Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide linkage analysis of 160 North American families with celiac disease

Abstract

Celiac disease (CD) is a common autoimmune disease caused by exposure to the protein gliadin in wheat, and related prolamins in barley and rye. The prevalence of the disease in the US is 1:133. The aim of this study was to identify non-human leukocyte antigen (HLA) loci that predispose to CD. A genome-wide search of 405 microsatellite markers was performed on DNA samples from 160 families with a minimum of two cases of CD. Multipoint, parametric and non-parametric linkage (NPL) analyses were performed. Locations on chromosomes 1q, 3q, 6p, 6q, 7q, 9q and 10q showed linkage statistics (NPL scores or heterogeneity logarithm of the odds (HLOD) scores) of approximately 2.0 or larger. The greatest evidence for linkage outside of chromosome 6 was on 7q and 9q. An NPL score of 2.60 occurred at position 151.0 on 7q and a HLOD score of 2.47 occurred at position 144.8 on 9q under a recessive model. As expected, there was highly significant linkage to the HLA region on 6p, with NPL and HLOD scores exceeding 5.50. In conclusion, this genome-wide linkage analysis represents one of the largest such studies of CD. The most promising region is a putative locus on 7q, a region reported independently in previous genome-wide searches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med 2003; 163: 286–292.

    Article  PubMed  Google Scholar 

  2. Trier JS . Celiac sprue. N Engl J Med 1991; 325: 1709–1719.

    Article  CAS  PubMed  Google Scholar 

  3. Book L, Zone JJ, Neuhausen SL . Prevalence of celiac disease among relatives of sib pairs with celiac disease in US families. Am J Gastroenterol 2003; 98: 377–381.

    Article  PubMed  Google Scholar 

  4. Houlston RS, Ford D . Genetics of coeliac disease. Q J Med 1996; 89: 737–743.

    Article  CAS  Google Scholar 

  5. Korponay-Szabo I, Kovacs J, Lorincz M, Torok E, Goracz G . Families with multiple cases of gluten-sensitive enteropathy. Z Gastroenterol 1998; 36: 553–558.

    CAS  PubMed  Google Scholar 

  6. Tighe MR, Ciclitira PJ . The implications of recent advances in coeliac disease. Acta Paediatr 1993; 82: 805–810.

    Article  CAS  PubMed  Google Scholar 

  7. Sollid LM, Thorsby E . HLA susceptibility genes in celiac disease: genetic mapping and role in pathogenesis. Gastroenterology 1993; 105: 910–922.

    Article  CAS  PubMed  Google Scholar 

  8. Balas A, Vicario JL, Zambrano A, Acuna D, Garcia-Novo D . Absolute linkage of celiac disease and dermatitis herpetiformis to HLA-DQ. Tissue Antigens 1997; 50: 52–56.

    Article  CAS  PubMed  Google Scholar 

  9. Spurkland A, Ingvarsson G, Falk ES, Knutsen I, Sollid LM, Thorsby E . Dermatitis herpetiformis and celiac disease are both primarily associated with the HLA-DQ (alpha 1*0501, beta 1*02) or the HLA-DQ (alpha 1*03, beta 1*0302) heterodimers. Tissue Antigens 1997; 49: 29–34.

    Article  CAS  PubMed  Google Scholar 

  10. Bevan S, Popat S, Braegger CP, Busch A, O'Donoghue D, Falth-Magnusson K et al. Contribution of the MHC region to the familial risk of coeliac disease. J Med Genet 1999; 36: 687–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Petronzelli F, Bonamico M, Ferrante P, Grillo R, Mora B, Mariani P et al. Genetic contribution of the HLA region to the familial clustering of coeliac disease. Ann Hum Genet 1997; 61 (Part 4): 307–317.

    Article  CAS  PubMed  Google Scholar 

  12. Risch N . Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet 1987; 40: 1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lewis C, Book L, Black J, Sawitzke A, Cannon-Albright L, Zone J et al. Celiac disease and human leukocyte antigen genotype: accuracy of diagnosis in self-diagnosed individuals, dosage effect, and sibling risk. J Pediatr Gastroenterol Nutr 2000; 31: 22–27.

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Juo SH, Holopainen P, Terwilliger J, Tong X, Grunn A et al. Genomewide linkage analysis of celiac disease in Finnish families. Am J Hum Genet 2002; 70: 51–59.

