Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Haplotype structures of the UGT1A gene complex in a Japanese population

Abstract

Genetic polymorphisms of UDP-glucuronosyltransferases (UGTs) are involved in individual and ethnic differences in drug metabolism. To reveal co-occurrence of the UGT1A polymorphisms, we first analyzed haplotype structures of the entire UGT1A gene complex using the polymorphisms from 196 Japanese subjects. Based on strong linkage disequilibrium between UGT1A8 and 1A10, among 1A9, 1A7, and 1A6, and between 1A3 and 1A1, the complex was divided into five blocks, Block 8/10, Block 9/6, Block 4, Block 3/1, and Block C, and the haplotypes for each block were subsequently determined/inferred. Second, using pyrosequencing or direct sequencing, additional 105 subjects were genotyped for 41 functionally tagged polymorphisms. The data from 301 subjects confirmed the robustness of block partitioning, but several linkages among the haplotypes with functional changes were found across the blocks. Thus, important haplotypes and their linkages were identified among the UGT1A gene blocks (and segments), which should be considered in pharmacogenetic studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

LD:

linkage disequilibrium

PCR:

polymerase chain reaction

SN-38:

7-ethyl-10-hydroxycamptothecin

SNP:

single nucleotide polymorphism

UGT:

UDP-glucuronosyltransferase

UTR:

untranslated region

References

  1. Radominska-Pandya A, Czernik PJ, Little JM . Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev 1999; 31: 817–899.

    Article  CAS  Google Scholar 

  2. Tukey RH, Strassburg CP . Genetic multiplicity of the human UDP-glucuronosyltransferases and regulation in the gastrointestinal tract. Mol Pharmacol 2001; 59: 405–414.

    Article  CAS  Google Scholar 

  3. Gong QH, Cho JW, Huang T, Potter C, Gholami N, Basu NK et al. Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 2001; 11: 357–368.

    Article  CAS  Google Scholar 

  4. Metz RP, Ritter JK . Transcriptional activation of the UDP-glucuronosyltransferase 1A7 gene in rat liver by aryl hydrocarbon receptor ligands and oltipraz. J Biol Chem 1998; 273: 5607–5614.

    Article  CAS  Google Scholar 

  5. Guillemette C . Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 2003; 3: 136–158.

    Article  CAS  Google Scholar 

  6. Guillemette C, Ritter JK, Auyeung DJ, Kessler FK, Housman DE . Structural heterogeneity at the UDP-glucuronosyltransferase 1 locus: functional consequences of three novel missense mutations in the human UGT1A7 gene. Pharmacogenetics 2000; 10: 629–644.

    Article  CAS  Google Scholar 

  7. Gagne JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C . Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 2002; 62: 608–617.

    Article  CAS  Google Scholar 

  8. Huang YH, Galijatovic A, Nguyen N, Geske D, Beaton D, Green J et al. Identification and functional characterization of UDP-glucuronosyltransferases UGT1A8*1, UGT1A8*2 and UGT1A8*3. Pharmacogenetics 2002; 12: 287–297.

    Article  CAS  Google Scholar 

  9. Elahi A, Bendaly J, Zheng Z, Muscat JE, Richie Jr JP, Schantz SP et al. Detection of UGT1A10 polymorphisms and their association with orolaryngeal carcinoma risk. Cancer 2003; 98: 872–880.

    Article  CAS  Google Scholar 

  10. Jinno H, Saeki M, Saito Y, Tanaka-Kagawa T, Hanioka N, Sai K et al. Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J Pharmacol Exp Ther 2003; 306: 688–693.

    Article  CAS  Google Scholar 

  11. Jinno H, Saeki M, Tanaka-Kagawa T, Hanioka N, Saito Y, Ozawa S et al. Functional characterization of wild-type and variant (T202I and M59I) human UDP-glucuronosyltransferase 1A10. Drug Metab Dispos 2003; 31: 528–532.

    Article  CAS  Google Scholar 

  12. Villeneuve L, Girard H, Fortier LC, Gagne JF, Guillemette C . Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther 2003; 307: 117–128.

    Article  CAS  Google Scholar 

  13. Ehmer U, Vogel A, Schutte JK, Krone B, Manns MP, Strassburg CP . Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology 2004; 39: 970–977.

