Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Development of a human mitochondria-focused cDNA microarray (hMitChip) and validation in skeletal muscle cells: implications for pharmaco- and mitogenomics

Abstract

Mitochondrial research has influenced our understanding of human evolution, physiology and pathophysiology. Mitochondria, intracellular organelles widely known as ‘energy factories’ of the cell, also play fundamental roles in intermediary metabolism, steroid hormone and heme biosyntheses, calcium signaling, generation of radical oxygen species, and apoptosis. Mitochondria possess a distinct DNA (mitochondrial DNA); yet, the vast majority of mitochondrial proteins are encoded by the nuclear DNA. Mitochondria-related genetic defects have been described in a variety of mostly rare, often fatal, primary mitochondrial disorders; furthermore, they are increasingly reported in association with many common morbid conditions, such as cancer, obesity, diabetes and neurodegenerative disorders, although their role remains unclear. This study describes the creation of a human mitochondria-focused cDNA microarray (hMitChip) and its validation in human skeletal muscle cells treated with glucocorticoids. We suggest that hMitChip is a reliable and novel tool that will prove useful for systematically studying the contribution of mitochondrial genomics to human health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

ACADL:

acyl-Coenzyme A dehydrogenase, long chain

ACADM:

acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain

ACADVL:

acyl-Coenzyme A dehydrogenase, very long chain

AK1:

adenylate kinase 1

Dex:

dexamethasone

FACL2:

acyl-CoA synthetase long-chain family member 1

FDX1:

ferredoxin 1

hMitChip:

human mitochondria-focused cDNA microarray

MAOA:

monoamine oxidase A

mtDNA:

mitochondrial DNA

nDNA:

nuclear DNA

PPIB:

peptidylprolyl isomerase B (cyclophilin B)

QRT-PCR:

quantitative real-time polymerase chain reaction

ROS:

radical oxygen species.

References

  1. Margulis L . Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 1996; 93: 1071–1076.

    Article  CAS  Google Scholar 

  2. Scheffler IE . A century of mitochondrial research: achievements and perspectives. Mitochondrion 2001; 1: 3.

    Article  CAS  Google Scholar 

  3. Chinnery PF . Searching for nuclear-mitochondrial genes. Trends Genet 2003; 19: 60–62.

    Article  CAS  Google Scholar 

  4. Shoubridge EA . Nuclear genetic defects of oxidative phosphorylation. Hum Mol Genet 2001; 10: 2277–2284.

    Article  CAS  Google Scholar 

  5. Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C . Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 2001; 28: 211–212.

    Article  CAS  Google Scholar 

  6. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 1998; 18: 231–236.

    Article  CAS  Google Scholar 

  7. Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG, Gustafsson CM . Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 2002; 31: 289–294.

    Article  CAS  Google Scholar 

  8. Zeviani M, Corona P, Nijtmans L, Tiranti V . Nuclear gene defects in mitochondrial disorders. Ital J Neurol Sci 1999; 20: 401–408.

    Article  CAS  Google Scholar 

  9. Leonard JV, Schapira AH . Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet 2000; 355: 389–394.

    Article  CAS  Google Scholar 

  10. Schapira AH . Mitochondrial dysfunction in neurodegenerative disorders. Biochim Biophys Acta 1998; 1366: 225–233.

    Article  CAS  Google Scholar 

  11. Kelley DE, He J, Menshikova EV, Ritov VB . Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; 51: 2944–2950.

    Article  CAS  Google Scholar 

  12. Enns GM . The contribution of mitochondria to common disorders. Mol Genet Metab 2003; 80: 11–26.

    Article  CAS  Google Scholar 

  13. Osiewacz HD . Mitochondrial functions and aging. Gene 2002; 286: 65–71.

    Article  CAS  Google Scholar 

  14. Szewczyk A, Wojtczak L . Mitochondria as a pharmacological target. Pharmacol Rev 2002; 54: 101–127.

    Article  CAS  Google Scholar 

  15. Lindal S, Lund I, Torbergsen T, Aasly J, Mellgren SI, Borud O et al. Mitochondrial diseases and myopathies: a series of muscle biopsy specimens with ultrastructural changes in the mitochondria. Ultrastruct Pathol 1992; 16: 263–275.

