Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shedding light into the role of BDNF in the pharmacotherapy of Parkinson's disease

Abstract

Parkinson's disease (PD) is a chronic, neurodegenerative disease with a 1% incidence in the population over 55 years of age. Movement impairments represent undoubtedly the hallmark of the disorder; however, extensive evidence implicates cognitive deficits as concomitant peculiar features. Brain-derived neurotrophic factor (BDNF) colocalizes with dopamine neurons in the substantia nigra, where dopaminergic cell bodies are located, and it has recently garnered attention as a molecule crucial for cognition, a function that is also compromised in PD patients. Thus, due to its colocalization with dopaminergic neurons and its role in cognition, BDNF might possess a dual role in PD, both as a neuroprotective molecule, since its inhibition leads to loss of nigral dopaminergic neurons, and as a neuromodulator, as its enhanced expression ameliorates cognitive processes. In this review, we discuss the mechanism of action of established as well as novel drugs for PD with a particular emphasis to those interfering with BDNF biosynthesis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Eriksen JL, Wszolek Z, Petrucelli L . Molecular pathogenesis of Parkinson disease. Arch Neurol 2005; 62: 353–357.

    PubMed  Google Scholar 

  2. Fahn S, Sulzer D . Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx 2004; 1: 139–154.

    PubMed  PubMed Central  Google Scholar 

  3. Siegel GJ, Chauhan NB . Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain Res Brain Res Rev 2000; 33: 199–227.

    CAS  PubMed  Google Scholar 

  4. Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM . Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 1994; 342: 321–334.

    CAS  PubMed  Google Scholar 

  5. Porritt MJ, Batchelor PE, Howells DW . Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp Neurol 2005; 192: 226–234.

    CAS  PubMed  Google Scholar 

  6. Baquet ZC, Bickford PC, Jones KR . Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 2005; 25: 6251–6259.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fumagalli F, Racagni G, Colombo E, Riva MA . BDNF gene expression is reduced in the frontal cortex of dopamine transporter knockout mice. Mol Psychiatr 2003a; 8: 898–899.

    CAS  Google Scholar 

  8. Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG . Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev 1998; 26: 148–153.

    CAS  PubMed  Google Scholar 

  9. Cyr M, Beaulieu JM, Laakso A, Sotnikova TD, Yao WD, Bohn LM et al. Sustained elevation of extracellular dopamine causes motor dysfunction and selective degeneration of striatal GABAergic neurons. Proc Natl Acad Sci 2003; 100: 11035–11040.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dluzen DE, Gao X, Story GM, Anderson LI, Kucera J, Walro JM . Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/- BDNF mutant mice. Exp Neurol 2001; 170: 121–128.

    CAS  PubMed  Google Scholar 

  11. Dluzen DE, Anderson LI, McDermott JL, Kucera J, Walro JM . Striatal dopamine output is compromised within +/− BDNF mice. Synapse 2002; 43: 112–117.

    CAS  PubMed  Google Scholar 

  12. von Bohlen Und Halbach O, Minichiello L, Unsicker K . Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J 2005 Jul 21; [Epub ahead of print].

  13. Kohno R, Sawada H, Kawamoto Y, Uemura K, Shibasaki H, Shimohama S . BDNF is induced by wild-type alpha-synuclein but not by the two mutants, A30P or A53T, in glioma cell line. Biochem Biophys Res Commun 2004; 318: 113–118.

    CAS  PubMed  Google Scholar 

  14. Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci Lett 1999; 270: 45–48.

    CAS  PubMed  Google Scholar 

  15. Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. Neuroreport 1999; 10: 557–561.

    CAS  PubMed  Google Scholar 

  16. Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ et al. Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra. Exp Neurol 2000; 166: 127–135.

    CAS  PubMed  Google Scholar 

  17. Nagatsu T, Mogi M, Ichinose H, Togari A . Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm Suppl 2000; 60: 277–290.

    Google Scholar 

  18. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  PubMed  Google Scholar 

  19. Hong CJ, Liu HC, Liu TY, Lin CH, Cheng CY, Tsai SJ . Related Articles, Links Brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms in Parkinson's disease and age of onset. Neurosci Lett 2003; 353: 75–77.

    CAS  PubMed  Google Scholar 

  20. Toda T, Momose Y, Murata M, Tamiya G, Yamamoto M, Hattori N et al. Toward identification of susceptibility genes for sporadic Parkinson's disease. J Neurol 2003; 250 (Suppl 3): III40–III43.

