Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impact of MHC class I alleles on the M. tuberculosis antigen-specific CD8+ T-cell response in patients with pulmonary tuberculosis

Abstract

Challenged by scattered understanding of protective immunity to Mycobacterium tuberculosis (MTB), we have mapped peptide epitopes to human leukocyte antigen (HLA)-A*0101, A*0201, A*1101, A*2402, B*0702, B*0801 and B*1501 of the secreted mycobacterial antigen Ag85B, a vaccine candidate that may be associated with immune protection. Affinity (ED50) and half-life (t1/2, off-rate) analysis for individual peptide species on HLA-A and HLA-B molecules revealed binding ranges between 10−3 and 10−7M. After selection of the best matches, major histocompatibility complex class I/peptide tetramer complexes were constructed to measure the CD8+ T-cell responses directly ex vivo in peripheral blood mononuclear cells (PBMC) derived from 57 patients with acute pulmonary tuberculosis. Three patterns of (allele-) specific CD8+ recognition were identified: (a). Focus on one dominant epitope with additional recognition of several subdominant T-cell epitopes (HLA-A*0301, A*2402, B*0801 and B*1501); (b). Co-dominant recognition of two distinct groups of peptides presented by HLA-B*0702; and (c). Diverse and broad recognition of peptides presented by HLA-A*0201. Peptides that bound with slow off-rates to class I alleles, that is HLA-A*0201, were associated with low frequency of CD8+ T cells in PBMCs from patients with tuberculosis. HLA-B alleles showed fast off-rates in peptide binding and restricted high numbers (up to 6%) of antigen-specific CD8+ T cells in patients with pulmonary tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kaufmann SH . Recent findings in immunology give tuberculosis vaccines a new boost. Trends Immunol 2005; 26: 660–667.

    Article  CAS  Google Scholar 

  2. Flynn JL, Chan J . Immunology of tuberculosis. Annu Rev Immunol 2001; 19: 93–129.

    Article  CAS  Google Scholar 

  3. Wiker HG, Harboe M . The antigen 85 complex: a major secretion product of mycobacterium tuberculosis. Microbiol Rev 1992; 56: 648–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Orme IM . Induction of nonspecific acquired resistance and delayed-type hypersensitivity, but not specific acquired resistance in mice inoculated with killed mycobacterial vaccines. Infect Immun 1988; 56: 3310–3312.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS . Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 1997; 276: 1420–1422.

    Article  CAS  Google Scholar 

  6. Armitige LY, Jagannath C, Wanger AR, Norris SJ . Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 2000; 68: 767–778.

    Article  CAS  Google Scholar 

  7. Havlir DV, Wallis RS, Boom WH, Daniel TM, Chervenak K, Ellner JJ . Human immune response to Mycobacterium tuberculosis antigens. Infect Immun 1991; 59: 665–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Huygen K, Van Vooren JP, Turneer M, Bosmans R, Dierckx P, De Bruyn J . Specific lymphoproliferation, gamma interferon production, and serum immunoglobulin G directed against a purified 32 kDa mycobacterial protein antigen (P32) in patients with active tuberculosis. Scand J Immunol 1988; 27: 187–194.

    Article  CAS  Google Scholar 

  9. Andersen P . TB vaccines: progress and problems. Trends Immunol 2001; 22: 160–168.

    Article  CAS  Google Scholar 

  10. Bentley-Hibbert SI, Quan X, Newman T, Huygen K, Godfrey HP . Pathophysiology of antigen 85 in patients with active tuberculosis: antigen 85 circulates as complexes with fibronectin and immunoglobulin G. Infect Immun 1999; 67: 581–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kashyap RS, Dobos KM, Belisle JT, Purohit HJ, Chandak NH, Taori GM et al. Demonstration of components of antigen 85 complex in cerebrospinal fluid of tuberculous meningitis patients. Clin Diagn Lab Immunol 2005; 12: 752–758.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Geluk A, van Meijgaarden KE, Franken KL, Drijfhout JW, D'Souza S, Necker A et al. Identification of major epitopes of mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8(+) T cells in HLA- transgenic mice and humans. J Immunol 2000; 165: 6463–6471.

    Article  CAS  Google Scholar 

  13. Lalvani A, Brookes R, Wilkinson RJ, Malin AS, Pathan AA, Andersen P et al. Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1998; 95: 270–275.

    Article  CAS  Google Scholar 

  14. Mohagheghpour N, Gammon D, Kawamura LM, van Vollenhoven A, Benike CJ, Engleman EG . CTL response to Mycobacterium tuberculosis: identification of an immunogenic epitope in the 19-kDa lipoprotein. J Immunol 1998; 161: 2400–2406.

