Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Pharmacoproteomics in drug development

ABSTRACT

The field of proteomics is taking on increased significance as the relevance of investigating and understanding protein expression in disease and drug development is appreciated. Recent advances in proteomics have been driven by the availability of numerous annotated whole-genome sequences and a broad range of technological and bioinformatic developments that underscore the complexity of the proteome. This review briefly addresses some of the various technologies that comprise Expression Proteomics and Functional Proteomics, citing examples where these emerging approaches have been applied to pharmacology, toxicology, and the development of drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tew KD . Glutathione-associated enzymes in the human cell lines of the national cancer institute drug screening program. Mol Pharmacol 1996; 50: 149–159.

    CAS  PubMed  Google Scholar 

  2. Anderson L, Seilhamer J . A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997; 18: 533–537.

    CAS  PubMed  Google Scholar 

  3. Gygi SP, Rochon Y, Franza BR, Aebersold R . Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999; 19: 1720–1730.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001; 292: 929–934.

    CAS  PubMed  Google Scholar 

  5. Moller A, Soldan M, Volker U, Maser E . Two-dimensional gel electrophoresis: a powerful method to elucidate cellular responses to toxic compounds. Toxicology 2001; 160: 129–138.

    CAS  PubMed  Google Scholar 

  6. Steiner S, Witzmann FA . Proteomics: applications and opportunities in preclinical drug development. Electrophoresis 2000; 21: 2099–2104.

    CAS  PubMed  Google Scholar 

  7. Liebler DC . Introduction to Proteomics: Tools for the New Biology, Humana Press: Totowa, NJ, 2002.

    Google Scholar 

  8. Wasinger VC, Corthals GL . Proteomic tools for biomedicine. J Chromatogr B Analyt Technol Biomed Life Sci. 2002; 771: 33–48.

    CAS  PubMed  Google Scholar 

  9. Kennedy S . The role of proteomics in toxicology: identification of biomarkers of toxicity by protein expression analysis. Biomarkers 2002; 7: 269–290.

    CAS  PubMed  Google Scholar 

  10. Witzmann FA, Li J . Proteomics: core technologies and applications in physiology. Am J Physiol GI Liver Physiol 2002; 282: G735–G741.

    CAS  Google Scholar 

  11. Molloy MP, Herbert BR, Walsh BJ, Tyler MI, Traini M, Sanchez JC et al. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 1998; 19: 837–844.

    CAS  PubMed  Google Scholar 

  12. Herbert B, Righetti PG . A turning point in proteome analysis: sample prefractionation via multicompartment electrolyzers with isoelectric membranes. Electrophoresis 2000; 21: 3639–3648.

    CAS  PubMed  Google Scholar 

  13. Cordwell SJ, Nouwens AS, Verrills NM, Basseal DJ, Walsh BJ . Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional electrophoresis gels. Electrophoresis 2000; 21: 1094–1103.

    CAS  PubMed  Google Scholar 

  14. Scheler C, Lamer S, Pan Z, Li XP, Salnikow J, Jungblut P . Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis 1998; 19: 918–927.

    CAS  PubMed  Google Scholar 

  15. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS . Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999; 20: 3551–3567.

    CAS  PubMed  Google Scholar 

  16. Eng JK, McCormack AL, Yates III JR . An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 1994; 5: 976–989.

    CAS  PubMed  Google Scholar 

  17. Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 1996; 93: 14440–14445.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Keough T, Lacey MP, Fieno AM, Grant RA, Sun Y, Bauer MD et al. Tandem mass spectrometry methods for definitive protein identification in proteomics research. Electrophoresis 2000; 21: 2252–2265.

    CAS  PubMed  Google Scholar 

  19. Medzihradszky KF, Campbell JM, Baldwin MA, Falick AM, Juhasz P, Vestal ML et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 2000; 72: 552–558.

    CAS  PubMed  Google Scholar 

  20. Anderson NL, Copple DC, Bendele RA, Probst GS, Richardson FC . Covalent protein modifications and gene expression changes in rodent liver following administration of methapyrilene: a study using two-dimensional electrophoresis. Fundam Appl Toxicol 1992; 18: 570–580.