    Article  CAS  Google Scholar 

  16. Khaleeli AA, Edwards RH, Gohil K, McPhail G, Rennie MJ, Round J et al. Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol (Oxford) 1983; 18: 155–166.

    Article  CAS  Google Scholar 

  17. Kayali AG, Young VR, Goodman MN . Sensitivity of myofibrillar proteins to glucocorticoid-induced muscle proteolysis. Am J Physiol 1987; 252: E621–E626.

    CAS  PubMed  Google Scholar 

  18. Hasselgren PO . Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 1999; 2: 201–205.

    Article  CAS  Google Scholar 

  19. Mayer M, Chaouat M, Lernau OZ, Nissan S . Hormone-responsive myofibrillar protease activity in cultured rat myoblasts. FEBS Lett 1983; 161: 239–242.

    Article  CAS  Google Scholar 

  20. Isozaki U, Mitch WE, England BK, Price SR . Protein degradation and increased mRNAs encoding proteins of the ubiquitin-proteasome proteolytic pathway in BC3H1 myocytes require an interaction between glucocorticoids and acidification. Proc Natl Acad Sci USA 1996; 93: 1967–1971.

    Article  CAS  Google Scholar 

  21. Thompson MG, Thom A, Partridge K, Garden K, Campbell GP, Calder G et al. Stimulation of myofibrillar protein degradation and expression of mRNA encoding the ubiquitin-proteasome system in C(2)C(12) myotubes by dexamethasone: effect of the proteasome inhibitor MG-132. J Cell Physiol 1999; 181: 455–461.

    Article  CAS  Google Scholar 

  22. Vignos Jr PJ, Greene R . Oxidative respiration of skeletal muscle in experimental corticosteroid myopathy. J Lab Clin Med 1973; 81: 365–378.

    CAS  PubMed  Google Scholar 

  23. Marolda M, Palma V, Camporeale FS, Carandente M, Cioffi M, Orsini AV et al. Steroid myopathy: clinical and immunohistochemical study of a case. Ital J Neurol Sci 1991; 12: 409–413.

    Article  CAS  Google Scholar 

  24. Marone JR, Falduto MT, Essig DA, Hickson RC . Effects of glucocorticoids and endurance training on cytochrome oxidase expression in skeletal muscle. J Appl Physiol 1994; 77: 1685–1690.

    Article  CAS  Google Scholar 

  25. Duclos M, Gouarne C, Martin C, Rocher C, Mormede P, Letellier T . Effects of corticosterone on muscle mitochondria identifying different sensitivity to glucocorticoids in Lewis and Fischer rats. Am J Physiol Endocrinol Metab 2004; 286: E159–E167.

    Article  CAS  Google Scholar 

  26. Alesci S, Su YA, Chrousos GP . hMiDas and hMitChip: New Opportunities in Mitochondrial Bioinformatics and Genomic Medicine. In: Long RAS, Lee DJ, Nutter B, Zhang M (eds.), Seventeenth IEEE Symposium on Computer-Based Medical Systems. IEEE Computer Society Press: Los Alamitos, CA, 2004, pp 329–334.

    Google Scholar 

  27. Goldsmith ZG, Dhanasekaran N . The microrevolution: applications and impacts of microarray technology on molecular biology and medicine (review). Int J Mol Med 2004; 13: 483–495.

    CAS  PubMed  Google Scholar 

  28. Maitra A, Cohen Y, Gillespie SE, Mambo E, Fukushima N, Hoque MO et al. The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res 2004; 14: 812–819.

    Article  CAS  Google Scholar 

  29. van der Westhuizen FH, van den Heuvel LP, Smeets R, Veltman JA, Pfundt R, van Kessel AG et al. Human mitochondrial complex I deficiency: investigating transcriptional responses by microarray. Neuropediatrics 2003; 34: 14–22.

