Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The pharmacogenomics of selective serotonin reuptake inhibitors

Abstract

The introduction of selective serotonin (5-HT) reuptake inhibitors (SSRIs) has significantly improved the pharmacological treatment of a range of psychiatric disorders. Nevertheless, despite the undoubted advantages of antidepressant treatment in terms of improved tolerability to therapy while maintaining a high level of efficacy, not all patients benefit from it; an appreciable proportion do not respond adequately, while others may show adverse reactions. The necessary change of the initial treatment choice often requires extended periods for the remission of symptomatology. Such difficulties could be avoided if it should be possible to determine more quickly the most suitable drug. Several factors have been thought to influence the outcome of antidepressant therapy. Among the factors influencing the interindividual variability in response to treatment with SSRI, differences in genetic features may play a significant role. Several genetic polymorphisms have been associated with therapeutic SSRI response, including genetic variants of the 5-HT transporter, 5-HT-2A-receptor, tryptophan hydroxylase, brain-derived neurotrophic factor, G-protein beta3 subunit, interleukin-1beta and angiotensin-converting enzyme, although with conflicting results; also cytochrome P450 drug-metabolising enzymes may bear a particular importance, although further corroboration of the findings is necessary, and further key participating genes remain to be identified. The hope is that the identification of these genetic components will eventually facilitate the development of a customised SSRI treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grunze H, Kasper S, Goodwin G, Bowden C, Baldwin D, Licht R et al. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of bipolar disorders. Part I: treatment of bipolar depression. World J Biol Psychiatry 2002; 3: 115–124.

    PubMed  Google Scholar 

  2. Geddes JR, Freemantle N, Mason J, Eccles MP, Boynton J . SSRIs versus other antidepressants for depressive disorder. Cochrane Database Syst Rev 2000; 2: CD001851.

  3. Orsini A . Antidepressant responses and segregation analyses in affective families. In: Racagni G, Smeraldi E (eds). Anxious Depression: Assessment and Treatment. Raven Press: New York 1987.

    Google Scholar 

  4. Sederer LI . Depression. In: Sederer LI (ed). Inpatients Psychiatry Diagnosis and Treatment. William & Wilkins: Baltimore, MD 1986; pp 20.

    Google Scholar 

  5. Berrettini W . Progress and pitfalls: bipolar molecular linkage studies. J Affect Disorders 1998; 50: 287–297.

    CAS  PubMed  Google Scholar 

  6. Pare CM, Mack JW . Differentiation of two genetically specific types of depression by the response to antidepressant drugs. J Med Genet 1971; 8: 306–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nebert DW . Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 1999; 56: 247–258.

    CAS  PubMed  Google Scholar 

  8. American Psychiatric Association. Practice guideline for the treatment of patients with bipolar disorder. American Psychiatric Association. Am J Psychiatry 1994; 151: 1–36.

  9. American Psychiatric Association. Practice guideline for the treatment of patients with schizophrenia. American Psychiatric Association. Am J Psychiatry 1997; 154: 1–63.

  10. American Psychiatric Association. Practice guideline for the treatment of patients with major depressive disorder (revision). American Psychiatric Association. Am J Psychiatry 2000; 157: 1–45.

  11. Roses AD . Pharmacogenetics and the practice of medicine. Nature 2000; 405: 857–865.

    CAS  PubMed  Google Scholar 

  12. Dettling M, Cascorbi I, Roots I, Mueller-Oerlinghausen B . Genetic determinants of clozapine-induced agranulocytosis: recent results of HLA subtyping in a non-jewish Caucasian sample. Arch Gen Psychiatry 2001; 58: 93–94.

    CAS  PubMed  Google Scholar 

  13. Segman R, Neeman T, Heresco-Levy U, Finkel B, Karagichev L, Schlafman M et al. Genotypic association between the dopamine D3 receptor and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 1999; 4: 247–253.

    CAS  PubMed  Google Scholar 

  14. Pickar D, Rubinow K . Pharmacogenomics of psychiatric disorders. Trends Pharmacol Sci 2001; 22: 75–83.

    CAS  PubMed  Google Scholar 

  15. Stahl SM, Grady MM . Differences in mechanism of action between current and future antidepressants. J Clin Psychiatry 2003; 64(Suppl 13): 13–17.