    PubMed  Google Scholar 

  21. Foltynie T, Lewis SG, Goldberg TE, Blackwell AD, Kolachana BS, Weinberger DR et al. The BDNF Val(66)Met polymorphism has a gender specific influence on planning ability in Parkinson's disease. J Neurol 2005; 252: 833–838.

    CAS  PubMed  Google Scholar 

  22. Hakansson A, Melke J, Westberg L, Shahabi HN, Buervenich S, Carmine A et al. Lack of association between the BDNF Val66Met polymorphism and Parkinson's disease in a Swedish population. Ann Neurol 2003; 53: 823.

    PubMed  Google Scholar 

  23. Liu QR, Walther D, Drgon T, Polesskaya O, Lesnick TG, Strain KJ et al. Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson's Disease. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 93–103.

    Google Scholar 

  24. Betz AL, Goldstein GW, Katzman R . Blood-brain-cerebrospinal fluid barriers. In: Siegel G, Agranoff B, Albers RW, Molinoff P (eds). Basic Neurochemistry. Raven press: New York, 1989, pp. 591–606.

    Google Scholar 

  25. Knusel B, Beck KD, Winslow JW, Rosenthal A, Burton LE, Widmer HR et al. Brain-derived neurotrophic factor administration protects basal forebrain cholinergic but not nigral dopaminergic neurons from degenerative changes after axotomy in the adult rat brain. J Neurosci 1992; 12: 4391–4402.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan Q, Matheson C, Sun J, Radeke MJ, Feinstein SC, Miller JA . Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with trk receptor expression. Exp Neurol 1994; 127: 23–36.

    CAS  PubMed  Google Scholar 

  27. Martinez-Serrano A, Bjorklund A . Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci 1997; 20: 530–538.

    CAS  PubMed  Google Scholar 

  28. Bjorklund A, Dunnett SB, Brundin P, Stoessl AJ, Freed CR, Breeze RE et al. Neural transplantation for the treatment of Parkinson's disease. Lancet Neurol 2003; 2: 437–445.

    PubMed  Google Scholar 

  29. Kordower JH, Sortwell CE . Neuropathology of fetal nigra transplants for Parkinson's disease. Prog Brain Res 2000; 127: 333–344.

    CAS  PubMed  Google Scholar 

  30. Tuszynski MH . Gene therapy for neurological disease. Expert Opin Biol Ther 2003; 3: 815–828.

    CAS  PubMed  Google Scholar 

  31. Levivier M, Przedborski S, Bencsics C, Kang UJ . Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson's disease. J Neurosci 1995; 15: 7810–7820.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Galpern WR, Frim DM, Tatter SB, Altar CA, Beal MF, Isacson O . Cell-mediated delivery of brain-derived neurotrophic factor enhances dopamine levels in an MPP+ rat model of substantia nigra degeneration. Cell Transplant 1996; 5: 225–232.

    CAS  PubMed  Google Scholar 

  33. Hung HC, Lee EH . The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP+ toxicity: role of BDNF gene expression. Brain Res Mol Brain Res 1996; 41: 14–26.

    CAS  PubMed  Google Scholar 

  34. Jain A, Kim YT, McKeon RJ, Bellamkonda RV . In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 2005 [Epub ahead of print].

  35. Thoenen H, Sendtner M . Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci 2002; 5 Suppl: 1046–1050.

    CAS  PubMed  Google Scholar 

  36. Croll SD, Suri C, Compton DL, Simmons MV, Yancopoulos GD, Lindsay RM et al. Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex. Neuroscience 1999; 93: 1491–1506.

    CAS  PubMed  Google Scholar 

  37. Lahteinen S, Pitkanen A, Saarelainen T, Nissinen J, Koponen E, Castren E . Decreased BDNF signalling in transgenic mice reduces epileptogenesis. Eur J Neurosci 2002; 15: 721–734.

    PubMed  Google Scholar 

  38. Lahteinen S, Pitkanen A, Koponen E, Saarelainen T, Castren E . Exacerbated status epilepticus and acute cell loss, but no changes in epileptogenesis, in mice with increased brain-derived neurotrophic factor signaling. Neuroscience 2003; 122: 1081–1092.