    Article  CAS  PubMed  Google Scholar 

  15. Neuhausen SL, Feolo M, Camp NJ, Farnham J, Book L, Zone JJ . Genome-wide linkage analysis for celiac disease in North American families. Am J Med Genet 2002; 111: 1–9.

    Article  PubMed  Google Scholar 

  16. King AL, Fraser JS, Moodie SJ, Curtis D, Dearlove AM, Ellis HJ et al. Coeliac disease: follow-up linkage study provides further support for existence of a susceptibility locus on chromosome 11p11. Ann Hum Genet 2001; 65: 377–386.

    Article  CAS  PubMed  Google Scholar 

  17. King AL, Yiannakou JY, Brett PM, Curtis D, Morris MA, Dearlove AM et al. A genome-wide family-based linkage study of coeliac disease. Ann Hum Genet 2000; 64: 479–490.

    Article  CAS  PubMed  Google Scholar 

  18. Greco L, Corazza G, Babron MC, Clot F, Fulchignoni-Lataud MC, Percopo S et al. Genome search in celiac disease. Am J Hum Genet 1998; 62: 669–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhong F, McCombs CC, Olson JM, Elston RC, Stevens FM, McCarthy CF et al. An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland. Nat Genet 1996; 14: 329–333.

    Article  CAS  PubMed  Google Scholar 

  20. Popat S, Bevan S, Braegger CP, Busch A, O'Donoghue D, Falth-Magnusson K et al. Genome screening of coeliac disease. J Med Genet 2002; 39: 328–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rioux JD, Karinen H, Kocher K, McMahon SG, Karkkainen P, Janatuinen E et al. Genomewide search and association studies in a Finnish celiac disease population: identification of a novel locus and replication of the HLA and CTLA4 loci. Am J Med Genet A 2004; 130: 345–350.

    Article  Google Scholar 

  22. Woolley N, Holopainen P, Ollikainen V, Mustalahti K, Maki M, Kere J et al. A new locus for coeliac disease mapped to chromosome 15 in a population isolate. Hum Genet 2002; 111: 40–45.

    Article  CAS  PubMed  Google Scholar 

  23. Van Belzen MJ, Meijer JW, Sandkuijl LA, Bardoel AF, Mulder CJ, Pearson PL et al. A major non-HLA locus in celiac disease maps to chromosome 19. Gastroenterology 2003; 125: 1032–1041.

    Article  CAS  PubMed  Google Scholar 

  24. Babron MC, Nilsson S, Adamovic S, Naluai AT, Wahlstrom J, Ascher H et al. Meta and pooled analysis of European coeliac disease data. Eur J Hum Genet 2003; 11: 828–834.

    Article  CAS  PubMed  Google Scholar 

  25. Altmuller J, Palmer LJ, Fischer G, Scherb H, Wjst M . Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 2001; 69: 936–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sherman SL, Iselius L, Ellis A, Woodrow JC, MacLean CJ . Combined segregation and linkage analysis of coeliac disease. Genet Epidemiol Suppl 1986; 1: 283–288.

    Article  CAS  PubMed  Google Scholar 

  27. Lopez-Vazquez A, Rodrigo L, Fuentes D, Riestra S, Bousono C, Garcia-Fernandez S et al. MHC class I chain related gene A (MICA) modulates the development of coeliac disease in patients with the high risk heterodimer DQA1*0501/DQB1*0201. Gut 2002; 50: 336–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez S, Rodrigo L, Lopez-Vazquez A, Fuentes D, Agudo-Ibanez L, Rodriguez-Rodero S et al. Association of MHC class I related gene B (MICB) to celiac disease. Am J Gastroenterol 2004; 99: 676–680.

    Article  CAS  PubMed  Google Scholar 

  29. McManus R, Moloney M, Borton M, Finch A, Chuan YT, Lawlor E et al. Association of celiac disease with microsatellite polymorphisms close to the tumor necrosis factor genes. Hum Immunol 1996; 45: 24–31.

    Article  CAS  PubMed  Google Scholar 

  30. Monsuur AJ, de Bakker PI, Alizadeh BZ, Zhernakova A, Bevova MR, Strengman E et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat Genet 2005; 37: 1341–1344.