    CAS  PubMed  Google Scholar 

  16. Serretti A, Lilli R, Smerladi E . Pharmacogenetics in affective disorders. Eur J Pharmacol 2002; 438: 117–128.

    CAS  PubMed  Google Scholar 

  17. Boularand S, Darmon MC, Ganem Y, Launay JM, Mallet J . Complete coding sequence of human tryptophan hydroxylase. Nucleic Acid Res 1990; 18: 4257.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Craig SP, Boularand S, Darmon MC, Mallet J, Craig IW . Localization of human tryptophan hydroxylase (TPH) to chromosome 11p15.3–p14 by in situ hybridization. Cytogenet Cell Genet 1991; 56: 157–159.

    CAS  PubMed  Google Scholar 

  19. Johnson M, Hanson GR, Gibb JW . Characterization of acute N-ethyl-3,4-methylenedioxyamphetamine (MDE) action on the central serotonergic system. Biochem Pharmacol 1989; 38: 4333–4338.

    CAS  PubMed  Google Scholar 

  20. Kim SW, Park SY, Hwang O . Up-regulation of tryptophan hydroxylase expression and serotonin synthesis by sertraline. Mol Pharmacol 2002; 61: 778–785.

    CAS  PubMed  Google Scholar 

  21. Nielsen DA, Jenkins GL, Stefanisko KM, Jefferson KK, Goldman D . Sequence, splice site and population frequency distribution analyses of the polymorphic human tryptophan hydroxylase intron 7. Mol Brain Res 1997; 45: 145–148.

    CAS  PubMed  Google Scholar 

  22. Jonsson EG, Goldman D, Spurlock G, Gustavsson JP, Nielsen DA, Linnoila M et al. Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphisms: relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Eur Arch Psychiatry Clin Neurosci 1997; 247: 297–302.

    CAS  PubMed  Google Scholar 

  23. Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E . Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 2001; 6: 586–592.

    CAS  PubMed  Google Scholar 

  24. Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E . Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol 2001; 11: 375–380.

    CAS  PubMed  Google Scholar 

  25. Yoshida K, Naito S, Takahashi H, Sato K, Ito K, Kamata M et al. Monoamine oxidase: a gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 1279–1283.

    CAS  PubMed  Google Scholar 

  26. Takahashi H, Yoshida K, Ito K, Sato K, Kamata M, Higuchi H et al. No association between the serotonergic polymorphisms and incidence of nausea induced by fluvoxamine treatment. Eur Neuropsychopharmacol 2002; 12: 477.

    CAS  PubMed  Google Scholar 

  27. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299: 76.

    CAS  PubMed  Google Scholar 

  28. Walther DJ, Bader M . A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 2003; 66: 1673–1680.

    CAS  PubMed  Google Scholar 

  29. Berry MD, Juorio AV, Paterson IA . The functional role of monoamine oxidases A and B in the mammalian central nervous system. Prog Neurobiol 1994; 42: 375–391.

    CAS  PubMed  Google Scholar 

  30. Sabol SZ, Hu S, Hamer D . A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 1998; 103: 273–279.

    CAS  PubMed  Google Scholar 

  31. Denney RM, Koch H, Craig IW . Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum Genet 1999; 105: 542–551.

    CAS  PubMed  Google Scholar 

  32. Muller DJ, Schulze TG, Macciardi F, Ohlraun S, Gross MM, Bauer I et al. Moclobemide response in depressed patients: association study with a functional polymorphism in the monoamine oxidase-A promoter. Eighth World Congress on Psychiatric Genetics, 2000, Versailles, France, p. 537.

  33. Cusin C, Serretti A, Zanardi R, Lattuada E, Rossini D, Lilli R et al. Influence of monoamine oxydase A and serotonin receptor 2A polymorphisms in SSRIs antidepressant activity. Int J Neuropsychopharmacol 2002; 5: 27–35.

