Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Linkage disequilibrium and association with methamphetamine dependence/psychosis of μ-opioid receptor gene polymorphisms

Abstract

Several studies indicate that the μ-opioid receptor plays a role in addiction not only to opiate drugs but also to alcohol and non-opiate addictive drugs. Our studies aim to reveal the associations between gene polymorphisms and methamphetamine (MAP) dependence/psychosis. We newly identified several polymorphisms and four substantial linkage disequilibrium (LD) blocks in the μ-opioid receptor (OPRM1) gene. We found significant differences in both genotype and allele frequencies of the single-nucleotide polymorphism (SNP) IVS2+G691C between control (n=232) and MAP-dependent/psychotic patients (n=128). There was also a significant association between IVS2+G691C and patients with transient psychosis. These results suggest that the OPRM1 gene variations may be a factor in development and prognosis of MAP psychosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Becker A, Grecksch G, Kraus J, Loh HH, Schroeder H, Hollt V . Rewarding effects of ethanol and cocaine in mu opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 2002; 365: 296–302.

    Article  CAS  PubMed  Google Scholar 

  2. Berrendero F, Kieffer BL, Maldonado R . Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci 2002; 22: 10935–10940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lichtman AH, Sheikh SM, Loh HH, Martin BR . Opioid and cannabinoid modulation of precipitated withdrawal in delta(9)-tetrahydrocannabinol and morphine-dependent mice. J Pharmacol Exp Ther 2001; 298: 1007–1014.

    CAS  PubMed  Google Scholar 

  4. Hall FS, Sora I, Uhl GR . Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology (Berlin) 2001; 154: 43–49.

    Article  CAS  Google Scholar 

  5. Contarino A, Picetti R, Matthes HW, Koob GF, Kieffer BL, Gold LH . Lack of reward and locomotor stimulation induced by heroin in mu-opioid receptor-deficient mice. Eur J Pharmacol 2002; 446: 103–109.

    Article  CAS  PubMed  Google Scholar 

  6. Sora I, Elmer G, Funada M, Pieper J, Li X-F, Hall FS et al. Mu opiate receptor gene dose effects on different morphine actions: evidence for differential in vivo mu receptor reserve. Neuropsychopharmacology 2001; 25: 41–54.

    Article  CAS  PubMed  Google Scholar 

  7. Uhl GR, Sora I, Wang Z . The mu opiate receptor as a candidate gene for pain: polymorphisms, variations in expression, nociception, and opiate responses. Proc Natl Acad Sci USA 1999; 96: 7752–7755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mayer P, Hollt V . Allelic and somatic variations in the endogenous opioid system of humans. Pharmacol Ther 2001; 91: 167–177.

    Article  CAS  PubMed  Google Scholar 

  9. Hoehe MR, Kopke K, Wendel B, Rohde K, Flachmeier C, Kidd KK et al. Sequence variability and candidate gene analysis in complex disease: association of mu opioid receptor gene variation with substance dependence. Hum Mol Genet 2000; 9: 2895–2908.

    Article  CAS  PubMed  Google Scholar 

  10. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 1998; 95: 9608–9613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bergen AW, Kokoszka J, Peterson R, Long JC, Virkkunen M, Linnoila M et al. Mu opioid receptor gene variants: lack of association with alcohol dependence. Mol Psychiatry 1997; 2: 490–494.

    Article  CAS  PubMed  Google Scholar 

  12. Gelernter J, Kranzler H, Cubells J . Genetics of two mu opioid receptor gene (OPRM1) exon I polymorphisms: population studies, and allele frequencies in alcohol- and drug-dependent subjects. Mol Psychiatry 1999; 4: 476–483.

    Article  CAS  PubMed  Google Scholar 

  13. Franke P, Wang T, Nothen MM, Knapp M, Neidt H, Albrecht S et al. Nonreplication of association between mu-opioid-receptor gene (OPRM1) A118G polymorphism and substance dependence. Am J Med Genet 2001; 105: 114–119.

    Article  CAS  PubMed  Google Scholar 

  14. Bart G, Heilig M, LaForge KS, Pollak L, Leal SM, Ott J et al. Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol Psychiatry 2004; 9: 547–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi J, Hui L, Xu Y, Wang F, Huang W, Hu G . Sequence variations in the mu-opioid receptor gene (OPRM1) associated with human addiction to heroin. Hum Mutat 2002; 19: 459–460.

