Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Searching for type 2 diabetes genes: prospects in pharmacotherapy

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Permutt MA, Hattersley A . Searching for type 2 diabetes genes in the post genome era Trends Endocrinol Metab 2000 11: 383–393

    Article  CAS  Google Scholar 

  2. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ et al . Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young Nature 1996 384: 458–460

    Article  CAS  Google Scholar 

  3. Vionnet N, Stoffel M, Takeda J, Yasuda K, Bell GI, Zouali H et al . Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus Nature 1992 356: 721–722

    Article  CAS  Google Scholar 

  4. Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M et al . Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young Nature 1996 384: 455–458

    Article  CAS  Google Scholar 

  5. Stoffers DA, Ferrer J, Habener JF . Early-onset-type-II diabetes mellitus (MODY4) linked to IPF1 Nat Genet 1997 15: 106–110

    CAS  Google Scholar 

  6. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN et al . Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY Nat Genet 1997 17: 384–385

    Article  CAS  Google Scholar 

  7. Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T et al . Mutations in NEURODI are associated with the development of type 2 diabetes mellitus Nat Genet 1999 23: 323–328

    Article  CAS  Google Scholar 

  8. Taylor SI, Cama A, Accili D, Barbetti F, Quon MJ, de la Luz Sierra M et al . Mutations in the insulin receptor gene Endocrine Rev 1992 13: 566–595

    Article  CAS  Google Scholar 

  9. Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J et al . A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity Nat Genet 1998 20: 284–287

    Article  CAS  Google Scholar 

  10. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J et al . The common PPARγ Prol12Ala polymorphism is associated with decreased risk of type 2 diabetes Nat Genet 2000 26: 76–80

    Article  CAS  Google Scholar 

  11. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K et al . PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance Mol Cell 1999 4: 597–609

    Article  CAS  Google Scholar 

  12. Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K et al . The mechanisms by which both heterozygous PPARgamma deficiency and PPARgamma agonist improve insulin resistance J Biol Chem 2001 276: 41245–41254

    Article  CAS  Google Scholar 

  13. Yamauchi T, Waki H, Kamon J, Murakami K, Motojima K, Komeda K et al . Inhibition of RXR and PPARγ ameliorates diet-induced obesity and type 2 diabetes J Clin Invest 2001 108: 1001–1013

    Article  CAS  Google Scholar 

  14. Almind K, Inoue G, Pedersen O, Kahn CR . A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin singaling J Clin Invest 1996 97: 2569–2575

    Article  CAS  Google Scholar 

  15. Porzio O, Federici M, Hribal ML, Lauro D, Accili D, Lauro R et al . The Gly972->Arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancreatic β-cells J Clin Invest 1999 104: 357–364

    Article  CAS  Google Scholar 

  16. Hribal ML, Federici M, Porzio O, Lauro D, Borboni P, Accili D et al . The Gly->Arg972 amino acid polymorphism in IRS-1 affects glucose metabolism in skeletal muscle cells J Clin Endocrinol Metab 2000 85: 2004–2013

    CAS  PubMed  Google Scholar 

  17. Stumvoll M, Fritsche A, Volk A, Stefan N, Madaus A, Maeker E et al . The Gly972Arg polymorphism in the insulin receptor substrate-1 gene contributes to the variation in insulin secretion in normal glucose-tolerant humans Diabetes 2001 50: 882–885

    Article  CAS  Google Scholar 

  18. Federici M, Hribal ML, Ranalli M, Marselli L, Porzio O, Lauro D et al . The common Arg972 polymorphism in insulin receptor substrate-1 causes apoptosis of human pancreatic islets FASEB J 2001 15: 22–24

    Article  CAS  Google Scholar 

  19. Inoue H, Ferrer J, Welling CM, Elbein SC, Hoffman M, Mayorga R et al . Sequence variants in the sulfonylurea receptor (SUR) gene are associated with NIDDM in Caucasians Diabetes 1996 45: 825–831

    Article  CAS  Google Scholar 

  20. Hansen T, Echwald SM, Hansen L, Moller AM, Almind K, Clausen JO et al . Decreased tolbutamide-stimulated insulin secretion in healthy subjects with sequence variants in the high-affinity sulfonylurea receptor gene Diabetes 1998 47: 598–605

    Article  CAS  Google Scholar 

  21. Risch NJ . Searching for genetic determinants in the new millennium Nature 2000 405: 847–856

    Article  CAS  Google Scholar 

  22. Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D et al . Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β cell dysfunction, and type 2 diebetes Cell 2001 105: 745–755

    Article  CAS  Google Scholar 

  23. Esterbauer H, Schneitler C, Oberkofler H, Ebenbichler C, Paulweber B, Sandhofer F et al . A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans Nat Genet 2001 28: 178–183

    Article  CAS  Google Scholar 

  24. Stuart JA, Harper JA, Brindle KM, Jekabsons MB, Brand MD . Physiological levels of mammalian uncoupling protein 2 do not uncouple yeast mitochondria J Biol Chem 2001 276: 18633–18639