    CAS  PubMed  Google Scholar 

  34. Kirigiti P, Yang YF, Li X, Li B, Midson CN, Machida CA . Rat beta 1-adrenergic receptor regulatory region containing consensus AP-2 elements recognizes novel transactivator proteins. Mol Cell Biol Res Commun 2000; 3: 181–192.

    CAS  PubMed  Google Scholar 

  35. Crissman AM, Makhay MM, O'Donnell JM . Discriminative stimulus effects of centrally administered isoproterenol in rats: mediation by beta-1 adrenergic receptors. Psychopharmacology (Berl) 2001; 154: 70–75.

    CAS  Google Scholar 

  36. Yang-Feng TL, Xue FY, Zhong WW, Cotecchia S, Frielle T, Caron MG et al. Chromosomal organization of adrenergic receptor genes. Proc Natl Acad Sci USA 1990; 87: 1516–1520.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mason DA, Moore JD, Green SA, Liggett SB . A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem 1999; 274: 12670–12674.

    CAS  PubMed  Google Scholar 

  38. D'Aquila PS, Collu M, Gessa GL, Serra G . The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 2000; 405: 365–373.

    CAS  PubMed  Google Scholar 

  39. Civelli O . Molecular biology of the dopamine receptor subtypes. In: Bloom FE, Kupfer DJ (eds). Psychopharmacology: The Fourth Generation of Progress. Raven press: New York 1995; pp 155–161.

    Google Scholar 

  40. Dong J, Blier P . Modification of norepinephrine and serotonin, but not dopamine, neuron firing by sustained bupropion treatment. Psychopharmacology (Berl) 2001; 155: 52–57.

    CAS  Google Scholar 

  41. Grandy D, Litt M, Allen L, Bunzow J, Marchionni M, Makam H et al. The human D2 dopamine receptor gene is located on chromosome 11 at q22–q23 and identifies a TaqI RFLP. Am J Hum Genet 1989; 45: 778–785.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Balk J, Picetti R, Salardi A, Thirlet G, Dierich A, Depaulls A et al. Parkinsonian-like locomotorimpairment in mice lacking dopamine D2 receptors. Nature 1995; 377: 424–428.

    CAS  Google Scholar 

  43. Itokawa M, Arinami T, Futamura N, Hamaguchi H, Toru M . A structural polymorphism of human dopamine D2 receptor, D2(Ser311 → Cys). Biochem Biophys Res Commun 1993; 196: 1369–1375.

    CAS  PubMed  Google Scholar 

  44. Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G et al. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 1997; 90: 991–1001.

    CAS  PubMed  Google Scholar 

  45. Price CJ, Pittman QJ . Dopamine D4 receptor activation inhibits presynaptically glutamatergic neurotransmission in the rat supraoptic nucleus. J Neurophysiol 2001; 86: 1149–1155.

    CAS  PubMed  Google Scholar 

  46. Van Tol H, Caren M, Guan H, Ohara K, Bunzow J, Civelli O et al. Multiple dopamine D4 receptor variants in the human population. Nature 1992; 358: 149–152.

    CAS  PubMed  Google Scholar 

  47. Serretti A, Zanardi R, Cusin C, Rossini D, Lilli R, Lorenzi C et al. No association between dopamine D2 and D4 receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatry Res 2001; 104: 195–203.

    CAS  PubMed  Google Scholar 

  48. Sparkes RS, Lan N, Klisak I, Mohandas T, Diep A, Kojis T et al. Assignment of a serotonin 5HT-2 receptor gene (HTR2) to human chromosome 13q14–q21 and mouse chromosome 14. Genomics 1991; 9: 461–465.

    CAS  PubMed  Google Scholar 

  49. Skrebuhhova T, Allikmets L, Matto V . Effects of anxiogenic drugs in rat forced swimming test. Methods Find Exp Clin Pharmacol 1999; 21: 173–178.

    CAS  PubMed  Google Scholar 

  50. Hemrick-Luecke SK, Snoddy HD, Fuller RW . Evaluation of nefazodone as a serotonin uptake inhibitor and a serotonin antagonist in vivo. Life Sci 1994; 55: 479–483.

    CAS  PubMed  Google Scholar 

  51. Spurlock G, Heils A, Holmans P, Williams J, D'Souza UM, Cardno A et al. A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol Psychiatry 1998; 3: 42–49.

