Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cytogenetics and gene discovery in psychiatric disorders

Abstract

The disruption of genes by balanced translocations and other rare germline chromosomal abnormalities has played an important part in the discovery of many common Mendelian disorder genes, somatic oncogenes and tumour supressors. A search of published literature has identified 15 genes whose genomic sequences are directly disrupted by translocation breakpoints in individuals with neuropsychiatric illness. In these cases, it is reasonable to hypothesise that haploinsufficiency is a major factor contributing to illness. These findings suggest that the predicted polygenic nature of psychiatric illness may not represent the complete picture; genes of large individual effect appear to exist. Cytogenetic events may provide important insights into neurochemical pathways and cellular processes critical for the development of complex psychiatric phenotypes in the population at large.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berrettini WH . Genetics of psychiatric disease. Annu Rev Med 2000; 51: 465–479.

    CAS  PubMed  Google Scholar 

  2. Neale BM, Sham PC . The future of association studies: gene-based analysis and replication. Am J Hum Genet 2004; 75: 353–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. O'Donovan MC, Williams NM, Owen MJ . Recent advances in the genetics of schizophrenia. Hum Mol Genet 2003; 12: 125–133.

    Google Scholar 

  4. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    CAS  PubMed  Google Scholar 

  5. Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 2004; 36: 725–731.

    CAS  PubMed  Google Scholar 

  6. Tjio JH, Levan A . The chromosome number in man. Hereditas 1956; 42: 1–6.

    Google Scholar 

  7. Patau K . The identification of individual chromosomes, especially in man. Am J Hum Genet 1960; 12: 250–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Trask BJ . Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet 2002; 3: 769–778.

    CAS  PubMed  Google Scholar 

  9. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

  10. Jacobs PA, Browne C, Gregson N, Joyce C, White H . Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet 1992; 29: 103–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen J, Wohlert M . Chromosome abnormalities found among 34,916 newborn children: results from a 13-year incidence study in Aarhus, Denmark. Hum Genet 1991; 87: 81–83.

    CAS  PubMed  Google Scholar 

  12. Crolla JA, Van Heyningen V . Frequent chromosome aberrations revealed by molecular cytogenetic studies in patients with aniridia. Am J Hum Genet 2002; 71: 1138–1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rowley JD . The critical role of chromosome translocations in human leukemias. Annu Rev Genet 1998; 32: 495–519.

    CAS  PubMed  Google Scholar 

  14. Kurahashi H, Emanuel BS . Long AT-rich palindromes and the constitutional t(11;22) breakpoint. Hum Mol Genet 2001; 10: 2605–2617.

    CAS  PubMed  Google Scholar 

  15. Stankiewicz P, Lupski JR . Genome architecture, rearrangements and genomic disorders. Trends Genet 2002; 18: 74–82.

    CAS  PubMed  Google Scholar 

  16. Bi W, Park SS, Shaw CJ, Withers MA, Patel PI, Lupski JR . Reciprocal crossovers and a positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2. Am J Hum Genet 2003; 73: 1302–1315.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Spiteri E, Babcock M, Kashork CD, Wakui K, Gogineni S, Lewis DA et al. Frequent translocations occur between low copy repeats on chromosome 22q11.2 (LCR22s) and telomeric bands of partner chromosomes. Hum Mol Genet 2003; 12: 1823–1837.

    CAS  PubMed  Google Scholar 

  18. Barbouti A, Stankiewicz P, Nusbaum C, Cuomo C, Cook A, Hoglund M et al. The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats. Am J Hum Genet 2003; 74: 1–10.

    PubMed  PubMed Central  Google Scholar 

  19. Shaw CJ, Lupski JR . Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet 2004; 13: 57–64.

    Google Scholar 

  20. Gotter AL, Shaikh TH, Budarf ML, Rhodes CH, Emanuel BS . A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2. Hum Mol Genet 2004; 13: 103–115.

    CAS  PubMed  Google Scholar 

  21. Kleinjan DJ, van Heyningen V . Position effect in human genetic disease. Hum Mol Genet 1998; 7: 1611–1618.

    CAS  PubMed  Google Scholar 

  22. Sutherland HF, Wadey R, McKie JM, Taylor C, Atif U, Johnstone KA et al. Identification of a novel transcript disrupted by a balanced translocation associated with DiGeorge syndrome. Am J Hum Genet 1996; 59: 23–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kleinjan DA, Seawright A, Schedl A, Quinlan RA, Danes S, van Heyningen V . Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. Hum Mol Genet 2001; 10: 2049–2059.

    CAS  PubMed  Google Scholar 

  24. Gratacos M, Nadal M, Martin-Santos R, Pujana MA, Gago J, Peral B et al. A polymorphic genomic duplication on human chromosome 15 is a susceptibility factor for panic and phobic disorders. Cell 2001; 106: 367–379.