    Article  CAS  Google Scholar 

  25. Byrne MM, Sturis J, Menzel S, Yamagata K, Fajans SS, Dronsfield MJ et al . Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12 Diabetes 1996 45: 1503–1510

    Article  CAS  Google Scholar 

  26. Sovik O, Njolstad P, Folling I, Sagen J, Cockburn BN, Bell GI . Hyperexcitability to sulphonylurea in MODY3 Diabetologia 1998 41: 607–608

    Article  CAS  Google Scholar 

  27. Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT . Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1 alpha gene mutations: evidence for pharmacogenetics in diabetes Diabet Med 2000 17: 543–545

    Article  CAS  Google Scholar 

  28. Hanis CL, Boerwinkle E, Chakraborty R, Ellsworth DL, Concannon P, Stirling B et al . A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2 Nat Genet 1996 13: 161–166

    Article  CAS  Google Scholar 

  29. Cox NJ, Frigge M, Nicolae DL, Concannon P, Hanis CL, Bell GI et al . Loci on chromosome 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans Nat Genet 1999 21: 213–215

    Article  CAS  Google Scholar 

  30. Horikawa Y, Oda N, Cox NJ, Li X, Ortho-Melander M, Hara M et al . Genetic variations in the gene encoding calpain-10 is associated with type 2 diabetes mellitus Nat Genet 2000 26: 163–175

    Article  CAS  Google Scholar 

  31. Baier LJ, Permana PA, Yang X, Pratley RE, Hanson RL, Shen G-Q et al . A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance J Clin Invest 2000 106: R69–R73

    Article  CAS  Google Scholar 

  32. Patel YM, Lane DM . Role of calpain in adipocytes differentiation Proc Natl Acad Sci USA 1999 96: 1279–1285

    Article  CAS  Google Scholar 

  33. Smith LK, Rice KM, Garner CW . The insulin-induced down-regulation of IRS-1 in 3T3-L1 adipocytes is mediated by a calcium-dependent thiol protease Mol Cell Endocrinol 1996 122: 81–92

    Article  CAS  Google Scholar 

  34. Sreenan SK, Zhou Y-P, Otani K, Hansen PA, Currie KPM, Pan C-Y et al . Calpains play a role in insulin secretion and action Diabetes 2001 50: 2013–2020

    Article  CAS  Google Scholar 

  35. Hanson RL, Ehm MG, Pettitt DJ, Prochazka M, Thompson DB, Timberlake D et al . Anautosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians Am J Hum Genet 1998 63: 1130–1138

    Article  CAS  Google Scholar 

  36. Wiltshire S, Hattersley AT, Hitman GA, Walker M, Levy JC, Sampson M et al . A genomewide scan for loci predisposing to type 2 diabetes in a UK population (the Diabetes UK Warren 2 repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q Am J Hum Genet 2001 69: 553–569

    Article  CAS  Google Scholar 

  37. Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ et al . Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10 q in Mexican Americans Am J Hum Genet 1999 64: 1127–1140

    Article  CAS  Google Scholar 

  38. Mahtani MM, Wide'n E, Lehto M, Thomas J, McCarthy M, Brayer J et al . Mapping of a gene for NIDDM associated with an insulin secretion defect by a genome scan in Finnish families Nat Genet 1996 14: 90–95

    Article  CAS  Google Scholar 

  39. Ghosh S, Watanabe RM, Hauser ER, Valle T, Magnuson VL, Erdos MR et al . Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs Proc Natl Acad Sci USA 1999 96: 2198–2203

    Article  CAS  Google Scholar 

  40. Vionnet N, Hani El-H, Dupont S, Gallina S, Francke S, Dotte S . et al. Genome-wide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21–q24 Am J Hum Genet 2000 67: 1470–1480

    Article  CAS  Google Scholar 

  41. Comuzzie AG, Funahashi T, Sonnenberg G, Martin LJ, Jacob HJ, Black AE et al . The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome J Clin Endocrinol Metab 2001 86: 4321–4325

    Article  CAS  Google Scholar 

  42. Statnick MA, Beavers LS, Conner LJ, Corominola H, Johnson D, Hammond CD et al . Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes Int J Exp Diabetes Res 2000 1: 81–88

    Article  CAS  Google Scholar 

  43. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J et al . Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity Biochem Biophys Res Commun 1999 257: 79–83

    Article  CAS  Google Scholar 

  44. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE et al . Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia J Clin Endocrinol Metab 2001 86: 1930–1935

    Article  CAS  Google Scholar 

  45. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K et al . The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity Nature Med 2001 7: 941–946

    Article  CAS  Google Scholar 

  46. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE . The adipocyte-secreted protein Acrp 30 enhances hepatic insulin action Nature Med 2001 7: 947–953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Sesti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sesti, G. Searching for type 2 diabetes genes: prospects in pharmacotherapy. Pharmacogenomics J 2, 25–29 (2002). https://doi.org/10.1038/sj.tpj.6500078

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500078

This article is cited by

Search

Quick links