Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential sensitivity of naïve and subsets of memory CD4+ and CD8+ T cells to hydrogen peroxide-induced apoptosis

Abstract

CD4+ and CD8+ memory T cells are identified into central and effector memory subsets, which are characterized by distinct homing patterns and functions. In this investigation, we show that naïve and central memory CD4+ and CD8+ T cells are sensitive to hydrogen peroxide (H2O2)-induced apoptosis, whereas effector memory CD4+ and CD8+ T cells are relatively resistant to H2O2-induced apoptosis. Apoptosis in naïve and central memory CD4+ and CD8+ is associated with the release of cytochrome c and activation of caspase-9 and caspase-3, upregulation of Bax and voltage-dependent anion channel (VDAC) expression, and decreased intracellular glutathione (GSH). In vitro GSH and a superoxide dismutase mimetic Mn(III) tetrakis (1-methyl-4-pyridyl) porphyrin inhibited H2O2-induced apoptosis in both naïve and central memory CD4+ and CD8+ T cells. Furthermore, VDAC inhibitor 4,4′-diisothiocynostilbene-2,2′-disulfonic acid blocked H2O2-induced apoptosis. These data demonstrate that H2O2 induces apoptosis preferentially in human naïve and central memory CD4+ and CD8+ T cells via the mitochondrial pathway by regulating intracellular GSH and the expression of Bax and VDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kaech SM, Ahmed R . Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat Immunol 2001; 2: 415–422.

    Article  CAS  Google Scholar 

  2. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A . Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–712.

    Article  CAS  Google Scholar 

  3. Masopust D, Vezys V, Marzo AL, Lanzavecchia A . Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001; 291: 2413–2417.

    Article  CAS  Google Scholar 

  4. Weninger W, Crowley MA, Manjunath N, von Andriane UH . Migratory properties of naïve, effector, and memory CD8 (+) T cells. J Exp Med 2001; 194: 953–966.

    Article  CAS  Google Scholar 

  5. Arbones SL, Ord DC, Ley K, Ratech H, Maynard-Curry C, Otten G et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1994; 1: 247–260.

    Article  CAS  Google Scholar 

  6. Campbell JJ, Bowman EP, Murphy K, Youngman KR, Siani MA, Thompson DA et al. 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for MIP-13β receptor (CCR7). J Biol Chem 1998; 414: 1053–1059.

    Google Scholar 

  7. Gupta S, Bi R, Su K, Yel L, Chiplunkar S, Gollapudi S . Characterization of naïve, central, memory and effector CD8+ T cells: effect of age. Exp Gerontol 2004; 39: 545–550.

    Article  CAS  Google Scholar 

  8. Tomiyama H, Matsuda T, Takiguchi M . Differentiation of CD8+ T cells from a memory to memory/effector phenotype. J Immunol 2002; 168: 5538–5550.

    Article  CAS  Google Scholar 

  9. Sallusto F, Geginat J, Lanzavecchia A . Central memory and effector memory T cell subsets: function, generation, and maintenance. Ann Rev Immunol 2004; 22: 745–763.

    Article  CAS  Google Scholar 

  10. Gupta S, Gollapudi S . Central and effector memory CD4+ and CD8+ T cells display differential sensitivity to TNF-α-induced apoptosis. NY Acad Sci 2005; 1050: 108–115.

    Article  CAS  Google Scholar 

  11. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation. Science 1998; 281: 1305–1308.

    Article  CAS  Google Scholar 

  12. Krammer PH . CD95's deadly mission in the immune system. Nature 2000; 407: 789–795.

    Article  CAS  Google Scholar 

  13. Kroemer G, Reed JC . Mitochondrial control of cell death. Nat Med 2000; 6: 513–519.

    Article  CAS  Google Scholar 

  14. Martinou J-C, Green DR . Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2001; 2: 63–67.

    Article  CAS  Google Scholar 

  15. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X et al. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 2007; 9: 49–89.

    Article  CAS  Google Scholar 

  16. Buttke TM, Sandstrom PA . Oxidative stress as mediator of apoptosis. Immunol Today 1994; 15: 5–10.

    Article  Google Scholar 

  17. Cai J, Jones DP . Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 1998; 273: 11401–11404.

    Article  CAS  Google Scholar 

  18. Le Bras M, Clement MV, Pervaiz S, Brenner C . Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 2005; 20: 205–220.

    CAS  PubMed  Google Scholar 

  19. Ratan RR, Murphy TH, Baraban JM . Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 1994; 62: 376–379.

    Article  CAS  Google Scholar 

  20. Gupta S, Su H, Bi R, Gollapudi S . Differential sensitivity of naïve and memory CD8+ T cells to TNF-α-induced apoptosis. J Clin Immunol 2006; 26: 193–203.

    Article  CAS  Google Scholar 

  21. Gupta S, Gollapudi S . TNF-α-induced apoptosis in human naïve and memory CD8+ T cells in aging. Exp Gerontol 2006; 41: 69–77.

    Article  CAS  Google Scholar 

  22. Colombini M . VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 2004; 256/257: 107–115.

    Article  CAS  Google Scholar 

  23. Tsujimoto Y, Shimizu S . The voltage-dependent ion channel: an essential player in apoptosis. Biochimie 2002; 84: 187–193.

    Article  CAS  Google Scholar 

  24. Shimizu S, Narita M, Tsujimoto Y . Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483–487.

    Article  CAS  Google Scholar 

  25. Shimizu S, Ide T, Ynagidas T, Tsujimoto Y . Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 2000; 276: 12321–12325.