    Article  CAS  PubMed  Google Scholar 

  16. Schinka JA, Town T, Abdullah L, Crawford FC, Ordorica PI, Francis E et al. A functional polymorphism within the mu-opioid receptor gene and risk for abuse of alcohol and other substances. Mol Psychiatry 2002; 7: 224–228.

    Article  CAS  PubMed  Google Scholar 

  17. Szeto CY, Tang NL, Lee DT, Stadlin A . Association between mu opioid receptor gene polymorphisms and Chinese heroin addicts. Neuroreport 2001; 12: 1103–1106.

    Article  CAS  PubMed  Google Scholar 

  18. Sander T, Gscheidel N, Wendel B, Samochowiec J, Smolka M, Rommelspacher H et al. Human mu-opioid receptor variation and alcohol dependence. Alcohol Clin Exp Res 1998; 22: 2108–2110.

    CAS  PubMed  Google Scholar 

  19. Uhl GR, Hall FS, Sora I . Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 2002; 7: 21–26.

    Article  CAS  PubMed  Google Scholar 

  20. Wood PL . Opioid regulation of CNS dopaminergic pathways: a review of methodology, receptor types, regional variations and species differences. Peptides 1983; 4: 595–601.

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi T, Tsao LI, Cadet JL, Su TP . D-Ala2, D-Leu5]enkephalin blocks the methamphetamine-induced c-fos mRNA increase in mouse striatum. Eur J Pharmacol 1999; 366: R7–R8.

    Article  CAS  PubMed  Google Scholar 

  22. El Daly E, Chefer V, Sandill S, Shippenberg TS . Modulation of the neurotoxic effects of methamphetamine by the selective kappa-opioid receptor agonist U69593. J Neurochem 2000; 74: 1553–1562.

    Article  CAS  PubMed  Google Scholar 

  23. Yu L, Kuo YM, Cherng CF . Opioid peptides alleviated while naloxone potentiated methamphetamine-induced striatal dopamine depletion in mice. J Neural Transm 2001; 108: 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  24. Hall FS, Goeb M, Li XF, Sora I, Uhl GR . Opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion. Brain Res Mol Brain Res 2004; 121: 123–130.

    Article  CAS  PubMed  Google Scholar 

  25. Magendzo K, Bustos G . Expression of amphetamine-induced behavioral sensitization after short- and long-term withdrawal periods: participation of mu- and delta-opioid receptors. Neuropsychopharmacology 2003; 28: 468–477.

    Article  CAS  PubMed  Google Scholar 

  26. Vecchiola A, Collyer P, Figueroa R, Labarca R, Bustos G, Magendzo K . Differential regulation of mu-opioid receptor mRNA in the nucleus accumbens shell and core accompanying amphetamine behavioral sensitization. Brain Res Mol Brain Res 1999; 69: 1–9.

    Article  CAS  PubMed  Google Scholar 

  27. Chefer VI, Kieffer BL, Shippenberg TS . Basal and morphine-evoked dopaminergic neurotransmission in the nucleus accumbens of MOR- and DOR-knockout mice. Eur J Neurosci 2003; 18: 1915–1922.

    Article  PubMed  Google Scholar 

  28. Smith JW, Fetsko LA, Xu R, Wang Y . Dopamine D2L receptor knockout mice display deficits in positive and negative reinforcing properties of morphine and in avoidance learning. Neuroscience 2002; 113: 755–765.

    Article  CAS  PubMed  Google Scholar 

  29. Spielewoy C, Gonon F, Roubert C, Fauchey V, Jaber M, Caron MG et al. Increased rewarding properties of morphine in dopamine-transporter knockout mice. Eur J Neurosci 2000; 12: 1827–1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ide S, Kobayashi H, Tanaka K, Ujike H, Sekine Y, Ozaki N et al. Gene polymorphisms of the m opioid receptor in methamphetamine abusers. Ann NY Acad Sci 2004; 1025: 316–324.

    Article  CAS  PubMed  Google Scholar 

  31. Ide S, Han W, Kasai S, Hata H, Sora I, Ikeda K . Characterization of the 3′ untranslated region of the human mu-opioid receptor (MOR-1) mRNA. Gene 2005 (in press).