    CAS  PubMed  Google Scholar 

  39. Okazawa H, Murata M, Watanabe M, Kamei M, Kanazawa I . Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum. FEBS Lett 1992; 313: 138–142.

    CAS  PubMed  Google Scholar 

  40. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P . BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 2001; 411: 86–89.

    CAS  PubMed  Google Scholar 

  41. Ryoo HL, Pierrotti D, Joyce JN . Dopamine D3 receptor is decreased and D2 receptor is elevated in the striatum of Parkinson's disease. Mov Disord 1998; 13: 788–797.

    CAS  PubMed  Google Scholar 

  42. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997; 389: 856–860.

    CAS  PubMed  Google Scholar 

  43. Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MB . Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 2004; 18: 1471–1473.

    CAS  PubMed  Google Scholar 

  44. Mandel S, Weinreb O, Amit T, Youdim MB . Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev 2005; 48: 379–387.

    CAS  PubMed  Google Scholar 

  45. Youdim MB, Maruyama W, Naoi M . Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor antiparkinsonian drug, rasagiline. Drugs Today 2005a; 41: 369–391.

    CAS  Google Scholar 

  46. Youdim MB, Buccafusco JJ . Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 2005; 26: 27–35.

    CAS  PubMed  Google Scholar 

  47. Sagi Y, Weinstock M, Youdim MB . Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J Neurochem 2003; 86: 290–297.

    CAS  PubMed  Google Scholar 

  48. Bar-Am O, Yogev-Falach M, Amit T, Sagi Y, Youdim MB . Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo. J Neurochem 2004; 89: 1119–1125.

    CAS  PubMed  Google Scholar 

  49. Ahlskog JE . Parkinson's disease: is the initial treatment established? Curr Neurol Neurosci Rep 2003; 3: 289–295.

    PubMed  Google Scholar 

  50. Moller JC, Oertel WH, Koster J, Pezzoli G, Provinciali L . Long-term efficacy and safety of pramipexole in advanced Parkinson's disease: results from a European multicenter trial. Mov Disord 2005; 20: 602–610.

    PubMed  Google Scholar 

  51. Joyce JN, Woolsey C, Ryoo H, Borwege S, Hagner D . Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson's disease, and downregulates the dopamine transporter via the D3 receptor. BMC Biol 2004; 2: 22.

    PubMed  PubMed Central  Google Scholar 

  52. Presgraves SP, Borwege S, Millan MJ, Joyce JN . Involvement of dopamine D(2)/D(3) receptors and BDNF in the neuroprotective effects of S32504 and pramipexole against 1-methyl-4-phenylpyridinium in terminally differentiated SH-SY5Y cells. Exp Neurol 2004; 190: 157–170.

    CAS  PubMed  Google Scholar 

  53. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9: 589–595.

    CAS  PubMed  Google Scholar 

  54. Fumagalli F, Bedogni F, Maragnoli ME, Gennarelli M, Perez J, Racagni G et al. Dopaminergic D2 receptor activation modulates FGF-2 gene expression in rat prefrontal cortex and hippocampus. J Neurosci Res 2003b; 74: 74–80.

    CAS  PubMed  Google Scholar 

  55. Takayama H, Ray J, Raymon HK, Baird A, Hogg J, Fisher LJ et al. Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson's disease. Nat Med 1995; 1: 53–58.

    CAS  PubMed  Google Scholar 

  56. Grothe C, Schulze A, Semkova I, Muller-Ostermeyer F, Rege A, Wewetzer K . The high molecular weight fibroblast growth factor-2 isoforms (21 000 mol. Wt and 23 000 mol. wt) mediate neurotrophic activity on rat embryonic mesencephalic dopaminergic neurons in vitro. Neuroscience 2000; 100: 73–86.

    CAS  PubMed  Google Scholar 

  57. Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E . Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. Brain Res Rev 2004; 47: 126–144.

    CAS  PubMed  Google Scholar 

  58. Rabey JM, Nissipeanu P, Korczyn AD . Efficacy of memantine, an NMDA receptor antagonist, in the treatment of Parkinson's disease. J Neural Transm Park Dis Dement Sect 1992; 4: 277–282.

    CAS  PubMed  Google Scholar 

  59. Merello M, Nouzeilles MI, Cammarota A, Leiguarda R . Effect of memantine (NMDA antagonist) on Parkinson's disease: a double-blind crossover randomized study. Clin Neuropharmacol 1999; 22: 273–276.