    Article  Google Scholar 

  26. Castino R, Bellio N, Nicotra G, Follo C, Trincheri NF, Isidoro C . Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells. Free Radic Biol Med 2007; 42: 1305–1316.

    Article  CAS  Google Scholar 

  27. Yu BP . Cellular defenses against damage from reactive oxygen species. Physiol Rev 1994; 74: 139–162.

    Article  CAS  Google Scholar 

  28. Esteve JM, Mompo J, de la Asuncion G, Sastre J, Aesnsi M, Boix J et al. Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis: studies in vivo and in vitro. FASEB J 1999; 13: 1055–1064.

    Article  CAS  Google Scholar 

  29. Beaver JP, Waring P . A decrease in intracellular glutathione concentration precedes the onset of apoptosis in murine thymocytes. Eur J Biol 1995; 68: 47–54.

    CAS  Google Scholar 

  30. Armstrong JS, Jones DP . Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J 2002; 10: 1263–1265.

    Article  Google Scholar 

  31. Gupta S, Yel L, Chiplunkar S, Kim CH, Kim D, Gollapudi S . Arsenic trioxide induces apoptosis in peripheral T lymphocyte subsets by inducing oxidative stress mitochondrial pathway. A role of Bcl-2. Mol Cancer Ther 2003; 2: 711–719.

    Article  CAS  Google Scholar 

  32. Zachwieja J, Zaniew M, Bobkowski W, Stefaniak E, Warzywoda A, Ostalska-Nowicka D et al. Beneficial in vitro effect of N-acetyl-cystein on oxidative stress and apoptosis. Pediatr Nephrol 2005; 20: 725–731.

    Article  Google Scholar 

  33. Sun J, Chen Y, Li M, Ge Z . Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med 1998; 24: 586–593.

    Article  CAS  Google Scholar 

  34. Faulkner KM, Liochev SI, Fridovich I . Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J Biol Chem 1994; 69: 23471–23476.

    Google Scholar 

  35. Lee JH, Lee YM, Park J-W . Regulation of ionizing radiation-induced apoptosis by a manganese porphyrin complex. Biochem Biophys Res Commun 2005; 334: 298–305.

    Article  CAS  Google Scholar 

  36. Melov S, Schneider JA, Day BJ, Hinerfield D, Coskun P, Mirra SS et al. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 1998; 18: 159–163.

    Article  CAS  Google Scholar 

  37. Raha S, Robinson BH . Mitochondria, oxygen free radicals, and ageing. Trends Biochem Sci 2000; 25: 502–508.

    Article  CAS  Google Scholar 

  38. Jezek P, Hlavata L . Mitochondria in homeostasis of reactive oxygen species in cells, tissues, and organisms. Int J Biochem Cell Biol 2005; 37: 2478–2503.

    Article  CAS  Google Scholar 

  39. Sprent J . Turnover of memory phenotype CD8+ T cells. Microbiol Infect 2003; 5: 227–231.

    Article  CAS  Google Scholar 

  40. Geginat J, Lanzavecchia A, Sallusto F . Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 2003; 101: 4260–4266.

    Article  CAS  Google Scholar 

  41. Grayson J M, Harrington LE, Lanier JG, Wherry EJ, Ahmed R . Differential sensitivity of naïve and memory CD8+ T cells to apoptosis in vivo. J Immunol 2002; 169: 3760–3770.

    Article  Google Scholar 

  42. Takahashi A, Hanson MGV, Norell HR, Havelka AM, Kono K, Malmberg K-J et al. Preferential cell death of CD8+ effector memory (CCR7−CD45RA−) T cells by hydrogen peroxide-induced oxidative stress. J Immunol 2005; 174: 6080–6087.

    Article  CAS  Google Scholar 

  43. Zamzami N, Kroemer G . Apoptosis: mitochondrial membrane permeabilization—the (w)hole stoty? Curr Biol 2003; 13: R71–R73.

    Article  CAS  Google Scholar 

  44. Zoratti M, Szabo I . The mitochondrial permeability transition. Biochim Biophys Acta 1995; 1241: 139–146.

    Article  Google Scholar 

  45. Hodge T, Colombini M . Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 1997; 157: 271–279.

    Article  CAS  Google Scholar 

  46. Dhanasekaran A, Kotamraju S, Karunakaran C, Kalivendi SV, Thomas SJ, Joseph J et al. Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondrial superoxide. Free Radic Biol Med 2005; 39: 567–583.

    Article  CAS  Google Scholar 

  47. Sohal RS, Orr W . Role of oxidative stress in senescence. Aging 1998; 10: 149–151.

    CAS  PubMed  Google Scholar 

  48. Fangoni FF, Vescovini R, Passeri G, Bologna G, Padrazzoni M, Lavagetto G et al. Shortage of circulating naïve CD8+ T cells provides new insights on immunodeficiency in aging. Blood 2000; 95: 2860–2868.

    Google Scholar 

  49. Gupta S . Molecular mechanisms of apoptosis in the cells of the immune system in human aging. Immunol Rev 2005; 205: 114–129.

    Article  CAS  Google Scholar 

  50. Chikahisa L, Oyama Y, Okazaki E, Noda K . Fluorescent estimation of H2O2-induced changes in cell viability and cellular non protein thiol level of dissociated rat thymocytes. Jpn J Pharmacol 1996; 71: 299–305.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Young, T., Yel, L. et al. Differential sensitivity of naïve and subsets of memory CD4+ and CD8+ T cells to hydrogen peroxide-induced apoptosis. Genes Immun 8, 560–569 (2007). https://doi.org/10.1038/sj.gene.6364416

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364416

Keywords

This article is cited by

Search

Quick links