    Article  CAS  Google Scholar 

  30. Wallace DC . Mitochondrial genes in degenerative disease and aging. Sci World J 2001; 1: 83SR–84SR.

    Article  Google Scholar 

  31. Su YA, Bittner ML, Chen Y, Tao L, Jiang Y, Zhang Y et al. Identification of tumor-suppressor genes using human melanoma cell lines UACC903, UACC903(+6), and SRS3 by comparison of expression profiles. Mol Carcinog 2000; 28: 119–127.

    Article  CAS  Google Scholar 

  32. Manoli I, Le H, Alesci S, McFann KK, Su YA, Kino T et al. Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB J 2005; 19: 1359–1361.

    Article  CAS  Google Scholar 

  33. Chen K, Shih JC . Monoamine oxidase A and B: structure, function, and behavior. Adv Pharmacol 1998; 42: 292–296.

    Article  CAS  Google Scholar 

  34. Gilad GM, Gilad VH . Overview of the brain polyamine-stress-response: regulation, development, and modulation by lithium and role in cell survival. Cell Mol Neurobiol 2003; 23: 637–649.

    Article  CAS  Google Scholar 

  35. Gilad GM, Gilad VH . Stress-induced dynamic changes in mouse brain polyamines. Role in behavioral reactivity. Brain Res 2002; 943: 23–29.

    Article  CAS  Google Scholar 

  36. Motoyama S, Saito S, Itoh H, Minamiya Y, Maruyama K, Okuyama M et al. Methylprednisolone-induced expression of mitochondrial heat shock protein 60 protects mitochondrial membrane potential in the hypoxic rat liver. Shock 2004; 22: 234–239.

    Article  CAS  Google Scholar 

  37. Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH . Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 2001; 103: 1787–1792.

    Article  CAS  Google Scholar 

  38. Liao DF, Jin ZG, Baas AS, Daum G, Gygi SP, Aebersold R et al. Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem 2000; 275: 189–196.

    Article  CAS  Google Scholar 

  39. Janssen EM, van Oosterhout AJ, Nijkamp FP, van Eden W, Wauben MH . The efficacy of immunotherapy in an experimental murine model of allergic asthma is related to the strength and site of T cell activation during immunotherapy. J Immunol 2000; 165: 7207–7214.

    Article  CAS  Google Scholar 

  40. Letteron P, Brahimi-Bourouina N, Robin MA, Moreau A, Feldmann G, Pessayre D . Glucocorticoids inhibit mitochondrial matrix acyl-CoA dehydrogenases and fatty acid beta-oxidation. Am J Physiol 1997; 272: G1141–G1150.

    CAS  PubMed  Google Scholar 

  41. LaMarco K, Thompson CC, Byers BP, Walton EM, McKnight SL . Identification of Ets- and notch-related subunits in GA binding protein. Science 1991; 253: 789–792.

    Article  CAS  Google Scholar 

  42. Briguet A, Ruegg MA . The Ets transcription factor GABP is required for postsynaptic differentiation in vivo. J Neurosci 2000; 20: 5989–5996.

    Article  CAS  Google Scholar 

  43. Mejat A, Ravel-Chapuis A, Vandromme M, Schaeffer L . Synapse-specific gene expression at the neuromuscular junction. Ann NY Acad Sci 2003; 998: 53–65.

    Article  CAS  Google Scholar 

  44. Chen G, Ray R, Dubik D, Shi L, Cizeau J, Bleackley RC et al. The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 1997; 186: 1975–1983.

    Article  CAS  Google Scholar 

  45. Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 2000; 20: 5454–5468.

    Article  CAS  Google Scholar 

  46. Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA . Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA 2002; 99: 12825–12830.