    CAS  PubMed  Google Scholar 

  60. Marvanova M, Lakso M, Pirhonen J, Nawa H, Wong G, Castren E . The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci 2001; 18: 247–258.

    CAS  PubMed  Google Scholar 

  61. O’Neill MJ, Murray TK, Clay MP, Lindstrom T, Yang CR, Nisenbaum ES . LY503430: pharmacology, pharmacokinetics, and effects in rodent models of Parkinson's disease. CNS Drug Rev 2005; 11: 77–96.

    PubMed  Google Scholar 

  62. Murray TK, Whalley K, Robinson CS, Ward MA, Hicks CA, Lodge D et al. LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson's disease. J Pharmacol Exp Ther 2003; 306: 752–762.

    CAS  PubMed  Google Scholar 

  63. Feeley Kearney JA, Albin RL . mGluRs: a target for pharmacotherapy in Parkinson disease. Exp Neurol 2003; 184 (Suppl 1): S30–6.

    Google Scholar 

  64. Campusano JM, Abarca J, Forray MI, Gysling K, Bustos G . Modulation of dendritic release of dopamine by metabotropic glutamate receptors in rat substantia nigra. Biochem Pharmacol 2002; 63: 1343–1352.

    CAS  PubMed  Google Scholar 

  65. Matarredona ER, Santiago M, Venero JL, Cano J, Machado A . Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem 2001; 76: 351–360.

    CAS  PubMed  Google Scholar 

  66. Bond A, O’Neill MJ, Hicks CA, Monn JA, Lodge D . Neuroprotective effects of a systemically active group II metabotropic glutamate receptor agonist LY354740 in a gerbil model of global ischaemia. Neuroreport 1998; 9: 1191–1193.

    CAS  PubMed  Google Scholar 

  67. Battaglia G, Bruno V, Ngomba RT, Di Grezia R, Copani A, Nicoletti F . Selective activation of group-II metabotropic glutamate receptors is protective against excitotoxic neuronal death. Eur J Pharmacol 1998; 356: 271–274.

    CAS  PubMed  Google Scholar 

  68. Vincent AM, Mohammad Y, Ahmad I, Greenberg R, Maiese K . Metabotropic glutamate receptors prevent nitric oxide-induced programmed cell death. J Neurosci Res 1997; 50: 549–564.

    CAS  PubMed  Google Scholar 

  69. Morens DM, Grandinetti A, Reed D, White LR, Ross GW . Cigarette smoking and protection from Parkinson's disease: false association or etiologic clue? Neurology 1995; 45: 1041–1051.

    CAS  PubMed  Google Scholar 

  70. Baron JA . Beneficial effects of nicotine and cigarette smoking: the real, the possible and the spurious. Br Med Bull 1996; 52: 58–73.

    CAS  PubMed  Google Scholar 

  71. Fratiglioni L, Wang HX . Smoking and Parkinson's and Alzheimer's disease: review of the epidemiological studies. Behav Brain Res 2000; 113: 117–120.

    CAS  PubMed  Google Scholar 

  72. Quik M, Kulak JM . Nicotine and nicotinic receptors; relevance to Parkinson's disease. Neurotoxicology 2002; 23: 581–594.

    CAS  PubMed  Google Scholar 

  73. Allam MF, Campbell MJ, Del Castillo AS, Fernandez-Crehuet Navajas R . Related Articles, Links Parkinson's disease protects against smoking? Behav Neurol 2004; 15: 65–71.

    PubMed  Google Scholar 

  74. Quik M . Smoking, nicotine and Parkinson's disease. Trends Neurosci 2004; 27: 561–568.

    CAS  PubMed  Google Scholar 

  75. Benedetti MD, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE et al. Smoking, alcohol, and coffee consumption preceding Parkinson's disease: a case–control study. Neurology 2000; 55: 1350–1358.

    CAS  PubMed  Google Scholar 

  76. Baumann RJ, Jameson HD, McKean HE, Haack DG, Weisberg LM . Cigarette smoking and Parkinson disease: 1. Comparison of cases with matched neighbors. Neurology 1980; 30: 839–843.