    CAS  PubMed  Google Scholar 

  25. Tassabehji M . Williams–Beuren syndrome: a challenge for genotype–phenotype correlations. Hum Mol Genet 2003; 12: 229–237.

    Google Scholar 

  26. Finucane B, Dirrigl KH, Simon EW . Characterization of self-injurious behaviors in children and adults with Smith–Magenis syndrome. Am J Ment Retard 2001; 106: 52–58.

    CAS  PubMed  Google Scholar 

  27. Boer H, Holland A, Whittington J, Butler J, Webb T, Clarke D . Psychotic illness in people with Prader Willi syndrome due to chromosome 15 maternal uniparental disomy. Lancet 2002; 359: 135–136.

    PubMed  Google Scholar 

  28. Murphy KC, Owen MJ . Velo-cardio-facial syndrome: a model for understanding the genetics and pathogenesis of schizophrenia. Br J Psychiatry 2001; 179: 397–402.

    CAS  PubMed  Google Scholar 

  29. De Vries BB, Winter R, Schinzel A, van Ravenswaaij-Arts C . Telomeres: a diagnosis at the end of the chromosomes. J Med Genet 2003; 40: 385–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Flint J, Knight S . The use of telomere probes to investigate submicroscopic rearrangements associated with mental retardation. Curr Opin Genet Dev 2003; 13: 310–316.

    CAS  PubMed  Google Scholar 

  31. Gillberg C . Chromosomal disorders and autism. J Autism Dev Disord 1998; 28: 415–425.

    CAS  PubMed  Google Scholar 

  32. Lauritsen M, Mors O, Mortensen PB, Ewald H . Infantile autism and associated autosomal chromosome abnormalities: a register-based study and a literature survey. J Child Psychol Psychiatry 1999; 40: 335–345.

    CAS  PubMed  Google Scholar 

  33. Goizet C, Excoffier E, Taine L, Taupiac E, El Moneim AA, Arveiler B et al. Case with autistic syndrome and chromosome 22q13.3 deletion detected by FISH. Am J Med Genet 2000; 96: 839–844.

    CAS  PubMed  Google Scholar 

  34. Manning MA, Cassidy SB, Clericuzio C, Cherry AM, Schwartz S, Hudgins L et al. Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics 2004; 114: 451–457.

    PubMed  Google Scholar 

  35. Tentler D, Johannesson T, Johansson M, Rastam M, Gillberg C, Orsmark C et al. A candidate region for Asperger syndrome defined by two 17p breakpoints. Eur J Hum Genet 2003; 11: 189–195.

    CAS  PubMed  Google Scholar 

  36. Castermans D, Wilquet V, Parthoens E, Huysmans C, Steyaert J, Swinnen L et al. The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J Med Genet 2003; 40: 352–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang X, Herberg FW, Laue MM, Wullner C, Hu B, Petrasch-Parwez E et al. Neurobeachin: a protein kinase A-anchoring, beige/Chediak-higashi protein homolog implicated in neuronal membrane traffic. J Neurosci 2000; 20: 8551–8565.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vincent JB, Herbrick JA, Gurling HM, Bolton PF, Roberts W, Scherer SW . Identification of a novel gene on chromosome 7q31 that is interrupted by a translocation breakpoint in an autistic individual. Am J Hum Genet 2000; 67: 510–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vincent JB, Petek E, Thevarkunnel S, Kolozsvari D, Cheung J, Patel M et al. The RAY1/ST7 tumor-suppressor locus on chromosome 7q31 represents a complex multi-transcript system. Genomics 2002; 80: 283–294.

    CAS  PubMed  Google Scholar 

  40. Sultana R, Yu CE, Yu J, Munson J, Chen D, Hua W et al. Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins. Genomics 2002; 80: 129–134.

    CAS  PubMed  Google Scholar 

  41. Tentler D, Brandberg G, Betancur C, Gillberg C, Anneren G, Orsmark C et al. A balanced reciprocal translocation t(5;7)(q14;q32) associated with autistic disorder: molecular analysis of the chromosome 7 breakpoint. Am J Med Genet 2001; 105: 729–736.

    CAS  PubMed  Google Scholar 

  42. Ishikawa-Brush Y, Powell JF, Bolton P, Miller AP, Francis F, Willard HF et al. Autism and multiple exostoses associated with an X;8 translocation occurring within the GRPR gene and 3′ to the SDC2 gene. Hum Mol Genet 1997; 6: 1241–1250.

    CAS  PubMed  Google Scholar 

  43. Petek E, Windpassinger C, Vincent JB, Cheung J, Boright AP, Scherer SW et al. Disruption of a novel gene (IMMP2L) by a breakpoint in 7q31 associated with Tourette syndrome. Am J Hum Genet 2001; 68: 848–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Verkerk AJ, Mathews CA, Joosse M, Eussen BH, Heutink P, Oostra BA . Tourette Syndrome Association International Consortium for Genetics. CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive–compulsive disorder. Genomics 2003; 82: 1–9.