    Article  CAS  Google Scholar 

  47. Gilbert DG . euGenes: a eukaryote genome information system. Nucl Acids Res 2002; 30: 145–148.

    Article  CAS  Google Scholar 

  48. Safran M, Solomon I, Shmueli O, Lapidot M, Shen-Orr S, Adato A et al. GeneCards 2002: towards a complete, object-oriented, human gene compendium. Bioinformatics 2002; 18: 1542–1543.

    Article  CAS  Google Scholar 

  49. Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL et al. Database resources of the National Center for Biotechnology Information: update. Nucl Acids Res 2004; 32: D35–D40.

    Article  CAS  Google Scholar 

  50. Cuticchia AJ . Future vision of the GDB human genome database. Hum Mutat 2000; 15: 62–67.

    Article  CAS  Google Scholar 

  51. Diehn M, Sherlock G, Binkley G, Jin H, Matese JC, Hernandez-Boussard T et al. SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucl Acids Res 2003; 31: 219–223.

    Article  CAS  Google Scholar 

  52. Lenhard B, Hayes WS, Wasserman WW . GeneLynx: a gene-centric portal to the human genome. Genome Res 2001; 11: 2151–2157.

    Article  CAS  Google Scholar 

  53. Fitzpatrick RB . The Cochrane Library and Cochrane Collaboration. Med Ref Serv Q 2000; 19: 73–78.

    Article  CAS  Google Scholar 

  54. Fitzpatrick RB . Decision support with Ovid. Med Ref Serv Q 2001; 20: 47–53.

    Article  CAS  Google Scholar 

  55. Tomasulo P . Thread your way through ISI's Web of Science. Med Ref Serv Q 2001; 20: 49–59.

    Article  CAS  Google Scholar 

  56. Scheffler IE . Mitochondria. Wiley-Liss: New York, NY, 1999.

    Book  Google Scholar 

  57. Singh KK . Mitochondrial DNA Mutations in Aging, Disease and Cancer. Landes Bioscience: Georgetown, TX, 1998.

    Book  Google Scholar 

  58. Lestienne P . Mitochondrial Diseases: Models and Methods. Springer Verlag: Berlin, Germany, 1999.

    Book  Google Scholar 

  59. Lemasters JJ, Nieminem AL . Mitochondria in Pathogenesis. Kluwer Academic/Plenum Pr.: New York, NY, 2001.

    Google Scholar 

  60. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    Article  CAS  Google Scholar 

  61. Su YA, Trent J . Isolation of Tumor Suppressor Genes in Melanoma by cDNA Microarray. Melanoma Techniques and Protocols. Molecular Diagnosis, Treatment, and Monitoring. Humana Press: Totowa, NJ, 2001 pp. 15–29.

    Chapter  Google Scholar 

  62. Conejo R, Lorenzo M . Insulin signaling leading to proliferation, survival, and membrane ruffling in C2C12 myoblasts. J Cell Physiol 2001; 187: 96–108.

    Article  CAS  Google Scholar 

  63. Ruest LB, Marcotte R, Wang E . Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis. J Biol Chem 2002; 277: 5418–5425.

    Article  CAS  Google Scholar 

  64. Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL et al. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 2003; 3: 18.

    Article  Google Scholar 

  65. Mimmack ML, Brooking J, Bahn S . Quantitative polymerase chain reaction: validation of microarray results from postmortem brain studies. Biol Psychiatr 2004; 55: 337–345.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Programs of the National Institute of Child Health and Human Development, the National Institute of Mental Health, and the National Center for Complementary and Alternative Medicine. The support of the Public Benefit Foundation ‘Alexander S Onassis’ to Dr I Manoli is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Alesci.

Additional information

Duality of Interest

The authors have no duality of interest related to this work to declare.

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alesci, S., Manoli, I., Michopoulos, V. et al. Development of a human mitochondria-focused cDNA microarray (hMitChip) and validation in skeletal muscle cells: implications for pharmaco- and mitogenomics. Pharmacogenomics J 6, 333–342 (2006). https://doi.org/10.1038/sj.tpj.6500377

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500377

Keywords

This article is cited by

Search

Quick links