Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

No evidence of association between genetic variants of the PDCD1 ligands and SLE

Abstract

PDCD1, an immunoreceptor involved in peripheral tolerance has previously been shown to be genetically associated with systemic lupus erythematosus (SLE). PDCD1 has two ligands whose genes are located in close proximity on chromosome 9p24. Our attention was drawn to these ligands after finding suggestive linkage to a marker (gata62f03, Z=2.27) located close to their genes in a genome scan of Icelandic families multiplex for SLE. Here, we analyse Swedish trios (N=149) for 23 single nucleotide polymorphisms (SNPs) within the genes of the PDCD1 ligands. Initially, indication of association to eight SNPs was observed, and these SNPs were therefore also analysed in Mexican trios (N=90), as well as independent sets of patients and controls from Sweden (152 patients, 448 controls) and Argentina (288 patients, 288 controls). We do not find support for genetic association to SLE. This is the first genetic study of SLE and the PDCD1 ligands and the lack of association in several cohorts implies that these genes are not major risk factors for SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Block SR . Twin studies: genetic factors are important. Arthritis Rheum 1993; 36: 135–136.

    Article  CAS  PubMed  Google Scholar 

  2. Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992; 35: 311–318.

    Article  CAS  PubMed  Google Scholar 

  3. Reichlin M, Harley JB, Lockshin MD . Serologic studies of monozygotic twins with systemic lupus erythematosus. Arthritis Rheum 1992; 35: 457–464.

    Article  CAS  PubMed  Google Scholar 

  4. Alarcon-Segovia D, Alarcon-Riquelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum 2005; 52: 1138–1147.

    Article  PubMed  Google Scholar 

  5. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666–669.

    Article  CAS  PubMed  Google Scholar 

  6. Lindqvist AK, Steinsson K, Johanneson B, Kristjansdottir H, Arnasson A, Grondal G et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun 2000; 14: 169–178.

    Article  CAS  PubMed  Google Scholar 

  7. Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003; 33: 2706–2716.

    Article  CAS  PubMed  Google Scholar 

  8. Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol 2003; 33: 3117–3126.

    Article  CAS  PubMed  Google Scholar 

  9. Petroff MG, Chen L, Phillips TA, Azzola D, Sedlmayr P, Hunt JS . B7 family molecules are favorably positioned at the human maternal-fetal interface. Biol Reprod 2003; 68: 1496–1504.

    Article  CAS  PubMed  Google Scholar 

  10. Ishida M, Iwai Y, Tanaka Y, Okazaki T, Freeman GJ, Minato N et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 2002; 84: 57–62.

    Article  CAS  PubMed  Google Scholar 

  11. Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol 2002; 32: 634–643.

    Article  CAS  PubMed  Google Scholar 

  12. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192: 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001; 2: 261–268.

    Article  CAS  PubMed  Google Scholar 

  14. Dong H, Zhu G, Tamada K, Chen L . B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5: 1365–1369.

    Article  CAS  PubMed  Google Scholar 

  15. Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 2001; 193: 839–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tamura H, Dong H, Zhu G, Sica GL, Flies DB, Tamada K et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 2001; 97: 1809–1816.

    Article  CAS  PubMed  Google Scholar 

  17. Nishimura H, Nose M, Hiai H, Minato N, Honjo T . Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11: 141–151.

    Article  CAS  PubMed  Google Scholar 

  18. Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 2003; 198: 63–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003; 198: 71–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanai T, Totsuka T, Uraushihara K, Makita S, Nakamura T, Koganei K et al. Blockade of B7-H1 suppresses the development of chronic intestinal inflammation. J Immunol 2003; 171: 4156–4163.

    Article  CAS  PubMed  Google Scholar 

  21. Terwilliger JD, Ott J . A haplotype-based ‘haplotype relative risk’ approach to detecting allelic associations. Hum Hered 1992; 42: 337–346.

    Article  CAS  PubMed  Google Scholar 

  22. Laird NM, Horvath S, Xu X . Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000; 19: S36–42.

    Article  PubMed  Google Scholar 

  23. Stephens M, Donnelly P . A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. International HapMap Consortium. A haplotype map of the human genome. Nature 200; 437: 1299–1320.

  26. Khlat M, Cazes MH, Genin E, Guiguet M . Robustness of case-control studies of genetic factors to population stratification: magnitude of bias and type I error. Cancer Epidemiol Biomarkers Prev 2004; 13: 1660–1664.