    Article  CAS  PubMed  Google Scholar 

  31. Hunt KA, Monsuur AJ, McArdle WL, Kumar PJ, Travis SP, Walters JR et al. Lack of association of MYO9B genetic variants with coeliac disease in a British cohort. Gut 2006; 55: 969–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Amundsen SS, Monsuur AJ, Wapenaar MC, Lie BA, Ek J, Gudjonsdottir AH et al. Association analysis of MYO9B gene polymorphisms with celiac disease in a Swedish/Norwegian cohort. Hum Immunol 2006; 67: 341–345.

    Article  CAS  PubMed  Google Scholar 

  33. Hill ID, Dirks MH, Liptak GS, Colletti RB, Fasano A, Guandalini S et al. Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2005; 40: 1–19.

    Article  PubMed  Google Scholar 

  34. Kadunce DP, Meyer LJ, Zone JJ . IgA class antibodies in dermatitis herpetiformis: reaction with tissue antigens. J Invest Dermatol 1989; 93: 253–258.

    Article  CAS  PubMed  Google Scholar 

  35. Peters MS, McEvoy MT . IgA antiendomysial antibodies in dermatitis herpetiformis. J Am Acad Dermatol 1989; 21: 1225–1231.

    Article  CAS  PubMed  Google Scholar 

  36. Troncone R, Maurano F, Rossi M, Micillo M, Greco L, Auricchio R et al. IgA antibodies to tissue transglutaminase: an effective diagnostic test for celiac disease. J Pediatr 1999; 134: 166–171.

    Article  CAS  PubMed  Google Scholar 

  37. Sulkanen S, Halttunen T, Laurila K, Kolho KL, Korponay-Szabo IR, Sarnesto A et al. Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology 1998; 115: 1322–1328.

    Article  CAS  PubMed  Google Scholar 

  38. Dieterich W, Laag E, Schopper H, Volta U, Ferguson A, Gillett H et al. Autoantibodies to tissue transglutaminase as predictors of celiac disease. Gastroenterology 1998; 115: 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  39. Clemente MG, Musu MP, Frau F, Lucia C, De Virgiliis S . Antitissue transglutaminase antibodies outside celiac disease. J Pediatr Gastroenterol Nutr 2002; 34: 31–34.

    Article  CAS  PubMed  Google Scholar 

  40. Di Tola M, Sabbatella L, Anania MC, Viscido A, Caprilli R, Pica R et al. Anti-tissue transglutaminase antibodies in inflammatory bowel disease: new evidence. Clin Chem Lab Med 2004; 42: 1092–1097.

    CAS  PubMed  Google Scholar 

  41. Volta U, Molinaro N, De Franchis R, Forzenigo L, Landoni M, Fratangelo D et al. Correlation between IgA antiendomysial antibodies and subtotal villous atrophy in dermatitis herpetiformis. J Clin Gastroenterol 1992; 14: 298–301.

    Article  CAS  PubMed  Google Scholar 

  42. Rostami K, Kerckhaert J, Tiemessen R, von Blomberg BM, Meijer JW, Mulder CJ . Sensitivity of antiendomysium and antigliadin antibodies in untreated celiac disease: disappointing in clinical practice. Am J Gastroenterol 1999; 94: 888–894.

    Article  CAS  PubMed  Google Scholar 

  43. Rossi TM, Kumar V, Lerner A, Heitlinger LA, Tucker N, Fisher J . Relationship of endomysial antibodies to jejunal mucosal pathology: specificity towards both symptomatic and asymptomatic celiacs. J Pediatr Gastroenterol Nutr 1988; 7: 858–863.

    Article  CAS  PubMed  Google Scholar 

  44. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Broman KW, Murray JC, Sheffield VC, White RL, Weber JL . Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 1998; 63: 861–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by NIH DK50678. We thank the families for participating in our study. We also thank Vu Huynh for technical assistance in the laboratory and Maryam Mousavi and Marie Pinto for working with the families. Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number N01-HG-65403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S L Neuhausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garner, C., Ding, Y., Steele, L. et al. Genome-wide linkage analysis of 160 North American families with celiac disease. Genes Immun 8, 108–114 (2007). https://doi.org/10.1038/sj.gene.6364361

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364361

Keywords

This article is cited by

Search

Quick links