    CAS  PubMed  Google Scholar 

  77. Conti-Tronconi BM, McLane KE, Raftery MA, Grando SA, Protti MP . The nicotinic acetylcholine receptor: structure and autoimmune pathology. Crit Rev Biochem Mol Biol 1994; 29: 69–123.

    CAS  PubMed  Google Scholar 

  78. Zhou FM, Liang Y, Dani JA . Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 2001; 4: 1224–1229.

    CAS  PubMed  Google Scholar 

  79. Schneider JS, Pope-Coleman A, Van Velson M, Menzaghi F, Lloyd GK . Effects of SIB-1508Y, a novel neuronal nicotinic acetylcholine receptor agonist, on motor behavior in parkinsonian monkeys. Mov Disord 1998; 13: 637–642.

    CAS  PubMed  Google Scholar 

  80. Schneider JS, Tinker JP, Van Velson M, Menzaghi F, Lloyd GK . Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 1999; 290: 731–739.

    CAS  PubMed  Google Scholar 

  81. Quik M, Di Monte DA . Nicotine administration reduces striatal MPP+ levels in mice. Brain Res 2001; 917: 219–224.

    CAS  PubMed  Google Scholar 

  82. Maggio R, Riva M, Vaglini F, Fornai F, Molteni R, Armogida M et al. Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. J Neurochem 1998; 71: 2439–2446.

    CAS  PubMed  Google Scholar 

  83. French SJ, Humby T, Horner CH, Sofroniew MV, Rattray M . Hippocampal neurotrophin and trk receptor mRNA levels are altered by local administration of nicotine, carbachol and pilocarpine. Brain Res Mol Brain Res 1999; 67: 124–136.

    CAS  PubMed  Google Scholar 

  84. Kenny PJ, File SE, Rattray M . Acute nicotine decreases, and chronic nicotine increases the expression of brain-derived neurotrophic factor mRNA in rat hippocampus. Brain Res Mol Brain Res 2000; 85: 234–238.

    CAS  PubMed  Google Scholar 

  85. Kelton MC, Kahn HJ, Conrath CL, Newhouse PA . The effects of nicotine on Parkinson's disease. Brain Cogn 2000; 43: 274–282.

    CAS  PubMed  Google Scholar 

  86. Sacco KA, Bannon KL, George TP . Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. J Psychopharmacol 2004; 18: 457–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Newhouse PA, Potter A, Levin ED . Nicotinic system involvement in Alzheimer's and Parkinson's disease. Implications for therapeutics. Drugs Aging 1997; 11: 206–228.

    CAS  PubMed  Google Scholar 

  88. Guo X, Dawson VL, Dawson TM . Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. Eur J Neurosci 2001; 13: 1683–1693.

    CAS  PubMed  Google Scholar 

  89. Ross DT, Guo H, Howorth P, Chen Y, Hamilton GS, Steiner JP . The small molecule FKBP ligand GPI 1046 induces partial striatal re-innervation after intranigral 6-hydroxydopamine lesion in rats. Neurosci Lett 2001; 297: 113–116.

    CAS  PubMed  Google Scholar 

  90. Zhang C, Steiner JP, Hamilton GS, Hicks TP, Poulter MO . Regeneration of dopaminergic function in 6-hydroxydopamine-lesioned rats by neuroimmunophilin ligand treatment. J Neurosci 2001; 21: RC156.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tanaka K, Fujita N, Ogawa N . Immunosuppressive (FK506) and non-immunosuppressive (GPI1046) immunophilin ligands activate neurotrophic factors in the mouse brain. Brain Res 2003; 970: 250–253.

    CAS  PubMed  Google Scholar 

  92. Nitta A, Nishioka H, Fukumitsu H, Furukawa Y, Sugiura H, Shen L et al. Hydrophobic dipeptide Leu-Ile protects against neuronal death by inducing brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis. J Neurosci Res 2004; 78: 250–258.

    CAS  PubMed  Google Scholar 

  93. Poulter MO, Payne KB, Steiner JP . Neuroimmunophilins: a novel drug therapy for the reversal of neurodegenerative disease? Neuroscience 2004; 128: 1–6.

    CAS  PubMed  Google Scholar 

  94. Sauer H, Francis JM, Jiang H, Hamilton GS, Steiner JP . Systemic treatment with GPI 1046 improves spatial memory and reverses cholinergic neuron atrophy in the medial septal nucleus of aged mice. Brain Res 1999; 842: 109–118.

