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Understanding Statistics 6

We have previously described three general 

domains of statistics: differences between 

groups; association between groups; and 

time-to-event (survival) data. This article 

will describe the statistics commonly used 

in these last two domains: associations 

between groups; and survival data. 

Associations between groups
Statistical analysis in this domain gener-

ally deals with the correlation and regres-

sion. Although these two terms are used 

synonymously, they refer to slightly differ-

ent concepts. Correlation is the strength of 

the association between groups, whereas 

regression is the nature of this association. 

For example, if we wanted to know if there 

is an association between the number of 

minutes on our cell phone and our phone 

bill, we could graph this (quantitative) data 

(Figure. 1). 

We would likely find that as we spent 

more time on our cell phone, our phone 

bill would increase. If for every additional 

minute our bill increased by exactly the 

same amount, we would have perfect posi-

tive correlation, with a correlation coeffi-

cient of 1, and all the data points would lie 

on the diagonal line.  What is more likely 

is that we will not have perfect correla-

tion, and the data points will be scattered 

on either side of the line. The closer the 

points are to the line, the stronger the 

correlation, and the higher the corre-

lation coefficient. The correlation coeffi-

cient takes values between -1 and 1. A value 

of -1 means perfect negative correlation (ie 

every increase in x leads to an exact decrease 

in y) with 0 being the null value. 

Again, regression describes the nature of 

the relationship between variables. In this 

case, for every change in x, how much of an 

increase (or decrease) in y do we experience? 

Simple linear regression involves finding 

the best straight line to fit the relationship 

between two variables, and is essentially the 

slope of the line. In our example, for every 
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Figure 1  Telephone call costs

Figure. 2  Regression analysis plots 
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additional increment of time, the regression 

would describe how much of an increase 

will there be in our phone bill....ie the steep-

ness (slope) of the line. For example, an 

additional one minute call could result in a 

small increase of 20 pence or a large increase 

of 2 pounds. The null value = 0 which is a 

horizontal line. That is, for every change in 

x, y does not change.

There are different tests for association, 

which depend on the type of data. Thus, for 

categorical data, a X2  test of association or a 

Kappa statistic is commonly used for inter-

rater agreement. For ordinal data, either a 

Spearman’s Rank or Kendall’s Tau test would 

be used. Perhaps the most familiar test is 

the Pearson’s Product Moment Correlation 

Coefficient, or simply, a Pearson’s r.  The 

Pearson’s r is used for association between 

continuous (quantitative) variables, but it 

has often been misused due to assumptions 

that have not been followed, such as:

• The data must be continuous, otherwise 

a non-parametric equivalent test should 

be run. If not, it can overestimate the 

strength of the relationship between 

variables.

•  The data must be independent, one 

should not be forced to vary with the 

other, otherwise a paired test should be 

done.

• The data must be normally distributed, 

which should be a linear pattern when 

graphed. If non-linear, a non-parametric 

test should be done.

• P-values for a Pearson’s r are quite often 

below 0.05 with a decent sample size, 

(around 30 per group) so it is the mag-

nitude of the r that is important. Values 

below 0.8 do not show a great deal of 

strength between variables, even with 

very low p-values. 

Most notably, even if all assumptions 

have been met, a Pearson’s r of say, 0.9 

should never infer that A caused B or vice-

versa (again, think periodontitis and grey 

hair). Randomised trials, in theory, are the 

only study design that generally shows cau-

sality as, apart from the intervention, we are 

keeping all other variables equal. If obser-

vational studies are examining association 

versus causality, the Bradford-Hill criteria 

should be kept in mind.

R² is the coefficient of determination: 

what percent of the variability of y is deter-

mined by input variable x. If r=0.9  R² = 0.81 

meaning 81% of variability of y explained 

by x, 19% remains unexplained. If r=0.7 R2 = 

0.49; thus over half (51%) of the variability 

of y remains unexplained. This is why cor-

relation coefficients less than 0.8 don’t real-

ly show much strength between variables 

as there is a great deal of scatter about the 

regression line (Figure. 2). 

We can also define other types of regression:

Multiple regression - what is the nature 

of the relationship between two or more 

input variables and one continuous output 

variable....ie how does smoking status, age, 

pregnancy status and weight affect diabetes 

expressed as serum glucose levels?

Logistic regression – what is the nature 

of the relationship between two or more 

input variables and one dichotomous out-

put variable…ie how does smoking status, 

age, pregnancy status and weight affect 

Figure. 3  Kaplan-Meier Plot

Figure. 4  Kaplan-Meier Plot comparing survival rates on two drug treatments
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diabetes expressed as a binary outcome  

(diabetic/non-diabetic)?