    CAS  PubMed  Google Scholar 

  52. Arranz MJ, Munro J, Owen MJ, Spurlock G, Sham PC, Zhao J et al. Evidence for association between polymorphisms in the promoter and coding regions of the 5-HT2A receptor gene and response to clozapine. Mol Psychiatry 1998; 3: 61–66.

    CAS  PubMed  Google Scholar 

  53. Warren Jr JT, Peacock ML, Rodriguez LC, Fink JK . An MspI polymorphism in the hyman serotonin receptor gene (HTR2): detection by DGGE and RFLP analysis. Hum Mol Genet 1993; 2: 338.

    CAS  PubMed  Google Scholar 

  54. Lane HY, Chang YC, Chiu CC, Chen ML, Hsieh MH, Chang WH . Association of risperidone treatment response with a polymorphism in the 5-HT(2A) receptor gene. Am J Psychiatry 2002; 159: 1593–1595.

    PubMed  Google Scholar 

  55. Arranz M, Collier D, Sodhi M, Ball D, Roberts G, Price J et al. Association between clozapine response and allelic variation in 5-HT2A receptor gene. Lancet 1995; 346: 281–282.

    CAS  PubMed  Google Scholar 

  56. Sato K, Yoshida K, Takahashi H, Ito K, Kamata M, Higuchi H et al. Association between −1438G/A promoter polymorphism in the 5-HT(2A) receptor gene and fluvoxamine response in Japanese patients with major depressive disorder. Neuropsychobiology 2002; 46: 136–140.

    CAS  PubMed  Google Scholar 

  57. Minov C, Baghai TC, Schule C, Zwanzger P, Schwarz MJ, Zill P et al. Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett 2001; 303: 119–122.

    CAS  PubMed  Google Scholar 

  58. Kohen R, Metcalf MA, Khan N, Druck T, Huebner K, Lachowicz JE et al. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J Neurochem 1996; 66: 47–56.

    CAS  PubMed  Google Scholar 

  59. Wu WH, Huo SJ, Cheng CY, Hong CJ, Tsai SJ . Association study of the 5-HT(6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology 2001; 44: 172–175.

    CAS  PubMed  Google Scholar 

  60. Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS et al. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 1993; 90: 2542–2546.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lesch KP, Balling U, Gross J, Strauss K, Wolozin BL, Murphy DL et al. Organization of the human serotonin transporter gene. J Neural Transm Gen Sect 1994; 95: 157–162.

    CAS  PubMed  Google Scholar 

  62. Ogilvie AD, Battersby S, Bubb VJ, Fink G, Harmar AJ, Goodwin GM et al. Polymorphism in serotonin transporter gene associated with susceptibility to major depression. Lancet 1996; 347: 731–733.

    CAS  PubMed  Google Scholar 

  63. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D et al. Allelic variation of human serotonin trasporter gene expression. J Neurochem 1996; 66: 2621–2624.

    CAS  PubMed  Google Scholar 

  64. Lesch K, Bengel D, Heils A, Sabol S, Greenberg B, Petri S et al. Association of anxiety-related traits with a polymorphismin the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1530.

    CAS  PubMed  Google Scholar 

  65. Smeraldi E, Zanardi R, Benedetti F, Dibella D, Perez J, Catalano M . Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 1998; 3: 508–511.

    CAS  PubMed  Google Scholar 

  66. Zanardi R, Serretti A, Rossini D, Franchini L, Cusin C, Lattuada E et al. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol Psychiatry 2001; 50: 323–330.

    CAS  PubMed  Google Scholar 

  67. Zanardi R, Benedetti F, DiBella D, Catalano M, Smeraldi E . Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of serotonin transporter gene. J Clin Psychopharmacol 2000; 20: 105–107.

    CAS  PubMed  Google Scholar 

  68. Pollock BG, Ferrell RE, Mulsant BH, Mazumdar S, Miller M, Sweet RA et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 2000; 23: 587–590.