    CAS  PubMed  Google Scholar 

  21. Steiner S, Aicher L, Raymackers J, Meheus L, Esquer-Blasco R, Anderson NL et al. Cyclosporine A decreases the protein level of the calcium-binding protein calbindin-D 28 kDa in rat kidney. Biochem Pharmacol 1996; 51: 253–258.

    CAS  PubMed  Google Scholar 

  22. Varela MC, Arce A, Greiner B, Schwald M, Aicher L, Wahl D et al. Cyclosporine A-induced decrease in calbindin-D 28 kDa in rat kidney but not in cerebral cortex and cerebellum. Biochem Pharmacol 1998; 55: 2043–2046.

    CAS  PubMed  Google Scholar 

  23. Newsholme SJ, Maleeff BF, Steiner S, Anderson NL, Schwartz LW . Two-dimensional electrophoresis of liver proteins: characterization of a drug-induced hepatomegaly in rats. Electrophoresis 2000; 21: 2122–2128.

    CAS  PubMed  Google Scholar 

  24. Steiner S, Gatlin CL, Lennon JJ, McGrath AM, Seonarain MD, Makusky AJ et al. Cholesterol biosynthesis regulation and protein changes in rat liver following treatment with fluvastatin. Toxicol Lett 2001; 120: 369–377.

    CAS  PubMed  Google Scholar 

  25. Steiner S, Gatlin CL, Lennon JJ, McGrath AM, Aponte AM, Makusky AJ et al. Proteomics to display lovastatin-induced protein and pathway regulation in rat liver. Electrophoresis 2000; 21: 2129–2137.

    CAS  PubMed  Google Scholar 

  26. Hu W, Wu W, Yeung SC, Freedman RS, Kavanagh JJ, Verschraegen CF . Increased expression of heat shock protein 70 in adherent ovarian cancer and mesothelioma following treatment with manumycin, a farnesyl transferase inhibitor. Anticancer Res 2002; 22: 665–672.

    CAS  PubMed  Google Scholar 

  27. Moller A, Malerczyk C, Volker U, Stoppler H, Maser E . Monitoring daunorubicin-induced alterations in protein expression in pancreas carcinoma cells by two-dimensional gel electrophoresis. Proteomics 2002; 2: 697–705.

    CAS  PubMed  Google Scholar 

  28. Moller A, Soldan M, Volker U, Maser E . Two-dimensional gel electrophoresis: a powerful method to elucidate cellular responses to toxic compounds. Toxicology 2001; 160: 129–138.

    CAS  PubMed  Google Scholar 

  29. Jones MB, Krutzsch H, Shu H, Zhao Y, Liotta LA, Kohn EC et al. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2002; 2: 76–84.

    CAS  PubMed  Google Scholar 

  30. Randic M, Witzmann F, Vracko M, Basak S . On characterization of proteomic maps and chemically induced changes in proteomes using matrix invariants: applications to peroxisome proliferators. Med Chem Res 2001; 10: 456–479.

    CAS  Google Scholar 

  31. Charlwood J, Skehel MJ, King M, Camilleri P, Lord P, Bugelski P et al. Proteomic analysis of rat kidney cortex following treatment with gentamicin. J Proteome Res 2002; 1: 73–82.

    CAS  PubMed  Google Scholar 

  32. McDonald WH, Yates III JR . Shotgun proteomics and biomarker discovery. Dis Markers 2002; 18: 99–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanders SL, Jennings J, Canutescu A, Link AJ, Weil PA . Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 2002; 22: 4723–4738.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A et al. A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 2002; 1: 451–465.

    CAS  PubMed  Google Scholar 

  35. Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA . Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 2002; 99: 11969–11974.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 2002; 419: 520–526.

    CAS  PubMed  Google Scholar 

  37. Anderson NL, Anderson NG . The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1: 845–867.

    CAS  PubMed  Google Scholar 

  38. Haynes PA, Yates III JR . Proteome profiling-pitfalls and progress. Yeast 2000; 17: 81–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R . Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17: 994–999.