    Article  CAS  Google Scholar 

  14. Nagar S, Zalatoris JJ, Blanchard RL . Human UGT1A6 pharmacogenetics: identification of a novel SNP, characterization of allele frequencies and functional analysis of recombinant allozymes in human liver tissue and in cultured cells. Pharmacogenetics 2004; 14: 487–499.

    Article  CAS  Google Scholar 

  15. Jinno H, Tanaka-Kagawa T, Hanioka N, Saeki M, Ishida S, Nishimura T et al. Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of irinotecan (CPT-11), by human UGT1A1 variants, G71R, P229Q, and Y486D. Drug Metab Dispos 2003; 31: 108–113.

    Article  CAS  Google Scholar 

  16. Judson R, Stephens JC, Windemuth A . The predictive power of haplotypes in clinical response. Pharmacogenomics 2000; 1: 15–26.

    Article  CAS  Google Scholar 

  17. Kohle C, Mohrle B, Munzel PA, Schwab M, Wernet D, Badary OA et al. Frequent co-occurrence of the TATA box mutation associated with Gilbert's syndrome (UGT1A1*28) with other polymorphisms of the UDP-glucuronosyltransferase-1 locus (UGT1A6*2 and UGT1A7*3) in Caucasians and Egyptians. Biochem Pharmacol 2003; 65: 1521–1527.

    Article  CAS  Google Scholar 

  18. Carlini LE, Meropol NJ, Bever J, Andria ML, Hill T, Gold P et al. UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res 2005; 11: 1226–1236.

    CAS  PubMed  Google Scholar 

  19. Sai K, Saeki M, Saito Y, Ozawa S, Katori N, Jinno H et al. UGT1A1 Haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese cancer patients. Clin Pharmacol Ther 2004; 75: 501–515.

    Article  CAS  Google Scholar 

  20. Saeki M, Saito Y, Jinno H, Sai K, Kaniwa N, Ozawa S et al. Genetic polymorphisms of UGT1A6 in a Japanese population. Drug Metab Pharmacokinet 2005; 20: 85–90.

    Article  Google Scholar 

  21. Saeki M, Saito Y, Jinno H, Sai K, Hachisuka A, Kaniwa N et al. Genetic variations and haplotypes of UGT1A4 in a Japanese population. Drug Metab Pharmacokinet 2005; 20: 144–151.

    Article  Google Scholar 

  22. Iwai M, Maruo Y, Ito M, Yamamoto K, Sato H, Takeuchi Y . Six novel UDP-glucuronosyltransferase (UGT1A3) polymorphisms with varying activity. J Hum Genet 2004; 49: 123–128.

    Article  CAS  Google Scholar 

  23. Kozak M . Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 1997; 16: 2482–2492.

    Article  CAS  Google Scholar 

  24. Yamanaka H, Nakajima M, Katoh M, Hara Y, Tachibana O, Yamashita J et al. A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics 2004; 14: 329–332.

    Article  CAS  Google Scholar 

  25. Lankisch TO, Vogel A, Eilermann S, Fiebeler A, Krone B, Barut A et al. Identification and characterization of a functional TATA box polymorphism of the UDP glucuronosyltransferase 1A7 gene. Mol Pharmacol 2005; 67: 1732–1739.

    Article  CAS  Google Scholar 

  26. Ando M, Ando Y, Sekido Y, Ando M, Shimokata K, Hasegawa Y . Genetic polymorphisms of the UDP-glucuronosyltransferase 1A7 gene and irinotecan toxicity in Japanese cancer patients. Jpn J Cancer Res 2002; 93: 591–597.

    Article  CAS  Google Scholar 

  27. Huang MJ, Yang SS, Lin MS, Huang CS . Polymorphisms of uridine-diphosphoglucuronosyltransferase 1A7 gene in Taiwan Chinese. World J Gastroenterol 2005; 11: 797–802.

    Article  CAS  Google Scholar 

  28. Innocenti F, Liu W, Chen P, Desai AA, Das S, Ratain MJ . Haplotypes of variants in the UDP-glucuronosyltransferase1A9 and 1A1 genes. Pharmacogenet Genomics 2005; 15: 295–301.