    CAS  PubMed  Google Scholar 

  45. Nakabayashi K, Scherer SW . The human contactin-associated protein-like 2 gene (CNTNAP2) spans over 2 Mb of DNA at chromosome 7q35. Genomics 2001; 73: 108–112.

    CAS  PubMed  Google Scholar 

  46. Taipale M, Kaminen N, Nopola-Hemmi J, Haltia T, Myllyluoma B, Lyytinen H et al. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proc Natl Acad Sci USA 2003; 100: 11553–11558.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP . A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001; 413: 519–523.

    CAS  PubMed  Google Scholar 

  48. Newbury DF, Bonora E, Lamb JA, Fisher SE, Lai CS, Baird G et al. International Molecular Genetic Study of Autism Consortium. FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am J Hum Genet 2002; 70: 1318–1327.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lai CS, Gerrelli D, Monaco AP, Fisher SE, Copp AJ . FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 2003; 126: 2455–2462.

    PubMed  Google Scholar 

  50. Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW . Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet 2003; 40: 325–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pickard BS, Malloy MP, Porteous DJ, Blackwood DHR, Muir WJ . Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability. Am J Med Gen (in press).

  52. Brunskill EW, Witte DP, Shreiner AB, Potter SS . Characterization of npas3, a novel basic helix–loop–helix PAS gene expressed in the developing mouse nervous system. Mech Dev 1999; 88: 237–241.

    CAS  PubMed  Google Scholar 

  53. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    CAS  PubMed  Google Scholar 

  54. Pickard BS, Malloy MP, MacIntyre DJ, Hampson RM, Porteous DJ, Blackwood DHR et al. Disruption of an N-linked glycosylation pathway enzyme, MGAT5, in a patient with schizophrenia and learning disability (in preparation).

  55. Dennis JW, Pawling J, Cheung P, Partridge E, Demetriou M . UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylglucosaminyltransferase V (Mgat5) deficient mice. Biochim Biophys Acta 2002; 1573: 414–422.

    CAS  PubMed  Google Scholar 

  56. Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW . Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 2000; 6: 306–312.

    CAS  PubMed  Google Scholar 

  57. Gecz J, Barnett S, Liu J, Hollway G, Donnelly A, Eyre H et al. Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. Genomics 1999; 62: 356–368.

    CAS  PubMed  Google Scholar 

  58. Liu QJ, Gong YQ, Chen BX, Guo CH, Li JX, Guo YS . Linkage analysis and mutation detection of GRIA3 in Smith–Fineman–Myers syndrome. Yi Chuan Xue Bao 2001; 28: 985–990.

    CAS  PubMed  Google Scholar 

  59. Baysal BE, Willett-Brozick JE, Badner JA, Corona W, Ferrell RE, Nimgaonkar VL et al. A mannosyltransferase gene at 11q23 is disrupted by a translocation breakpoint that co-segregates with bipolar affective disorder in a small family. Neurogenetics 2002; 4: 43–53.

    CAS  PubMed  Google Scholar 

  60. http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=PubMed.

  61. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders–cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. FitzPatrick DR, Carr IM, McLaren L, Leek JP, Wightman P, Williamson K et al. Identification of SATB2 as the cleft palate gene on 2q32–q33. Hum Mol Genet 2003; 12: 2491–2501.

    CAS  PubMed  Google Scholar 

  63. Taddei I, Morishima M, Huynh T, Lindsay EA . Genetic factors are major determinants of phenotypic variability in a mouse model of the DiGeorge/del22q11 syndromes. Proc Natl Acad Sci USA 2001; 98: 11428–11431.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. MacIntyre DJ, Blackwood DH, Porteous DJ, Pickard BS, Muir WJ . Chromosomal abnormalities and mental illness. Mol Psychiatry 2003; 8: 275–287.

    CAS  PubMed  Google Scholar 

  65. Bugge M, Bruun-Petersen G, Brondum-Nielsen K, Friedrich U, Hansen J, Jensen G et al. Disease associated balanced chromosome rearrangements: a resource for large scale genotype–phenotype delineation in man. J Med Genet 2000; 37: 858–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Niculescu III AB, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR . Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genom 2000; 4: 83–91.

    CAS  Google Scholar 

  67. Doody GA, Johnstone EC, Sanderson TL, Owens DG, Muir WJ . Pfropfschizophrenie' revisited. Schizophrenia in people with mild learning disability. Br J Psychiatry 1998; 173: 145–153.

