Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Interferon lambda-1 (IFN-λ1/IL-29) induces ELR CXC chemokine mRNA in human peripheral blood mononuclear cells, in an IFN-γ-independent manner

Abstract

Interferon lambda-1 (IFN-λ1), the prototype Type-III interferon, has antiviral functions similar to those of the Type-I interferons, IFN-α and IFN-β. However, IFN-λ1 is capable of signaling through almost all STAT molecules and so it is possible that it may have novel immunoregulatory functions in addition to antiviral ones. From a range of chemokines tested, IFN-λ1 elevated mRNA levels of only ‘Monokine induced by IFN-gamma’ (MIG/CXCL9), ‘IFN-gamma inducible protein-10’ (IP-10/CXCL10) and ‘IFN-gamma inducible T-cell α chemoattractant’ (I-TAC/CXCL11) from human peripheral blood mononuclear cells. As their names suggest, these chemokines are also induced by IFN-γ, the only member of the Type-II interferon family. This action of IFN-λ1 did not depend on intermediate induction of IFN-γ and is therefore, likely to be independent of IFN-γ. Further, our results suggest that donors responded to IFN-λ1 stimulation either ‘early’ or ‘late’. Overall the action of IFN-λ1 was similar to that previously reported for IFN-γ and may invite more detailed investigation of the role of IFN-λ1 at the innate/adaptive interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Siren J, Pirhonen J, Julkunen I, Matikainen S . IFN-a regulates TLR-dependent gene expression of IFN-α, IFN-β, IL-28, and IL-29. J Immunol 2005; 174: 1932–1937.

    Article  CAS  Google Scholar 

  2. Robek MD, Boyd BS, Chisari FV . Lambda interferon inhibits Hepatitis B and C virus replication. J Virol 2005; 79: 3851–3854.

    Article  CAS  Google Scholar 

  3. Brierley MM, Fish EN . Stats: multifaceted regulators of transcription. J Interferon Cytokine Res 2005; 25: 733–744.

    Article  CAS  Google Scholar 

  4. Brucet M, Marques L, Sebastian C, Lloberas J, Celada A . Regulation of murine Tap1 and Lmp2 genes in macrophages by interferon gamma is mediated by STAT1 and IRF-1. Genes Immun 2004; 5: 26–35.

    Article  CAS  Google Scholar 

  5. Ihle JN . The Stat family in cytokine signaling. Curr Opin Cell Biol 2001; 13: 211–217.

    Article  CAS  Google Scholar 

  6. Subramaniam PS, Torres BA, Johnson HM . So many ligands, so few transcription factors: a new paradigm for signaling through the STAT transcription factors. Cytokine 2001; 15: 175–187.

    Article  CAS  Google Scholar 

  7. Boehm U, Klamp T, Groot M, Howard JC . Cellular responses to interferon-gamma. Annu Rev Immunol 1997; 15: 749–795.

    Article  CAS  Google Scholar 

  8. Morandi B, Bougras G, Muller WA, Ferlazzo G, Munz C . NK cells of human secondary lymphoid tissues enhance T cell polarization via IFN-gamma secretion. Eur J Immunol 2006; 39: 2394–2400.

    Article  Google Scholar 

  9. Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H . The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J Leuk Biol 2004; 76: 314–321.

    Article  CAS  Google Scholar 

  10. Jurega B, Hong F, Kim W-H, Gao B . IFNg-/STAT1 acts as a proinflammatory signal in T-cell mediated hepatitis via induction of multiple chemokines and adhesion molecules: a critical role of IRF-1. Am J Physiol Gastrointest Liver Physiol 2004; 287: G1044–G1052.

    Article  Google Scholar 

  11. Colvin RA, Campanella GSV, Sun J, Luster AD . Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem 2004; 279: 30219–30227.

    Article  CAS  Google Scholar 

  12. Ley K . Arrest chemokines. Microcirculation 2003; 10: 289–295.

    Article  CAS  Google Scholar 

  13. Luster AD . Chemokines – chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–445.

    Article  CAS  Google Scholar 

  14. Rock RB, Hu S, Deshpande A, Munir S, May BJ, Baker CA et al. Transcriptional response of human microglial cells to interferon-gamma. Genes Immun 2005; 8: 712–719.