    Article  CAS  Google Scholar 

  29. Ciotti M, Basu N, Brangi M, Owens IS . Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38) by the human UDP-glucuronosyltransferases encoded at the UGT1 locus. Biochem Biophys Res Commun 1999; 260: 199–202.

    Article  CAS  Google Scholar 

  30. Lepine J, Bernard O, Plante M, Tetu B, Pelletier G, Labrie F et al. Specificity and regioselectivity of the conjugation of estradiol, estrone, and their catecholestrogen and methoxyestrogen metabolites by human uridine diphospho-glucuronosyltransferases expressed in endometrium. J Clin Endocrinol Metab 2004; 89: 5222–5232.

    Article  CAS  Google Scholar 

  31. Basu NK, Kubota S, Meselhy MR, Ciotti M, Chowdhury B, Hartori M et al. Gastrointestinally distributed UDP-glucuronosyltransferase 1A10, which metabolizes estrogens and nonsteroidal anti-inflammatory drugs, depends upon phosphorylation. J Biol Chem 2004; 279: 28320–28329.

    Article  CAS  Google Scholar 

  32. Turgeon D, Chouinard S, Belanger P, Picard S, Labbe JF, Borgeat P et al. Glucuronidation of arachidonic and linoleic acid metabolites by human UDP-glucuronosyltransferases. J Lipid Res 2003; 44: 1182–1191.

    Article  CAS  Google Scholar 

  33. Little JM, Kurkela M, Sonka J, Jantti S, Ketola R, Bratton S et al. Glucuronidation of oxidized fatty acids and prostaglandins B1 and E2 by human hepatic and recombinant UDP-glucuronosyltransferases. J Lipid Res 2004; 45: 1694–1703.

    Article  CAS  Google Scholar 

  34. Beutler E, Gelbart T, Demina A . Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 1998; 95: 8170–8174.

    Article  CAS  Google Scholar 

  35. Sugatani J, Yamakawa K, Yoshinari K, Machida T, Takagi H, Mori M et al. Identification of a defect in the UGT1A1 gene promoter and its association with hyperbilirubinemia. Biochem Biophys Res Commun 2002; 292: 492–497.

    Article  CAS  Google Scholar 

  36. Oguri T, Takahashi T, Miyazaki M, Isobe T, Kohno N, Mackenzie PI et al. UGT1A10 is responsible for SN-38 glucuronidation and its expression in human lung cancers. Anticancer Res 2004; 24: 2893–2896.

    CAS  PubMed  Google Scholar 

  37. Saeki M, Ozawa S, Saito Y, Jinno H, Hamaguchi T, Nokihara H et al. Three novel single nucleotide polymorphisms in UGT1A10. Drug Metab Pharmacokinet 2002; 17: 488–490.

    Article  CAS  Google Scholar 

  38. Saeki M, Saito Y, Jinno H, Sai K, Komamura K, Ueno K et al. Three novel single nucleotide polymorphisms in UGT1A9. Drug Metab Pharmacokinet 2003; 18: 146–149.

    Article  CAS  Google Scholar 

  39. Saeki M, Saito Y, Jinno H, Tohkin M, Kurose K, Kaniwa N et al. Comprehensive UGT1A1 genotyping in a Japanese population by pyrosequencing. Clin Chem 2003; 49: 1182–1185.

    Article  CAS  Google Scholar 

  40. Kitamura Y, Moriguchi M, Kaneko H, Morisaki H, Morisaki T, Toyama K et al. Determination of probability distribution of diplotype configuration (diplotype distribution) for each subject from genotypic data using the EM algorithm. Ann Hum Genet 2002; 66: 183–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Program for Promotion of Fundamental Studies in Health Sciences and by the Health and Labour Sciences Research Grants from Ministry of Health, Labour and Welfare, and the grant from the Japan Health Sciences Foundation. We thank Ms Chie Sudo for her secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Saito.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeki, M., Saito, Y., Jinno, H. et al. Haplotype structures of the UGT1A gene complex in a Japanese population. Pharmacogenomics J 6, 63–75 (2006). https://doi.org/10.1038/sj.tpj.6500335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500335

Keywords

This article is cited by

Search

Quick links