    CAS  PubMed  Google Scholar 

  68. Belsham B . Glutamate and its role in psychiatric illness. Hum Psychopharmacol 2001; 16: 139–146.

    CAS  PubMed  Google Scholar 

  69. Mohn AR, Gainetdinov RR, Caron MG, Koller BH . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98: 427–436.

    CAS  PubMed  Google Scholar 

  70. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    CAS  PubMed  Google Scholar 

  71. Barabasi AL, Oltvai ZN . Network biology: understanding the cell's functional organization. Nat Rev Genet 2004; 5: 101–113, (review).

    CAS  PubMed  Google Scholar 

  72. Freeze HH . Human disorders in N-glycosylation and animal models. Biochim Biophys Acta 2002; 1573: 388–393.

    CAS  PubMed  Google Scholar 

  73. Grunewald S, Matthijs G, Jaeken J . Congenital disorders of glycosylation: a review. Pediatr Res 2002; 52: 618–624.

    PubMed  Google Scholar 

  74. Yamaguchi Y . Glycobiology of the synapse: the role of glycans in the formation, maturation, and modulation of synapses. Biochim Biophys Acta 2002; 1573: 369–376.

    CAS  PubMed  Google Scholar 

  75. Jeffries AR, Mungall AJ, Dawson E, Halls K, Langford CF, Murray RM et al. Beta-1,3-glucuronyltransferase-1 gene implicated as a candidate for a schizophrenia-like psychosis through molecular analysis of a balanced translocation. Mol Psychiatry 2003; 8: 654–663.

    CAS  PubMed  Google Scholar 

  76. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    CAS  PubMed  Google Scholar 

  77. Millar JK, Christie S, Anderson S, Lawson D, Hsiao-Wei Loh D, Devon RS et al. Genomic structure and localisation within a linkage hotspot of disrupted in schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatry 2001; 6: 173–178.

    CAS  PubMed  Google Scholar 

  78. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001; 10: 1611–1617.

    CAS  PubMed  Google Scholar 

  79. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    CAS  PubMed  Google Scholar 

  80. Gejman PV, Martinez M, Cao Q, Friedman E, Berrettini WH, Goldin LR et al. Linkage analysis of fifty-seven microsatellite loci to bipolar disorder. Neuropsychopharmacology 1993; 9: 31–40.

    CAS  PubMed  Google Scholar 

  81. Hwu HG, Liu CM, Fann CS, Ou-Yang WC, Lee SF . Linkage of schizophrenia with chromosome 1q loci in Taiwanese families. Mol Psychiatry 2003; 8: 445–452.

    CAS  PubMed  Google Scholar 

  82. Curtis D, Kalsi G, Brynjolfsson J, McInnis M, O'Neill J, Smyth C et al. Genome scan of pedigrees multiply affected with bipolar disorder provides further support for the presence of a susceptibility locus on chromosome 12q23–q24, and suggests the presence of additional loci on 1p and 1q. Psychiatr Genet 2003; 13: 77–84.

    PubMed  Google Scholar 

  83. Austin CP, Ma L, Ky B, Morris JA, Shughrue PJ . DISC1 (disrupted in schizophrenia-1) is expressed in limbic regions of the primate brain. Neuroreport 2003; 14: 951–954.

    CAS  PubMed  Google Scholar 

  84. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-in-schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    CAS  PubMed  Google Scholar 

  85. Millar JK, Christie S, Porteous DJ . Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem Biophys Res Commun 2003; 311: 1019–1025.

    CAS  PubMed  Google Scholar 

  86. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    CAS  PubMed  Google Scholar 

  87. Morris JA, Kandpal G, Ma L, Austin CP . DISC1 (disrupted-in-schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 2003; 12: 1591–1608.

    CAS  PubMed  Google Scholar 

  88. Brandon NJ, Handford EJ, Schurov I, Rain J-C, Pelling M, Duran-Jimeniz B et al. Disrupted in schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 2004; 25: 42–55.

    CAS  PubMed  Google Scholar 

  89. Cardon LR, Bell JI . Association study designs for complex diseases. Nat Rev Genet 2001; 2: 91–99.

    CAS  PubMed  Google Scholar 

  90. Frayling IM, Beck NE, Ilyas M, Dove-Edwin I, Goodman P, Pack K et al. The APC variants I1307K and E1317Q are associated with colorectal tumors, but not always with a family history. Proc Natl Acad Sci USA 1998; 95: 10722–10727.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Botstein D, Risch N . Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet 2003; 33: 228–237.

    CAS  PubMed  Google Scholar 

  92. Pritchard JK . Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001; 69: 124–137.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B S Pickard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickard, B., Millar, J., Porteous, D. et al. Cytogenetics and gene discovery in psychiatric disorders. Pharmacogenomics J 5, 81–88 (2005). https://doi.org/10.1038/sj.tpj.6500293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500293

Keywords

Search

Quick links