    CAS  PubMed  Google Scholar 

  15. Kuttler C, Nussbaum AK, Dick TP, Rammensee HG, Schild HJ, Hadeler HP . An algorithm for the prediction of proteasomal cleavages. J Mol Biol 2000; 298: 417–429.

    Article  CAS  Google Scholar 

  16. Content J, de la Cuvellerie A, De Wit L, Vincent-Levy-Frebault V, Ooms J, De Bruyn J . The genes coding for the antigen 85 complexes of Mycobacterium tuberculosis and Mycobacterium bovis BCG are members of a gene family: cloning, sequence determination, and genomic organization of the gene coding for antigen 85-C of M. tuberculosis. Infect Immun 1991; 59: 3205–3212.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Klein MR, Smith SM, Hammond AS, Ogg AG, King AS, Vekemans J et al. HLA-B*35-restricted CD8 T cell epitopes in the antigen 85 complex of Mycobacterium tuberculosis. J Infect Dis 2001; 183: 928–934.

    Article  CAS  Google Scholar 

  18. Valle MT, Megiovanni AM, Merlo A, Li Pira G, Bottone L, Angelini G et al. Epitope focus, clonal composition and Th1 phenotype of the human CD4 response to the secretory mycobacterial antigen Ag85. Clin Exp Immunol 2001; 123: 226–232.

    Article  CAS  Google Scholar 

  19. Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, thor Straten P . Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res 2001; 61: 5964–5968.

    CAS  PubMed  Google Scholar 

  20. Andersen MH, Pedersen LO, Becker JC, Straten PT . Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 2001; 61: 869–872.

    CAS  PubMed  Google Scholar 

  21. Schmitz M, Diestelkoetter P, Weigle B, Schmachtenberg F, Stevanovic S, Ockert D et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 2000; 60: 4845–4849.

    CAS  PubMed  Google Scholar 

  22. Bachinsky MM, Guillen DE, Patel SR, Singleton J, Chen C, Soltis DA et al. Mapping and binding analysis of peptides derived from the tumor-associated antigen survivin for eight HLA alleles. Cancer Immun 2005; 5: 6.

    PubMed  Google Scholar 

  23. Cwynarski K, Ainsworth J, Cobbold M, Wagner S, Mahendra P, Apperley J et al. Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 2001; 97: 1232–1240.

    Article  CAS  Google Scholar 

  24. Hebart H, Daginik S, Stevanovic S, Grigoleit U, Dobler A, Baur M et al. Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood 2002; 99: 3830–3837.

    Article  CAS  Google Scholar 

  25. Williams MA, Bevan MJ . Shortening the infectious period does not alter expansion of CD8T cells but diminishes their capacity to differentiate into memory cells. J Immunol 2004; 173: 6694–6702.

    Article  CAS  Google Scholar 

  26. Champagne P, Ogg GS, King AS, Knabenhans C, Ellefsen K, Nobile M et al. Skewed maturation of memory HIV-specific CD8T lymphocytes. Nature 2001; 410: 106–111.

    Article  CAS  Google Scholar 

  27. Boussiotis VA, Tsai EY, Yunis EJ, Thim S, Delgado JC, Dascher CC et al. IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J Clin Invest 2000; 105: 1317–1325.

    Article  CAS  Google Scholar 

  28. Delgado JC, Tsai EY, Thim S, Baena A, Boussiotis VA, Reynes JM et al. Antigen-specific and persistent tuberculin anergy in a cohort of pulmonary tuberculosis patients from rural Cambodia. Proc Natl Acad Sci USA 2002; 99: 7576–7581.

    Article  CAS  Google Scholar 

  29. Godfrey HP, Feng Z, Mandy S, Mandy K, Huygen K, De Bruyn J et al. Modulation of expression of delayed hypersensitivity by mycobacterial antigen 85 fibronectin-binding proteins. Infect Immun 1992; 60: 2522–2528.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Geldmacher C, Currier JR, Herrmann E, Haule A, Kuta E, McCutchan F et al. CD8 T-cell recognition of multiple epitopes within specific gag regions is associated with maintenance of a low steady-state viremia in human immunodeficieny virus type 1-seropositive patients. J Virol 2007; 81: 2440–2448.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Maeurer.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weichold, F., Mueller, S., Kortsik, C. et al. Impact of MHC class I alleles on the M. tuberculosis antigen-specific CD8+ T-cell response in patients with pulmonary tuberculosis. Genes Immun 8, 334–343 (2007). https://doi.org/10.1038/sj.gene.6364392

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364392

Keywords

This article is cited by

Search

Quick links