  32. Ujike H . Stimulant-induced psychosis and schizophrenia: the role of sensitization. Curr Psychiatry Rep 2002; 4: 177–184.

    Article  PubMed  Google Scholar 

  33. Ujike H, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y et al. Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenom J 2003; 3: 242–247.

    Article  CAS  Google Scholar 

  34. Sato M, Numachi Y, Hamamura T . Relapse of paranoid psychotic state in methamphetamine model of schizophrenia. Schizophr Bull 1992; 18: 115–122.

    Article  CAS  PubMed  Google Scholar 

  35. Mestek A, Hurley JH, Bye LS, Campbell AD, Chen Y, Tian M et al. The human mu opioid receptor: modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C. J Neurosci 1995; 15(Part 2): 2396–2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prichard Z, Jorm AF, Prior M, Sanson A, Smart D, Zhang Y et al. Association of polymorphisms of the estrogen receptor gene with anxiety-related traits in children and adolescents: a longitudinal study. Am J Med Genet 2002; 114: 169–176.

    Article  PubMed  Google Scholar 

  37. Schneider S, Roessli D, Excoffier L . Arlequin 2000: A Software for Population Genetics Data Analysis Ver 2.000.

  38. Erdfelder E, Faul F, Buchner A . GPOWER: A general power analysis program. Behav Res Methods Instrum Comput 1996; 28: 1–11.

    Article  Google Scholar 

  39. Zabetian CP, Buxbaum SG, Elston RC, Kohnke MD, Anderson GM, Gelernter J et al. The structure of linkage disequilibrium at the DBH locus strongly influences the magnitude of association between diallelic markers and plasma dopamine beta-hydroxylase activity. Am J Hum Genet 2003; 72: 1389–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Risch N . Searching for genes in complex diseases: lessons from systemic lupus erythematosus. J Clin Invest 2000; 105: 1503–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. King MA, Bradshaw S, Chang AH, Pintar JE, Pasternak GW . Potentiation of opioid analgesia in dopamine2 receptor knock-out mice: evidence for a tonically active anti-opioid system. J Neurosci 2001; 21: 7788–7792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rouge-Pont F, Usiello A, Benoit-Marand M, Gonon F, Piazza PV, Borrelli E . Changes in extracellular dopamine induced by morphine and cocaine: crucial control by D2 receptors. J Neurosci 2002; 22: 3293–3301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nyholt DR . Genetic case–control association studies – correcting for multiple testing. Hum Genet 2001; 109: 564–567.

    Article  CAS  PubMed  Google Scholar 

  44. Ellinwood Jr EH, Sudilovsky A, Nelson LM . Evolving behavior in the clinical and experimental amphetamine (model) psychosis. Am J Psychiatry 1973; 130: 1088–1093.

    Article  PubMed  Google Scholar 

  45. Ujike H, Sato M . Clinical features of sensitization to methamphetamine observed in patients with methamphetamine dependence and psychosis. Ann NY Acad Sci 2004; 1025: 279–287.

    Article  CAS  PubMed  Google Scholar 

  46. Ikeda K, Kobayashi T, Ichikawa T, Kumanishi T, Niki H, Yano R . The untranslated region of (mu)-opioid receptor mRNA contributes to reduced opioid sensitivity in CXBK mice. J Neurosci 2001; 21: 1334–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ikeda K, Ichikawa T, Kobayashi T, Kumanishi T, Oike S, Yano R . Unique behavioural phenotypes of recombinant-inbred CXBK mice: partial deficiency of sensitivity to mu- and kappa-agonists. Neurosci Res 1999; 34: 149–155.

    Article  CAS  PubMed  Google Scholar 

  48. Suwanwela C, Poshyachinda V . Drug abuse in Asia. Bull Narc 1986; 38: 41–53.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Japanese Ministry of Health, Labour and Welfare (MHLW) as well as to the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) for support in part by Grants MHLW13-040, MHLW15-7, MHLW17-pharmaco-001, MEXT15025206 and MEXT15029204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Sora.

Additional information

Duality of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ide, S., Kobayashi, H., Ujike, H. et al. Linkage disequilibrium and association with methamphetamine dependence/psychosis of μ-opioid receptor gene polymorphisms. Pharmacogenomics J 6, 179–188 (2006). https://doi.org/10.1038/sj.tpj.6500355

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500355

Keywords

This article is cited by

Search

Quick links