ized subline derived from the ATCC cell line FaDu. The DNA
content is aneuploid and the p53 tumour suppressor gene is
mutated. FaDudd exhibits rapid growth in vitro and in vivo on nude
or SCID mice (Baumann et al, 1994; Budach et al, 1997). The cell
line is only weakly immunogenic on nude mice. Former experi-
ments had shown that 6 mm xenografts of FaDudd on nude mice
were not responsive to 5-fluorouracil and cisplatin at maximally
tolerated dose (MTD) (Classen et al, 1998), but exhibited response
to MMC (at MTD).

Experimental animals

Immunodeficient NMRI-(nu/nu)-nude mice were bred in a specific
pathogen free animal colony at the University of Essen. At an age
of 4 – 6 weeks, animals were brought to Tuebingen University and
housed in an individually ventilated cage rack system (Techniplast,
Italy). They were fed sterile high-calorie laboratory food and drank
water supplemented by chlorotetracycline and potassium sorbate
acidified to a pH of 3.0 with hydrochloric acid ad libitum. All
animal experiments were performed in accordance with the stan-
dards required by the United Kingdom Co-ordinating Committee
on Cancer Research (UKCCCR) Guidelines (1998).

Transplantation and experimental design

For the experiments a source tumour was excised and tumour
chunks of about 2 mm diameter were implanted subcutaneously
into the right hind limb of 6 – 10-week old animals. Wound closure
was not necessary. Approximately 2 – 3 weeks after transplantation
visible tumour growth occurred. The tumour size was scored three
times a week. When the tumours reached a volume of approxi-
mately 120 mm3 the animals were randomly allocated to the
following treatment arms (Figure 1): (a) MMC at day 1 and 8 at
a dosage of 3 mg kg71 body weight intraperitoneally (i.p.)
(n=11); (b) fractionated radiotherapy (1164.5 Gy in 15 days)
followed by graded top up doses (0 – 57 Gy) at day 16, 23, 30 or

37 (one top up dose per animal) (n=117); (c) fractionated radio-
therapy (1164.5 Gy in 15 days) in combination with MMC on
day 1 and 8 (3 mg kg71 i.p., 1 h before irradiation) followed by
graded top up doses (0 – 37 Gy) at day 16, 23, 30 or 37 (one top
up dose per animal) (n=139); (d) no treatment (control animals)
(n=25).

Experiments were performed in two runs. The first run consisted
of 144 and the second run of 148 randomized animals. The median
tumour volume at the start of treatment was 126 mm3 (standard
deviation 39.1 mm3). According to the results of previous experi-
ments (Paulsen et al, 1998) a single dose of 4.5 Gy was chosen
during fractionated radiotherapy to meet two experimental require-
ments: (a) The tumours had to be smaller than 1500 mm3 at the
time of the last top up dose (day 37). At larger sizes, tumours tend
to spread to the trunk of the mice and cannot be sufficiently irra-
diated to achieve long term local tumour control; (b) Long term
local tumour control must not be attained by fractionated radio-
therapy alone. Top up doses with graded doses were
administered at different intervals after fractionated radiotherapy
in order to estimate isoeffective dose levels and calculate the dose
needed to counteract repopulation during the interval between
fractionated radiotherapy and top up irradiation (with and without
MMC).

Irradiation

A linear accelerator (6 MV photons, about 400 cGy min71 dose
rate) with an experimental device as described earlier (Stüben et
al, 1994) was used. Shieldings reduced the dose to the animal body
to less than 3% of the prescribed tumour dose. Ten mice were irra-
diated simultaneously in general anaesthesia. For the fractionated
irradiation an inhalation anaesthesia with enflurane and, for the
top up doses, a combination of 10 mg kg71 body weight xylazine-
hydrochloride and 15 mg kg71 body weight ketaminehydro-
chloride was given intraperitoneally. Radiotherapy was delivered
under ambient conditions during fractionation. For the top up
doses the blood flow to the tumour bearing leg was clamped at
least 5 min before administration of irradiation in order to achieve
an acute hypoxia.