Example 1

You have just read a study examining the 

association between salivary Streptococcus 

mutans counts and caries prevalence in 

1,800 4-5 year old children. The authors 

provide a Pearson’s r of 0.31 and state 

that p<0.001. They also state that the data  

are skewed.

With strong evidence against the null 

hypothesis (p<0.001), should we believe 

a strong relationship exists between these 

two variables?

Answer: no. It is the magnitude of the 

correlation coefficient that is relevant, not 

the P-value. With an r value of 0.31, there 

is little correlation between variables. 

Additionally, with skewed data, a non-par-

ametric test of association, rather than the 

parametric Pearson’s correlation test should 

have been done.

Time-to-event (survival) data
Time-to-event data expands on the con-

cepts of risk ratios and odds ratios for binary 

data.  Binary data let us know the propor-

tion of implant failures in the experimen-

tal versus the control group. However, we, 

along with our patients may want to know 

more than simply, ‘did the dental prosthesis 

survive’? We may want to know how long 

did it survive, and what was the average 

time to failure. Survival data can provide 

these answers. 

If a patient experiences an event of inter-

est (ie death/prosthesis failure) during the 

study, their survival time is said to be exact. 

If the event is not observed, ie  patient sur-

vives, patient dies from some unrelated 

cause, or withdraws from the study, the 

observation is said to be censored.

If we have complete follow-up for each 

patient (no censored data) we can estimate 

the survival rate as:

S =  number of subjects surviving 

 beyond time t

 number of individuals recruited in  

the study

In other words, we would treat survival as 

if it were binary data. 

If we have censored observations, a dif-

ferent method of calculation is required as 

the above method would be ignoring a sig-

nificant part of the data (especially people 

who survived) and tends to underestimate 

survival.

The Kaplan-Meier estimate gives us the 

cumulative probability of survival account-

ing for censored observations (Figure. 3). 

The probability usually (but not always) 

starts at the value 1.0 and falls in steps as 

each event occurs. The survivor function 

will not reach the minimum value of 0.0 if 

there are subjects who remain alive (or have 

not experienced the event) at the end of the 

study period. Kaplan-Meier estimates will 

also give us the mean and median survival 

time. The median is a better estimate as 

lifetime distributions tend to be positively 

skewed (time-to-event data are generally 

considered to be non-parametric, that is, 

not assumed to be normally distributed).

Similar to a chi-square test, the Logrank 

test is the most common method for com-

paring treatment groups that allows for cen-

sored observations. It compares the observed 

number of events in each group to expected 

values assuming identical survival profiles. 

The hazard function is the instantaneous 

failure rate, or the probability of an event 

happening at a particular point in time 

among those at risk. The ratio of two hazard 

rates is known as the hazard ratio (HR) 

and quantifies the difference between sur-

vival patterns in two groups. In the absence 

of censored observations, the hazard ratio 

equals the relative risk. 

The Logrank test examines the hypoth-

esis that the hazard ratio = 1.0 (null value), 

and if the 95% confidence interval of the 

HR contains the null value, this corre-

sponds to P > 0.05. The HR assumes that the 

relative risk of death between two groups 

remains constant. In Figure 4, it appears 

that patients on the drug A had a better 

survival rate than patients on drug B, and 

we might like to quantify this difference. In 

other words, is this difference statistically 

significant or clinically relevant? 

Example 2

Two thousand one hundred dental 

implants in 575 patients were evaluated 

for risk factors for implant failure.  Using 

a Cox regression model, the authors 

report a HR of 2.9 (95%CI 1.6-5.3) for  

current tobacco use. 

•	 How	do	we	interpret	this	result	in	plain	

English?

•	 Is	this	statistically	significant?

•	 Is	this	clinically	relevant?

Answer:

At any time, roughly three times as many 

smokers are experiencing implant failure 

compared with non-smokers. 

It is statistically significant, as the null 

value of ‘1’ is not contained within the 95% 

confidence interval.

To examine clinical relevance, we first 

must know the baseline failure rate for 

dental implants. If we take this rate to 

be 5%, then a three-fold risk of failure is 

roughly 15%. This may not be clinically 

relevant to the majority of practitioners. 

However, we must now look at the upper 

limit of the 95% CI, which is 5.3. This rep-

resents over a 25% risk of failure, which 

may be clinically relevant to practitioners. 

Thus, we might say that this study is not 

clinically relevant, but it is also indecisive, 

as a clinically relevant effect of smoking 

cannot be ruled out.

Evidence-Based Dentistry (2012) 13, 29-31. 
doi:10.1038/sj.ebd.6400849.
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