    CAS  PubMed  Google Scholar 

  40. Smolka M, Zhou H, Aebersold R . Quantitative protein profiling using two-dimensional gel electrophoresis, isotope-coded affinity tag labeling, and mass spectrometry. Mol Cell Proteomics 2002; 1: 19–29.

    CAS  PubMed  Google Scholar 

  41. Griffin TJ, Han DK, Gygi SP, Rist B, Lee H, Aebersold R et al. Toward a high-throughput approach to quantitative proteomic analysis: expression-dependent protein identification by mass spectrometry. J Am Soc Mass Spectrom 2001;12: 1238–1246.

    CAS  PubMed  Google Scholar 

  42. Arnott D, Kishiyama A, Luis EA, Ludlum SG, Marsters Jr JC, Stults JT . Selective detection of membrane proteins without antibodies: a mass spectrometric version of the Western blot. Mol Cell Proteomics 2002; 1: 148–156.

    CAS  PubMed  Google Scholar 

  43. Zhou H, Ranish JA, Watts JD, Aebersold R . Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol 2002; 20: 512–515.

    CAS  PubMed  Google Scholar 

  44. Cagney G, Emili A . De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat Biotechnol 2002; 20:163–170.

    CAS  PubMed  Google Scholar 

  45. Sechi S . A method to identify and simultaneously determine the relative quantities of proteins isolated by gel electrophoresis. Rapid Commun Mass Spectrom 2002; 16:1416–1424.

    CAS  PubMed  Google Scholar 

  46. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1: 376–386.

    CAS  PubMed  Google Scholar 

  47. Jain KK . Recent advances in oncoproteomics. Curr Opin Mol Ther 2002; 4: 203–209.

    CAS  PubMed  Google Scholar 

  48. Dare TO, Davies HA, Turton JA, Lomas L, Williams TC, York MJ . Application of surface-enhanced laser desorption/ionization technology to the detection and identification of urinary parvalbumin-alpha: a biomarker of compound-induced skeletal muscle toxicity in the rat. Electrophoresis 2002; 23: 3241–3251.

    CAS  PubMed  Google Scholar 

  49. Weinberger SR, Viner RI, Ho P . Tagless extraction-retentate chromatography: a new global protein digestion strategy for monitoring differential protein expression. Electrophoresis 2002; 23: 3182–3192.

    CAS  PubMed  Google Scholar 

  50. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002; 359: 572–577.

    CAS  PubMed  Google Scholar 

  51. Rosty C, Christa L, Kuzdzal S, Baldwin WM, Zahurak ML, Carnot F et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis–associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 2002; 62: 1868–1875.

    CAS  PubMed  Google Scholar 

  52. Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW . Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 2002; 48: 1296–1304.

    CAS  PubMed  Google Scholar 

  53. Cravatt BF, Sorensen EJ . Chemical strategies for the global analysis of protein function. Curr Opin Chem Biol 2000; 4: 663–668.

    CAS  PubMed  Google Scholar 

  54. Patricelli MP, Giang DK, Stamp LM, Burbaum JJ . Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 2001; 1: 1067–1071.

    CAS  PubMed  Google Scholar 

  55. Jessani N, Liu Y, Humphrey M, Cravatt BF . Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc Natl Acad Sci 2002; 99: 10335–10340.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M . Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 2000; 7: 569–581.

    CAS  PubMed  Google Scholar 

  57. Parang K, Kohn JA, Saldanha SA, Cole PA . Development of photo-crosslinking reagents for protein kinase-substrate interactions. FEBS Lett 2002; 520:156–160.

    CAS  PubMed  Google Scholar 

  58. Templin MF, Stoll D, Schrenk M, Traub PC, Vohringer CF, Joos TO . Protein microarray technology. Trends Biotechnol 2002; 20: 160–166.