Chemotherapy

Animals randomized to chemotherapy received 3 mg kg71 body
weight Mitomycin C (Medac, Germany) intraperitoneally approxi-
matley 1 h before radiation therapy on days 1 and 8 of the
treatment. The injected volume was 0.1 ml per 10 g body weight.
Animals randomized to radiotherapy alone got no injections.

Evaluation of tumour response and follow up

Tumour size was measured with calipers in two perpendicular
diameters. The tumour volume (V) was calculated as
V=(a6b2)/2, where a and b are the long axis and the short axis,
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Figure 1 Experimental design. XRT=radiation therapy; small jagged arrows=single fractions; large jagged arrows=graded top up doses (one top up dose
per animal); straight arrow=application of MMC; smiling face=weekend days without therapy; d=day.
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respectively. Scoring of tumour sizes took place three times per
week before start of treatment and twice per week after the start
of the treatment. The investigators were not blinded as to the
treatment that the animals had received, when they made their
measurements. Follow up was terminated at day 280 or in case
of intercurrent death or if recurrent tumours after top up irra-
diation had grown to eight-times the initial tumour volume at
the start of treatment. Body weight was recorded once a week.
A modified growth delay end point, time to local tumour
progression (TTP), was end point of the study. For animals
randomized to receive MMC only or fractionated radiotherapy
alone without top up doses, the TTP was defined as interval
between the day of start of treatment to the day when the
regrowing tumours reached twice the initial tumour volume.
For animals randomized for a top up irradiation, the TTP was
defined as interval between the day of start of treatment to
the day after top up irradiation when the regrowing tumours
reached twice the initial tumour volume.

Statistical analysis

The median TTP was calculated according to the method of
Kaplan and Meier (1958). Differences between groups were tested
for significance by the log-rank test. The data of all animals that
had received fractionated radiotherapy (+MMC, +top up irra-
diation) were the basis for a multivariate analysis (Cox model)
(n=256). Tested parameters were top up dose (0 – 57 Gy),
MMC (yes or no), time of top up radiotherapy (0 – 3 weeks after
fractionated radiotherapy), and MMC6(time of top up radio-
therapy). The relative risk ratios derived from the Cox model
were the basis for calculation of the radiotherapy top up dose
equivalents for the effect of MMC and time effect with and
without MMC.

RESULTS

Acute toxicity as measured as maximal weight loss of the animals
during the fractionated radiotherapy (+MMC) was only moderate.
Mice receiving radiotherapy alone and radiotherapy in combina-
tion with MMC exhibited a maximal median weight loss of 10%
(s.d.+6%) and 6% (s.d.+5%), respectively (not significant). The
nadir of weight loss occurred at day 9 in the radiotherapy alone
arm of the study and at day 8 in the radiotherapy+MMC arm of
the study.

During longer follow-up after fractionated radiotherapy inter-
current deaths occurred as a result of the limited life span of
nude mice. However, the frequency and time of intercurrent deaths
did not significantly differ between animals treated with and with-
out MMC (Figure 2).

MMC alone exhibited moderate tumour activity resulting in a
median TTP of 23.0 (95% confidence limits (CL) 17.0 – 42.8) days
(n=11) compared to 4.5 (CL: 3.2 – 5.6) days (n=25) in untreated
control animals (P50.001). After fractionated radiotherapy alone
(without top up dose) a median TTP of 31.0 (CL: 25.0 – 34.9) days
was observed compared to 64.9 (CL: 57.9 – 72.8) days after fractio-
nated radiotherapy in combination with MMC (P=0.02). The
difference in TTP after MMC alone (23.0 days) and fractionated
radiotherapy alone (31.0 days) was not significant.

No major tumour regressions were observed during the fractio-
nated radiotherapy with either treatment. However, during the
interval between the end of fractionated radiotherapy and the last
top up irradiation at day 37, MMC treated tumours showed a
continuous and substantial decrease in tumour volume, whereas
after radiotherapy alone only minor tumour regressions were
observed and average tumour volumes tended to increase again
after day 23 (Figure 3).

