Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Using an advanced intercross line to identify quantitative trait loci controlling immune response during collagen-induced arthritis

Abstract

Advanced intercross line (AIL) is a powerful tool for high-resolution mapping of quantitative trait loci (QTLs). Several AILs have been generated to refine QTLs since the method was proposed about a decade ago. However, no AIL has been used for identifying novel QTLs. Here we used an AIL to test this possibility. We genotyped 308 (DBA/1 × FVB/N) F11/12 AIL mice with 109 informative markers covering four chromosomes, with an average intermarker distance of 5.5 Mb. Several normally distributed quantitative traits involved in the immune response during the course of collagen-induced arthritis (CIA), such as anti-collagen II antibodies, T-cell subset proportions and reactive oxygen species (ROS) production were taken as phenotypes. Four QTLs, namely Ciaa1, Lctlp1, Lctlp2 and Rosq1, controlling anti-collagen II IgG2a levels, lymph nodes CD8+ T cell proportion and ROS production were identified with support intervals of 15, 14, 8 and 8 Mb, respectively. Alleles of Lctlp1 and Lctlp2 suppressing CD8+ T cell proportion as well as the Rosq1 allele enhancing ROS production were correlated with higher CIA severity scores. Taken together, we successfully used an AIL to identify novel QTLs controlling immune responses during CIA with relatively small support intervals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Darvasi A, Soller M . Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 1995; 141: 1199–1207.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Iraqi F, Clapcott SJ, Kumari P, Haley CS, Kemp SJ, Teale AJ . Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines. Mamm Genome 2000; 11: 645–648.

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Le Roy I, Nicodeme E, Li R, Wagner R, Petros C et al. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci. Genome Res 2003; 13: 1654–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang M, Lemon WJ, Liu G, Wang Y, Iraqi FA, Malkinson AM et al. Fine mapping and identification of candidate pulmonary adenoma susceptibility 1 genes using advanced intercross lines. Cancer Res 2003; 63: 3317–3324.

    CAS  PubMed  Google Scholar 

  5. Ehrich TH, Hrbek T, Kenney-Hunt JP, Pletscher LS, Wang B, Semenkovich CF et al. Fine-mapping gene-by-diet interactions on chromosome 13 in a LG/J × SM/J murine model of obesity. Diabetes 2005; 54: 1863–1872.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang S, Lou Y, Amstein TM, Anyango M, Mohibullah N, Osoti A et al. Fine mapping of a major locus on chromosome 10 for exploratory and fear-like behavior in mice. Mamm Genome 2005; 16: 306–318.

    Article  CAS  PubMed  Google Scholar 

  7. Jagodic M, Becanovic K, Sheng JR, Wu X, Backdahl L, Lorentzen JC et al. An advanced intercross line resolves Eae18 into two narrow quantitative trait loci syntenic to multiple sclerosis candidate loci. J Immunol 2004; 173: 1366–1373.

    Article  CAS  PubMed  Google Scholar 

  8. Sheng JR, Jagodic M, Dahlman I, Becanovic K, Nohra R, Marta M et al. Eae19, a new locus on rat chromosome 15 regulating experimental autoimmune encephalomyelitis. Genetics 2005; 170: 283–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jennen DG, Vereijken AL, Bovenhuis H, Crooijmans RM, van der Poel JJ, Groenen MA . Confirmation of quantitative trait loci affecting fatness in chickens. Genet Sel Evol 2005; 37: 215–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bennett KE, Flick D, Fleming KH, Jochim R, Beaty BJ, Black WC . Quantitative trait loci that control dengue-2 virus dissemination in the mosquito Aedes aegypti. Genetics 2005; 170: 185–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bauer K, Yu X, Wernhoff P, Koczan D, Thiesen HJ, Ibrahim SM . Identification of new quantitative trait loci in mice with collagen-induced arthritis. Arthritis Rheum 2004; 50: 3721–3728.

    Article  CAS  PubMed  Google Scholar 

  12. Yu X, Bauer K, Wernhoff P, Koczan D, Moller S, Thiesen HJ et al. Fine mapping of collagen-induced arthritis quantitative trait Loci in an advanced intercross line. J Immunol 2006; 177: 7042–7049.