    CAS  PubMed  Google Scholar 

  69. Arias B, Catalan R, Gasto C, Imaz ML, Gutierrez B, Pintor L et al. Genetic variability in the promoter region of the serotonin transporter gene is associated with clinical remission of major depression after long term treatment with citalopram. World Federation of Societies of Biological Psychiatry, 2001, Berlin, Germany, p. 9S.

  70. Rausch JL, Johnson ME, Fei Y-J, Li JQ, Shendarkar N, Mac Hobby H et al. Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol Psychiatry 2002; 51: 723–732.

    CAS  PubMed  Google Scholar 

  71. Kim DK, Lim SW, Lee S, Sohn SE, Kim S, Hahn CG et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport 2000; 11: 215–219.

    CAS  PubMed  Google Scholar 

  72. Yoshida K, Ito K, Sato K, Takahashi H, Kamata M, Higuchi H et al. Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 383–386.

    CAS  PubMed  Google Scholar 

  73. Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ . Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 2002; 7: 1115–1119.

    Article  CAS  PubMed  Google Scholar 

  74. Ito K, Yoshida K, Sato K, Takahashi H, Kamata M, Higuchi H et al. A variable number of tandem repeats in the serotonin transporter gene does not affect the antidepressant response to fluvoxamine. Psychiatry Res 2002; 111: 235–239.

    CAS  PubMed  Google Scholar 

  75. Mundo E, Walker M, Cate T, Macciardi F, Kennedy JL . The role of serotonin transporter protein gene in antidepressant-induced mania in bipolar disorder. Arch Gen Psychiatry 2001; 58: 539–544.

    CAS  PubMed  Google Scholar 

  76. Artioli P, Serretti A, Lattuada E, Lorenzi C, Lilli R, Smeraldi E . Clinical and genetic features of antidepressant induced mania in bipolar disorder. Xth World Congress of Psychiatric Genetics, 2002, Brussels, p. 755.

  77. Wegener G, Volke V, Harvey BH, Rosenberg R . Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res 2003; 959: 128–134.

    CAS  PubMed  Google Scholar 

  78. Nowak G, Kata M, Jopek R, Siedlecki A . Chronic electroconvulsive treatment increases the activity of nitric oxide synthase in the rat brain. Pol J Pharmacol 1997; 49: 379–382.

    CAS  PubMed  Google Scholar 

  79. Paul IA . Antidepressant activity and calcium signaling cascades. Hum Psychopharmacol 2001; 16: 71–80.

    CAS  PubMed  Google Scholar 

  80. Yu YW, Chen TJ, Wang YC, Liou YJ, Hong CJ, Tsai SJ . Association analysis for neuronal nitric oxide synthase gene polymorphism with major depression and fluoxetine response. Neuropsychobiology 2003; 47: 137–140.

    CAS  PubMed  Google Scholar 

  81. Neer EJ . Heterotrimeric G proteins: organizers of transmembrane signals. Cell 1995; 80: 249–257.

    CAS  PubMed  Google Scholar 

  82. Elena Castro M, Diaz A, del Olmo E, Pazos A . Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT(1A) receptors in rat brain. Neuropharmacology 2003; 44: 93–101.

    CAS  PubMed  Google Scholar 

  83. Siffert W, Rosskopf D, Moritz A, Wieland T, Kaldenberg-Stasch S, Kettler N et al. Enhanced G protein activation in immortalized lymphoblasts from patients with essential hypertension. J Clin Invest 1995; 96: 759–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Riedel M et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 2000; 11: 1893–1897.

    CAS  PubMed  Google Scholar 

  85. Serretti A, Lorenzi C, Cusin C, Zanardi R, Lattuada E, Rossini D et al. SSRIs antidepressant activity is influenced by Gbeta3 variants. Eur Neuropsychopharmacol 2003; 13: 117–122.

    CAS  PubMed  Google Scholar 

  86. Ramaraj P, Kessler SP, Colmenares C, Sen GC . Selective restoration of male fertility in mice lacking angiotensin-converting enzymes by sperm-specific expression of the testicular isozyme. J Clin Invest 1998; 102: 371–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ehlers MR, Fox EA, Strydom DJ, Riordan JF . Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci USA 1989; 86: 7741–7745.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jeunemaitre X, Rigat B, Charru A, Houot AM, Soubrier F, Corvol P . Sib pair linkage analysis of renin gene haplotypes in human essential hypertension. Hum Genet 1992; 88: 301–306.