A total of 256 animals received fractionated radiother-
apy+MMC with or without top up irradiation. Locally recurrent

tumours were observed in 84 out of 117 animals (71.8%) in the
radiotherapy alone arm (all top up days) and in 44 out of 139
animals (31.7%) in the radiotherapy+MMC arm (all top up days)
of the study (P50.001), although the median top up doses were
15 Gy lower in the MMC arm (30 Gy vs 15 Gy) (Figure 4). At
day 150 after the start of treatment two-thirds of the animals with-
out local recurrence were still alive (Figure 2) and 82 of 84
recurrences in the radiotherapy arm and 43 of 44 in the radiother-
apy+MMC arm occurred before day 150 (Figure 4), indicating that
the life span and follow up of the animals was sufficient to calcu-
late ultimate local tumour control.

Figure 5 displays the local tumour control data of all 256
animals that had received fractionated radiotherapy. A distinct
loss of local tumour control with an increasing interval between
fractionated radiotherapy and top up irradiation is obvious as
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well for tumours treated with radiotherapy alone as for tumours
treated with radiotherapy+MMC. However, the loss of local
tumour control was less pronounced in the MMC arm of the
study.

The results of the multivariate analysis of TTP is shown in Table
1. All parameters included in the model were significant. The rela-
tive risk to develop a local recurrence was reduced by 94% in
animals that had received MMC and decreased by 8% per Gy
top up dose. The risk of local recurrence increased 2.3-fold per
week longer between intervals of fractionated radiotherapy and
top up irradiation. This risk was significantly decreased by MMC
(relative risk 0.67). Based on the relative risk ratios, the effect of
MMC was equivalent to 31.7 Gy top up dose. The dose required
to counteract repopulation was 9.3 Gy per week (1.3 Gy per day)
in the radiotherapy alone arm (Table 2) and 4.7 Gy per week
(0.7 Gy per day) in the radiotherapy+MMC arm of the study
(P=0.018).

Recurrent tumours after top up irradiation+MMC grew signif-
icantly slower (mean tumour doubling time (TDT): 13.7 days, 95%
CL: 11.9 – 15.6 days) compared to untreated control tumours
(mean TDT: 4.5 days, 95% CL: 3.8 – 5.1 days). TDT of recurrent
tumours that had received MMC during fractionated radiotherapy
were significantly longer (17.4 days (95% CL: 14.3 – 20.6 days))
than TDT of recurrent tumours that had not received MMC
(11.0 days (95% CL: 9.6 – 12.4 days)) (P50.001, Mann – Whitney
U-test). A non-significant trend towards longer TDT of recurrent
tumours were observed with increasing top up doses especially
after treatment with MMC (Figure 6).

DISCUSSION

MMC at maximally tolerated dose in combination with fractio-
nated radiotherapy reduced the relative risk of local recurrence
by more than 90% (Table 1). This effect of MMC was equivalent
to 31.7 Gy top up dose. According to former experiments (Budach
et al, 1993) and the presented results an additive effect of MMC
and radiotherapy can be assumed.

The relative risk for local recurrence increased almost 30-fold
during the 3-week interval between fractionated radiotherapy and
top up irradiation in animals that had not received MMC, but only
3.5-fold in animals that had received MMC (P=0.018). Repopula-
tion in the interval between fractionated radiotherapy and top up
irradiation accounted for 1.33 Gy per day top up dose after fractio-
nated radiotherapy alone and for 0.68 Gy per day after fractionated
radiotherapy in combination with MMC (Table 2). Inhibition of
repopulation of surviving clonogenic tumour cells by MMC during
this interval is the only straightforward explanation for this obser-
vation. The repopulation rate was approximately cut half by MMC.
Differences in the hypoxic tumour cell fraction at the time of top
up irradiation cannot serve as an alternative explanation for this
observation, because the blood flow to the tumour bearing legs
was clamped before top up irradiation rendering all tumours
acutely hypoxic. However, the chronically hypoxic tumour cell
fraction was likely larger in tumours treated with radiotherapy
alone than in tumours receiving MMC and irradiation, since the
latter tumours showed constant shrinkage in the interval between
fractionated radiotherapy and top up irradiation and were consid-
erably smaller at the time of top up irradiation (Figure 3). A more
pronounced radiation resistance of chronically hypoxic tumour
cells compared to acutely hypoxic tumour cells would also be
compatible with the observations. However, experimental data do
indicate the opposite, a less pronounced radiation resistance of
chronically hypoxic tumour cells (Denekamp and Dasu, 1999).
The inhibitory effect of MMC on repopulation is further substan-
tiated by the observation that recurrent tumours after radiotherapy
in combination with MMC grew significantly slower compared to
recurrent tumours after radiation treatment alone (Figure 6).