    CAS  PubMed  Google Scholar 

  59. Ng JH, Ilag LL . Biomedical applications of protein chips. J Cell Mol Med 2002; 6: 329–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. MacBeath G, Schreiber SL . Printing proteins as microarrays for high-throughput function determination. Science 2000; 289: 1760–1763.

    CAS  PubMed  Google Scholar 

  61. Wilson DS, Nock S . Functional protein microarrays. Curr Opin Chem Biol 2002; 6: 81–85.

    CAS  PubMed  Google Scholar 

  62. Haab BB, Dunham MJ, Brown PO . Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2001; 2: 1–13.

    Google Scholar 

  63. Kukar T, Eckenrode S, Gu Y, Lian W, Megginson M, She JX et al. Protein microarrays to detect protein–protein interactions using red and green fluorescent proteins. Anal Biochem 2002; 306: 50–54.

    CAS  PubMed  Google Scholar 

  64. Cahill DJ . Protein and antibody arrays and their medical applications. J Immunol Methods 2001; 250: 81–91.

    CAS  PubMed  Google Scholar 

  65. Brody EN, Gold L . Aptamers as therapeutic and diagnostic agents. J Biotechnol 2000; 74: 5–13.

    CAS  PubMed  Google Scholar 

  66. Biroccio A, Hamm J, Incitti I, De Francesco R, Tomei L . Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J Virol 2002; 76: 3688–3691.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cox JC, Rajendran M, Riedel T, Davidson EA, Sooter LJ, Bayer TS et al. Automated acquisition of aptamer sequences. Comb Chem High Throughput Screen 2002; 5: 289–299.

    CAS  PubMed  Google Scholar 

  68. Alberts B . The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 1998; 92: 291–294.

    CAS  PubMed  Google Scholar 

  69. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 1999; 17: 676–682.

    CAS  PubMed  Google Scholar 

  70. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415: 141–147.

    CAS  PubMed  Google Scholar 

  71. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002; 415: 180–183.

    CAS  PubMed  Google Scholar 

  72. Fields S, Song O . A novel genetic system to detect protein–protein interactions. Nature 1989; 340: 245–246.

    CAS  PubMed  Google Scholar 

  73. Fields S, Bartel PL . The two-hybrid system. A personal view. Methods Mol Biol 2001; 177: 3–8.

    CAS  PubMed  Google Scholar 

  74. Topcu Z, Borden KL . The yeast two-hybrid system and its pharmaceutical significance. Pharm Res 2000; 17: 1049–1055.

    CAS  PubMed  Google Scholar 

  75. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 2000; 403: 623–627.

    CAS  PubMed  Google Scholar 

  76. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y . A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001; 98: 4569–4574.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Adam PJ, Boyd R, Tyson KL, Fletcher GC, Stamps A, Hudson L et al. Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. J Biol Chem 2003; 278: 6482–6489.

    CAS  PubMed  Google Scholar 

  78. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD et al. Functional discovery via a compendium of expression profiles. Cell 2000; 102: 109–126.

    CAS  PubMed  Google Scholar 

  79. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO . Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 1999; 96: 4285–4288.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 2002; 417: 399–403.

    CAS  PubMed  Google Scholar 

  81. Jung E, Heller M, Sanchez JC, Hochstrasser DF . Proteomics meets cell biology: the establishment of subcellular proteomes. Electrophoresis 2000; 21: 3369–3377.

    CAS  PubMed  Google Scholar 

  82. Gagnon E, Duclos S, Rondeau C, Chevet E, Cameron PH, Steele-Mortimer O et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 2002; 110: 5–8.

    Google Scholar 

  83. Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H et al. Directed proteomic analysis of the human nucleolus. Curr Biol 2002; 12: R29–R31.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the critical reading of the manuscript by Drs Mu Wang, Junyu Li, and Bob LeBoeuf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A Witzmann.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witzmann, F., Grant, R. Pharmacoproteomics in drug development. Pharmacogenomics J 3, 69–76 (2003). https://doi.org/10.1038/sj.tpj.6500164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500164

Keywords

This article is cited by

Search

Quick links