    CAS  PubMed  Google Scholar 

  95. Li FQ, Cheng XX, Liang XB, Wang XH, Xue B, He QH et al. Neurotrophic and neuroprotective effects of tripchlorolide, an extract of Chinese herb Tripterygium wilfordii Hook F, on dopaminergic neurons. Exp Neurol 2003; 179: 28–37.

    CAS  PubMed  Google Scholar 

  96. Richmond TD, Chohan M, Barber DL . Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol 2005; 15: 146–155.

    CAS  PubMed  Google Scholar 

  97. Aydin A, Genc K, Akhisaroglu M, Yorukoglu K, Gokmen N, Gonullu E . Erythropoietin exerts neuroprotective effect in neonatal rat model of hypoxic–ischemic brain injury. Brain Dev 2003; 25: 494–498.

    PubMed  Google Scholar 

  98. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA 2002; 99: 9450–9455.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 2000; 97: 10526–10531.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang J, Li Y, Cui Y, Chen J, Lu M, Elias SB et al. Erythropoietin treatment improves neurological functional recovery in EAE mice. Brain Res 2005; 1034: 34–39.

    CAS  PubMed  Google Scholar 

  101. Wang X, Zhu C, Wang X, Gerwien JG, Schrattenholz A, Sandberg M et al. The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia–ischemia as potently as erythropoietin. J Neurochem 2004; 91: 900–910.

    CAS  PubMed  Google Scholar 

  102. Genc S, Kuralay F, Genc K, Akhisaroglu M, Fadiloglu S, Yorukoglu K et al. Erythropoietin exerts neuroprotection in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production. Neurosci Lett 2001; 298: 139–141.

    CAS  PubMed  Google Scholar 

  103. Genc S, Akhisaroglu M, Kuralay F, Genc K . Erythropoietin restores glutathione peroxidase activity in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced neurotoxicity in C57BL mice and stimulates murine astroglial glutathione peroxidase production in vitro. Neurosci Lett 2002; 321: 73–76.

    CAS  PubMed  Google Scholar 

  104. Viviani B, Bartesaghi S, Corsini E, Villa P, Ghezzi P, Garau A et al. Erythropoietin protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor. J Neurochem 2005; 93: 412–421.

    CAS  PubMed  Google Scholar 

  105. Hampson AJ, Grimaldi M . Cannabinoid receptor activation and elevated cyclic AMP reduce glutamate neurotoxicity. Eur J Neurosci 2001; 13: 1529–1536.

    CAS  PubMed  Google Scholar 

  106. Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K et al. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 1999; 19: 2987–2995.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML . Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005; 25: 1904–1913.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gilgun-Sherki Y, Melamed E, Mechoulam R, Offen D . The CB1 cannabinoid receptor agonist, HU-210, reduces levodopa-induced rotations in 6-hydroxydopamine-lesioned rats. Pharmacol Toxicol 2003; 93: 66–70.

    CAS  PubMed  Google Scholar 

  109. Sieradzan KA, Fox SH, Hill M, Dick JP, Crossman AR, Brotchie JM . Cannabinoids reduce levodopa-induced dyskinesia in Parkinson's disease: a pilot study. Neurology 2001; 57: 2108–2111.

    CAS  PubMed  Google Scholar 

  110. Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernandez-Ruiz J . Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson's disease. Neurobiol Dis 2005; 19: 96–107.

    CAS  PubMed  Google Scholar 

  111. Butovsky E, Juknat A, Goncharov I, Elbaz J, Eilam R, Zangen A et al. In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to Delta-tetrahydrocannabinol. J Neurochem 2005; 93: 802–811.

    CAS  PubMed  Google Scholar 

  112. Logroscino G, Marder K, Cote L, Tang MX, Shea S, Mayeux R . Dietary lipids and antioxidants in Parkinson's disease: a population–based, case-control study. Ann Neurol 1996; 39: 89–94.

    CAS  PubMed  Google Scholar 

  113. Reuter I, Engelhardt M, Stecker K, Baas H . Therapeutic value of exercise training in Parkinson's disease. Med Sci Sports Exerc 1999; 31: 1544–1549.