The experimental design allowed to verify the inhibition of
repopulation by MMC between day 16 and 37 after fractionated
radiotherapy. Although no direct estimate of repopulation during
fractionated radiotherapy can be derived from the experiments, it
appears to be reasonable to assume that MMC inhibited repopu-
lation also during the fractionated radiotherapy. Based on this
assumption and presuming a constant inhibitory effect of
MMC from the start of fractionated radiotherapy to the last
top up irradiation, the inhibition of repopulation would account
for approximately 9.2 Gy top up dose or 30% of the total MMC
effect at the end of the fractionated radiotherapy (day 16) and
for 23 Gy top up dose or for 50% of the MMC effect at the last
top up irradiation (day 37). Translated to a 6 – 7 weeks clinical
radiation series in head and neck cancer, this would mean that
inhibition of repopulation by MMC (and potentially other cyto-
static drugs) might be of major importance for the observed
beneficial effects of simultaneous chemo-radiotherapy. This would
only be true, if repopulation is inhibited more in the tumour
than in normal tissues. A significant inhibition of repopulation
in normal tissues by MMC should be clinically detectable by
an enhanced radiation mucositis and dermatitis. However, in
clinical trials on head and neck cancer using MMC, only little
or no evidence of enhanced mucosal or dermal side effects was
found, whereas locoregional tumour control was considerably
increased (Haffty et al, 1997; Dobrowsky and Naude, 2000;
Budach et al, 2001). This observation gives indirect evidence that
repopulation of normal tissues is clinically not significantly
inhibited.

Direct comparable data have, at least to the knowledge of the
authors, not been published before. Repopulation of FaDudd

tumours during fractionated radiotherapy alone has been inten-
sively studied by Baumann and colleagues (Baumann et al, 1994;
Schoene et al, 2001). They reported a repopulation rate equivalent
to 1.0 – 1.5 Gy per day for ambient conditions, which compares
well to the present findings (1.3 Gy) and to earlier in vitro results
of our group (Budach et al, 1997). In contrast to Baumann et al
(1994), radiotherapy (top up) in the present study was adminis-
tered under acutely hypoxic conditions. Under these conditions,
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cells are up to three-fold more radiation resistant compared to
oxygenated cells. Therefore, larger repopulation rates (as measured
in Gy per day) could have been expected in our experiments.
However, according to the data of Baumann et al (2001), the
hypoxic fraction of surviving clonogenic tumour cells at the end
of the fractionated radiotherapy is close to 100% in FaDudd

tumours on nude mice. These data gave indirect evidence that
top up irradiations under ambient conditions might have given
identical results and that our results are entirely consistent with
results of Baumann et al (1994, 2001).

The dose needed to counteract tumour cell repopulation can be
calculated from the CHART (Dische et al, 1997) and V-CHART
(Dobrowsky and Naude, 2000) clinical trials. According to these trials
repopulation without chemotherapy accounts for approximately
0.4 Gy per day, which is substantially lower than in the tested experi-
mental system, suggesting that the potential clinical benefit derived
from the inhibition of repopulation by chemotherapy during radio-