    Article  CAS  PubMed  Google Scholar 

  13. Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 2006; 38: 879–887.

    Article  CAS  PubMed  Google Scholar 

  14. Jackson AU, Galecki AT, Burke DT, Miller RA . Genetic polymorphisms in mouse genes regulating age-sensitive and age-stable T cell subsets. Genes Immun 2003; 4: 30–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karlsson J, Zhao X, Lonskaya I, Neptin M, Holmdahl R, Andersson A . Novel quantitative trait loci controlling development of experimental autoimmune encephalomyelitis and proportion of lymphocyte subpopulations. J Immunol 2003; 170: 1019–1026.

    Article  CAS  PubMed  Google Scholar 

  16. Kono DH, Burlingame RW, Owens DG, Kuramochi A, Balderas RS, Balomenos D et al. Lupus susceptibility loci in New Zealand mice. Proc Natl Acad Sci USA 1994; 91: 10168–10172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK . Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1994; 1: 219–229.

    Article  CAS  PubMed  Google Scholar 

  18. Vyse TJ, Kotzin BL . Genetic basis of systemic lupus erythematosus. Curr Opin Immunol 1996; 8: 843–851.

    Article  CAS  PubMed  Google Scholar 

  19. Becker KG, Simon RM, Bailey-Wilson JE, Freidlin B, Biddison WE, McFarland HF et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 1998; 95: 9979–9984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moser KL, Neas BR, Salmon JE, Yu H, Gray-McGuire C, Asundi N et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci USA 1998; 95: 14869–14874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paul WE . Interleukin-4: a prototypic immunoregulatory lymphokine. Blood 1991; 77: 1859–1870.

    CAS  PubMed  Google Scholar 

  22. Droge W . Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47–95.

    Article  CAS  PubMed  Google Scholar 

  23. Perl A, Banki K . Genetic and metabolic control of the mitochondrial transmembrane potential and reactive oxygen intermediate production in HIV disease. Antioxid Redox Signal 2000; 2: 551–573.

    Article  CAS  PubMed  Google Scholar 

  24. Hinson TK, Damodaran TV, Chen J, Zhang X, Qumsiyeh MB, Seldin MF et al. Identification of putative transmembrane receptor sequences homologous to the calcium-sensing G-protein-coupled receptor. Genomics 1997; 45: 279–289.

    Article  CAS  PubMed  Google Scholar 

  25. Boldyrev A, Bulygina E, Makhro A . Glutamate receptors modulate oxidative stress in neuronal cells. A mini-review. Neurotox Res 2004; 6: 581–587.

    Article  CAS  PubMed  Google Scholar 

  26. Taneja V, Taneja N, Paisansinsup T, Behrens M, Griffiths M, Luthra H et al. CD4 and CD8 T cells in susceptibility/protection to collagen-induced arthritis in HLA-DQ8-transgenic mice: implications for rheumatoid arthritis. J Immunol 2002; 168: 5867–5875.

    Article  CAS  PubMed  Google Scholar 

  27. Siddiqi M, Garcia ZC, Stein DS, Denny TN, Spolarics Z . Relationship between oxidative burst activity and CD11b expression in neutrophils and monocytes from healthy individuals: effects of race and gender. Cytometry 2001; 46: 243–246.

    Article  CAS  PubMed  Google Scholar 

  28. Manly KF, Cudmore Jr RH, Meer JM . Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 2001; 12: 930–932.

    Article  CAS  PubMed  Google Scholar 

  29. Lander ES, Botstein D . Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989; 121: 185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mangin B, Goffinet B, Rebai, A . Constructing confidence intervals for QTL location. Genetics 1994; 138: 1301–1308.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from EU FP5 (EUROME, EURO-RA). We thank Ilona Klamfuss for animal care and Dr Lena Wester-Rosenlöf for critical reading of the paper and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X Yu or S M Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Bauer, K., Wernhoff, P. et al. Using an advanced intercross line to identify quantitative trait loci controlling immune response during collagen-induced arthritis. Genes Immun 8, 296–301 (2007). https://doi.org/10.1038/sj.gene.6364385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364385

Keywords

This article is cited by

Search

Quick links