    CAS  PubMed  Google Scholar 

  89. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F . An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jeffery S, Saggar Malik AK, Crosby A, Bland M, Eastwood JB, Amoah-Danquah J et al. A dominant relationship between the ACE D allele and serum ACE levels in a Ghanaian population. J Med Genet 1999; 36: 869–870.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vuckovic A, Cohen BM, Zubenko GS . The use of captopril in treatment-resistant depression: an open trial. J Clin Psychopharmacol 1991; 11: 395–396.

    CAS  PubMed  Google Scholar 

  92. Arregui A, MacKay AV, Iversen LL, Spokes EG . Reduction of angiotensin-converting enzyme in substantia nigra in early-onset schizophrenia. N Engl J Med 1979; 300: 502–503.

    CAS  PubMed  Google Scholar 

  93. Arinami T, Li L, Mitsushio H, Itokawa M, Hamaguchi H, Toru M . An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol Psychiatry 1996; 40: 1122–1127.

    CAS  PubMed  Google Scholar 

  94. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998; 281: 1640–1645.

    CAS  PubMed  Google Scholar 

  95. Baghai TC, Schule C, Zwanzger P, Minov C, Schwarz MJ, de Jonge S et al. Possible influence of the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene on therapeutic outcome in affective disorders. Mol Psychiatry 2001; 6: 258–259.

    CAS  PubMed  Google Scholar 

  96. Hong CJ, Wang YC, Tsai SJ . Association study of angiotensin I-converting enzyme polymorphism and symptomatology and antidepressant response in major depressive disorders. J Neural Transm 2002; 109: 1209–1214.

    CAS  PubMed  Google Scholar 

  97. Patterson D, Jones C, Hart I, Bleskan J, Berger R, Geyer D et al. The human interleukin-1 receptor antagonist (IL1RN) gene is located in the chromosome 2q14 region. Genomics 1993; 15: 173–176.

    CAS  PubMed  Google Scholar 

  98. Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci USA 1984; 81: 7907–7911.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Auron PE, Rosenwasser LJ, Matsushima K, Copeland T, Dinarello CA, Oppenheim JJ et al. Human and murine interleukin 1 possess sequence and structural similarities. J Mol Cell Immunol 1985; 2: 169–177.

    CAS  PubMed  Google Scholar 

  100. Le Beau MM, Rowley JD . Chromosomal abnormalities in leukemia and lymphoma: clinical and biological significance. Adv Hum Genet 1986; 15: 1–54.

    CAS  PubMed  Google Scholar 

  101. Owen B, Eccleston D, Ferrier I, Young A . Raised levels of plasma interleukin-1 in major and post viral depression. Acta Psychiatr Scand 2000; 103: 226–228.

    Google Scholar 

  102. Maes M, Bosmans E, Meltzer HY, Scharpe S, Suy E . Interleukin-1 beta: a putative mediator of HPA axis hyperactivity in major depression? Am J Psychiatry 1993; 150: 1189–1193.

    CAS  PubMed  Google Scholar 

  103. Anisman H, Ravindran AV, Griffiths J, Merali Z . Endocrine and cytokine correlates of major depression and dysthymia with typical or atypical features. Mol Psychiatry 1999; 4: 182–188.

    CAS  PubMed  Google Scholar 

  104. Anisman H, Kokkinidis L, Merali Z . Further evidence for the depressive effects of cytokines: anhedonia and neurochemical changes. Brain Behav Immun 2002; 16: 544–556.

    CAS  PubMed  Google Scholar 

  105. Maes M . Major depression and activation of the inflammatory response system. Adv Exp Med Biol 1999; 461: 25–46.

    CAS  PubMed  Google Scholar 

  106. Maier SF, Goehler LE, Fleshner M, Watkins LR . The role of the vagus nerve in cytokine-to-brain communication. Ann NY Acad Sci 1998; 840: 289–300.