    Article  Google Scholar 

  15. Loetscher P, Pelligrino A, Gong JH, Mattioli I, Loetscher M, Bardi G et al. The ligands of CXC chemokine receptor 3, I-TAC, Mig and IP10, are natural antagonists for CCR3. J Biol Chem 2001; 276: 2986–2991.

    Article  CAS  Google Scholar 

  16. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T-cells through selective high-affinity binding to CXCR3. J Exp Med 1998; 187: 2009–2021.

    Article  CAS  Google Scholar 

  17. Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM . Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J Immunol 2001; 167: 623–627.

    Article  CAS  Google Scholar 

  18. Luster AD, Unkeless JC, Ravetch JV . Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 1985; 315: 672–676.

    Article  CAS  Google Scholar 

  19. Loetscher M, Loetscher P, Brass N, Meese E, Moser B . Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 1998; 28: 3696–3705.

    Article  CAS  Google Scholar 

  20. Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I et al. Chemokine receptor specific for IP10 and Mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 1996; 184: 963–969.

    Article  CAS  Google Scholar 

  21. Qin S, Rottman JB, Myers P, Kassman N, Weinblatt M, Loetscher M et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998; 101: 746–754.

    Article  CAS  Google Scholar 

  22. Sheppard P, Presnell SR, Fox B, Gilbert T, Haldeman B, Grant FJ . Interferon-like protein, Zcyto21. United States Patent Application #002003963 April 4, 2002; 2002.

  23. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003; 4: 69–77.

    Article  CAS  Google Scholar 

  24. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schultsmeyer S, Whitmore TE et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003; 4: 63–68.

    Article  CAS  Google Scholar 

  25. Meager A, Visvalingam K, Dilger P, Bryan D, Wadhwa M . Biological activity of interleukins-28 and -29: comparison with type I interferons. Cytokine 2005; 31: 109–118.

    Article  CAS  Google Scholar 

  26. Jordan WJ, Eskdale J, Boniotto M, Rodia M, Kellner D, Gallagher G . Modulation of the human cytokine response by interferon lambda (IFN-λ/IL-29). Genes Immun 2007; 8: 13–20.

    Article  CAS  Google Scholar 

  27. Okamoto M, Kawabe T, Iwasaki Y, Hara T, Hashimoto N, Imaizumi K et al. Evaluation of interferon-gamma, interferon-gamma inducing – cytokines, and interferon-gamma-inducible chemokines in tuberculous pleural effusions. J Lab Clin Med 2005; 145: 88–93.

    Article  CAS  Google Scholar 

  28. Zeng X, Moore TA, Newstead MW, Deng JC, Kunkel SL, Luster AD et al. Interferon-inducible protein 10, but not monokine induced by gamma interferon, promotes protective type I immunity in murine Klebsiella pneumoniae Pneumonia. Infect Immun 2005; 73: 8226–8236.

    Article  CAS  Google Scholar 

  29. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR . Lambda Interferon (INF), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 2006; 80: 4501–4509.

    Article  CAS  Google Scholar 

  30. Hayashi F, Means TK, Luster AD . Toll-like receptors stimulate human neutrophil function. Blood 2003; 102: 2660–2669.

    Article  CAS  Google Scholar 

  31. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using time quatitative PCR and the 2-ΔΔCt method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  32. Jordan WJ, Eskdale J, Boniotto M, Lennon GP, Peat J, Campbell JDM et al. Human IL-19 regulates immunity through auto-induction of IL-19 and production of IL-10. Eur J Immunol 2005; 35: 1576–1582.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Gallagher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekarek, V., Srinivas, S., Eskdale, J. et al. Interferon lambda-1 (IFN-λ1/IL-29) induces ELR CXC chemokine mRNA in human peripheral blood mononuclear cells, in an IFN-γ-independent manner. Genes Immun 8, 177–180 (2007). https://doi.org/10.1038/sj.gene.6364372

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364372

Keywords

This article is cited by

Search

Quick links