    CAS  PubMed  Google Scholar 

  114. Smidt N, de Vet HC, Bouter LM, Dekker J, Excercise Therapy Group. Effectiveness of exercise therapy: a best-evidence summary of systematic reviews. Aust J Physiother 2005; 51: 71–85.

    PubMed  Google Scholar 

  115. van Praag H, Shubert T, Zhao C, Gage FH J . Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice Neurosci. J Neurosci 2005; 25: 8680–8685.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc Natl Acad Sci USA 2004; 101: 18171–18176.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bezard E, Dovero S, Belin D, Duconger S, Jackson-Lewis V, Przedborski S et al. Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci 2003; 23: 10999–11007.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Faherty CJ, Raviie Shepherd K, Herasimtschuk A, Smeyne RJ . Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res Mol Brain Res 2005; 134: 170–179.

    CAS  PubMed  Google Scholar 

  119. Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR . Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 2002; 88: 2187–2195.

    CAS  PubMed  Google Scholar 

  120. Vaynman S, Ying Z, Gomez-Pinilla F . Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 2004; 20: 2580–2590.

    PubMed  Google Scholar 

  121. Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols JA et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 2004; 124: 583–591.

    CAS  PubMed  Google Scholar 

  122. Poulton NP, Muir GD . Treadmill training ameliorates dopamine loss but not behavioral deficits in hemi-parkinsonian rats. Exp Neurol 2005; 193: 181–197.

    CAS  PubMed  Google Scholar 

  123. The Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. N Engl J Med 1993; 328: 176–183.

  124. Wu A, Ying Z, Gomez-Pinilla F . Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 2004; 21: 1457–1467.

    PubMed  Google Scholar 

  125. Brown AM, Deutch AY, Colbran RJ . Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. Eur J Neurosci 2005; 22: 247–256.

    PubMed  PubMed Central  Google Scholar 

  126. Ivkovic S, Polonskaia O, Farinas I, Ehrlich ME . Brain-derived neurotrophic factor regulates maturation of the DARPP-32 phenotype in striatal medium spiny neurons: studies in vivo and in vitro. Neuroscience 1997; 79: 509–516.

    CAS  PubMed  Google Scholar 

  127. Stroppolo A, Guinea B, Tian C, Sommer J, Ehrlich ME . Role of phosphatidylinositide 3-kinase in brain-derived neurotrophic factor-induced DARPP-32 expression in medium size spiny neurons in vitro. J Neurochem 2001; 79: 1027–1032.

    CAS  PubMed  Google Scholar 

  128. Blanquet PR, Mariani J, Derer P . A calcium/calmodulin kinase pathway connects brain-derived neurotrophic factor to the cyclic AMP-responsive transcription factor in the rat hippocampus. Neuroscience 2003; 118: 477–490.

    CAS  PubMed  Google Scholar 

  129. Sun M, Kong L, Wang X, Lu XG, Gao Q, Geller AI . Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson's disease. Brain Res 2005 Jul 11; [Epub ahead of print].

  130. Onyango IG, Tuttle JB, Bennett Jr JP . Brain-derived growth factor and glial cell line-derived growth factor use distinct intracellular signaling pathways to protect PD cybrids from H(2)O(2)-induced neuronal death. Neurobiol Dis 2005; 20: 141–154.

    CAS  PubMed  Google Scholar 

  131. Nagappan G, Lu B . Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 2005; 28: 464–471.

    CAS  PubMed  Google Scholar 

  132. Bayer TA, Schramm M, Feldmann N, Knable MB, Falkai P . Antidepressant drug exposure is associated with mRNA levels of tyrosine receptor kinase B in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatr 2000; 24: 881–888.

    CAS  Google Scholar 

  133. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 2003; 23: 349–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Mutoh T, Sobue G, Hamano T, Kuriyama M, Hirayama M, Yamamoto M et al. Decreased phosphorylation levels of TrkB neurotrophin receptor in the spinal cords from patients with amyotrophic lateral sclerosis. Neurochem Res 2000; 25: 239–245.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Fumagalli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fumagalli, F., Racagni, G. & Riva, M. Shedding light into the role of BDNF in the pharmacotherapy of Parkinson's disease. Pharmacogenomics J 6, 95–104 (2006). https://doi.org/10.1038/sj.tpj.6500360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500360

Keywords

  • neurodegenerative disorders
  • neurotrophins
  • dopaminergic system
  • lifestyle
  • cognition

This article is cited by

Search

Quick links