    CAS  PubMed  Google Scholar 

  107. Licinio J, Wong ML . The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 1999; 4: 317–327.

    CAS  PubMed  Google Scholar 

  108. Di Giovine F, Takhsh E, Blakemore A . Single base polymorphism at −511 in the human interleukin-1 gene (IL1). Hum Mol Genet 1992; 1: 450.

    CAS  PubMed  Google Scholar 

  109. Pociot F, Molvig J, Wogensen L, Worsaae H, Nerup J . A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest 1992; 22: 396–402.

    CAS  PubMed  Google Scholar 

  110. Guasch JF, Bertina RM, Reitsma PH . Five novel intragenic dimorphisms in the human interleukin-1 genes combine to high informativity. Cytokine 1996; 8: 598–602.

    CAS  PubMed  Google Scholar 

  111. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000; 404: 398–402.

    CAS  PubMed  Google Scholar 

  112. Yu YW, Chen TJ, Hong CJ, Chen HM, Tsai SJ . Association Study of the interleukin-1beta (C-511T) genetic polymorphism with major depressive disorder, associated symptomatology, and antidepressant response. Neuropsychopharmacology 2003; 28: 1182–1185.

    CAS  PubMed  Google Scholar 

  113. Lin JH, Lu AY . Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35: 361–390.

    CAS  PubMed  Google Scholar 

  114. Hemeryck A, Belpaire FM . Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug–drug interactions: an update. Curr Drug Metab 2002; 3: 13–37.

    CAS  PubMed  Google Scholar 

  115. Smith G, Stubbins MJ, Harries LW, Wolf CR . Molecular genetics of the human cytochrome P450 monooxygenase superfamily. Xenobiotica 1998; 28: 1129–1165.

    CAS  PubMed  Google Scholar 

  116. Smith DA, Abel SM, Hyland R, Jones BC . Human cytochrome P450s: selectivity and measurement in vivo. Xenobiotica 1998; 28: 1095–1128.

    CAS  PubMed  Google Scholar 

  117. Lam YW, Gaedigk A, Ereshefsky L, Alfaro CL, Simpson J . CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002; 22: 1001–1006.

    CAS  PubMed  Google Scholar 

  118. Liston HL, DeVane CL, Boulton DW, Risch SC, Markowitz JS, Goldman J . Differential time course of cytochrome P450 2D6 enzyme inhibition by fluoxetine, sertraline, and paroxetine in healthy volunteers. J Clin Psychopharmacol 2002; 22: 169–173.

    CAS  PubMed  Google Scholar 

  119. de Leon J, Barnhill J, Rogers T, Boyle J, Chou WH, Wedlund PJ . Pilot study of the cytochrome P450-2D6 genotype in a psychiatric state hospital. Am J Psychiatry 1998; 155: 1278–1280.

    CAS  PubMed  Google Scholar 

  120. Steimer W, Muller B, Leucht S, Kissling W . Pharmacogenetics: a new diagnostic tool in the management of antidepressive drug therapy. Clin Chim Acta 2001; 308: 33–41.

    CAS  PubMed  Google Scholar 

  121. Mancama D, Kerwin RW . Role of pharmacogenomics in individualising treatment with SSRIs. CNS Drugs 2003; 17: 143–151.

    CAS  PubMed  Google Scholar 

  122. Spina E, Gitto C, Avenoso A, Campo GM, Caputi AP, Perucca E . Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 1997; 51: 395–398.

    CAS  PubMed  Google Scholar 

  123. Murphy Jr GM, Kremer C, Rodrigues HE, Schatzberg AF . Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160: 1830–1835.

    PubMed  Google Scholar 

  124. Zill P, Baghai TC, Engel R, Zwanzger P, Schule C, Minov C et al. Beta-1-adrenergic receptor gene in major depression: Influence on antidepressant treatment response. Am J Med Genet 2003; 120B: 85–89.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Serretti.

Additional information

DUALITY OF INTEREST

None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serretti, A., Artioli, P. The pharmacogenomics of selective serotonin reuptake inhibitors. Pharmacogenomics J 4, 233–244 (2004). https://doi.org/10.1038/sj.tpj.6500250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500250

Keywords

This article is cited by

Search

Quick links