therapy might be overestimated by our findings. The impact of
repopulation during simultaneous chemo-radiation has not been
measured in clinical studies. However, indirect evidence that
chemotherapy inhibits repopulation comes from the study of Mer-
lano et al (1996). They randomized patients with inoperable head
and neck cancer to receive either radiotherapy alone with 70 Gy in
7 weeks or alternating chemo-radiation consisting of four cycles of
cisplatin and 5-fluorouracil given every third week for 5 days and
radiotherapy (60 Gy) given in three courses of 20 Gy in the intervals
between chemotherapy cycles. In spite of 15% lower total dose and 1
week longer overall treatment time in the radiation series of the
chemo-radiation arm, an absolute survival benefit of 14%
(P50.01) was observed for the chemo-radiation arm of the study.
The extent of the observed survival benefit is not smaller than in other
chemo-radiation trials using identical overall treatment times or
accelerated treatments in both study arms (Brizel et al, 1998; Calais
et al, 1999; Dobrowsky and Naude, 2000; Jeremic et al, 2000). The
question arises whether accelerated radiation schedules are necessary,
when simultaneous chemo-radiation is used. If repopulation is inhib-
ited by chemotherapy in the majority of tumours, the answer would
be no. Clinical trials are required to test this hypothesis.

The mechanism behind the observed inhibition of repopulation
by MMC was not subject of the current study. MMC is known to
induce a marked cell cycle arrest in the G2/M phase (Franchitto et
al, 1998; Heinrich et al, 1998; Sugiyama et al, 2000). The duration
of this cell cycle arrest has not been well documented, but is unli-
kely to persist for several weeks as would be required to explain the
duration of inhibition of repopulation in our experiments. Short-
term exposure (2.5 min) to MMC of human Tenon’s fibroblasts
has been shown to suppress cell proliferation for at least 6 weeks
(Woo et al, 1997). However, no data on long-term changes in
the cell cycle distribution or expression of cyclins after MMC are
available. The mechanism of the inhibitory effect of MMC on repo-
pulation remains elusive and will be subject of subsequent
investigations.

Although we found evidence that chemotherapy can inhibit repo-
pulation, some limitations of the studies have to be kept in mind.
Only one tumour cell line was investigated with one cytostatic drug
(MMC) so that we do not know whether our observations will be typi-
cal for other tumour cell lines and cytostatic drugs. Large differences in
the sensitivity of human tumours towards MMC have been observed.
The tumour response is influenced by the reductive enzyme profile of
the tumour (Gan et al, 2001). A rapid MMC metabolism is associated
with a pronounced tumour response (Phillips et al, 2000) as was
observed in the investigated tumour cell line. Therefore, the beneficial
effects of MMC in combination with radiotherapy may not be as
pronounced in tumour cell lines that are poor metabolizers of
MMC. The data did not allow to evaluate whether the repopulation
dynamics was any different comparing the first and the last week of
the observation period or was different during fractionated radiother-
apy. The hypoxic tumour cell fraction was not assessed at any time
during the experiments. Therefore one has to be cautious to generalize
the results and conclusions for clinical practice cannot be drawn.

But despite these critical appointments we demonstrated, as a
proof of principle that chemotherapy, especially MMC, is able to
inhibit tumour cell repopulation significantly. Inhibition of repo-
pulation appears to be a potentially important mechanism for
the beneficial effects of simultaneous chemo-radiation. An acceler-
ated radiotherapy might not be necessary if an effective
chemotherapy is used concurrently. This issue deserves further
experimental and clinical investigations.
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Table 1 Results of the multivariate analysis of TTP (Cox-Model)

Parameter Relative risk

95% confidence

limits P-value

Top up dose 0.916 0.899 0.934 50.0001
MMC 0.063 0.032 0.122 50.0001
Time 2.262 1.789 2.860 50.0001
Time6MMC 0.669 0.479 0.934 0.018

Relative risk: Top up dose: per Gy dose increment; MMC: for application of MMC,
time: per week longer interval between fractionated radiotherapy and top up irradia-
tion; time6MMC: per week longer interval between fractionated radio-
therapy+MMC and top up irradiation compared to radiotherapy alone.

Table 2 Calculated top up dose equivalents

Top up dose

equivalent (Gy)

95% Confidence

limits (Gy)

MMC effect 31.7 20.4 39.3
Repopul./week (fXRT) 9.3 6.7 12.0
Repopul./week (fXRT+MMC) 4.7 0.9 8.6

Repopul.=Repopulation; fXRT=fractionated radiotherapy.
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Figure 6 Tumour doubling times of locally recurrent tumours depending
on the top up dose: Triangles indicate fractionated radiation (fRT) and cir-
cles represent fRT in combination with MMC.
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