    PubMed  Google Scholar 

  27. Seldin MF, Tian C, Shigeta R, Scherbarth HR, Kittles R, Belmont JW et al. Argentine population genetic structure: large variation in Amerindian contribution. Am J Phys Anthropol 2006 (in press).

  28. Curtis D, Sham PC . A note on the application of the transmission disequilibrium test when a parent is missing. Am J Hum Genet 1995; 56: 811–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Curtis D . Use of siblings as controls in case-control association studies. Ann Hum Genet 1997; 61: 319–333.

    Article  CAS  PubMed  Google Scholar 

  30. Spielman RS, Ewens WJ . The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996; 59: 983–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Spielman RS, Ewens WJ . TDT clarification. Am J Hum Genet 1999; 64: 668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gauderman WJ . Sample size requirements for association studies of gene-gene interaction. Am J Epidemiol 2002; 155: 478–484.

    Article  PubMed  Google Scholar 

  33. Gauderman WJ . Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 2002; 21: 35–50.

    Article  PubMed  Google Scholar 

  34. Gauderman WJ . Candidate gene association analysis for a quantitative trait, using parent-offspring trios. Genet Epidemiol 2003; 25: 327–338.

    Article  PubMed  Google Scholar 

  35. Sanghera DK, Manzi S, Bontempo F, Nestlerode C, Kamboh MI . Role of an intronic polymorphism in the PDCD1 gene with the risk of sporadic systemic lupus erythematosus and the occurrence of antiphospholipid antibodies. Hum Genet 2004; 115: 393–398.

    Article  CAS  PubMed  Google Scholar 

  36. Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST . Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 2003; 62: 492–497.

    Article  CAS  PubMed  Google Scholar 

  37. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, Maurer M et al. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 2005; 58: 50–57.

    Article  CAS  PubMed  Google Scholar 

  38. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  39. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I . VISTA: computational tools for comparative genomics. Nucleic Acids Res 2004; 32: W273–W279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dubchak I, Brudno M, Loots GG, Pachter L, Mayor C, Rubin EM et al. Active conservation of noncoding sequences revealed by three-way species comparisons. Genome Res 2000; 10: 1304–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Swedish Research Council, the Swedish Association Against Rheumatism, the Gustav V:e 80-års foundation, the Marcus Borgströms Foundation, the Magnus Bergvalls Foundation and the Alliance for Lupus Research (USA) for financial support to MEAR, and the Gustaf Prim Foundation for support to AKA. We also thank Juni Palmgren at the University of Stockholm for valuable comments regarding the statistics and the CEDIM, Diagnóstico Molecular y Forense SRL. Rosario, Argentina for DNA preparation of some samples used here. MEAR is a recipient of a research fellowship from the Royal Swedish Academy of Sciences financed by the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M E Alarcón-Riquelme.

Appendix

Appendix

The Argentine Collaborative group is composed of the following members: Pilar C Marino, MD, Estela L Motta, MD Servicio de Reumatología, Hospital Interzonal General de Agudos ‘Dr Oscar Alende’, Mar del Plata, Argentina; Cristina Drenkard, MD, Emilia Menso, MD Servicio de Reumatología de la UHMI 1, Hospital Nacional de Clínicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Guillermo A Tate, MD Organización Médica de Investigación, Buenos Aires, Argentina; Jose L Presas, MD Hospital General de Agudos Dr Juán A Fernandez, Buenos Aires, Argentina; Marcelo Abdala, MD, Mariela Bearzotti, PhD Facultad de Ciencias Medicas, Universidad Nacional de Rosario y Hospital Provincial del Centenario, Rosario, Argentina; Francisco Caeiro, MD, Ana Bertoli, MD Servicio de Reumatología, Hospital Privado, Centro Medico de Córdoba, Córdoba, Argentina; Susana Roverano, MD, Hospital José M Cullen, Santa Fe, Argentina; Cesar E Graf, MD (*) Griselda Buchanan, PhD (**), Estela Bertero, PhD (*), (*) Hospital San Martín, Paraná, (**) Hospital Felipe Heras, Concordia, Entre Ríos, Argentina; Sebastian Grimaudo, PhD, Jorge Manni, MD Departamento de Inmunología, Instituto de Investigaciones Médicas ‘Alfredo Lanari’, Buenos Aires, Argentina; Enrique R Soriano, MD, Carlos D Santos, MD Sección Reumatología, Servicio de Clínica Medica, Hospital Italiano de Buenos Aires y Fundación Dr Pedro M Catoggio para el Progreso de la Reumatología, Buenos Aires, Argentina; Fernando A Ramos, MD, Sandra M Navarro, MD Servicio de Reumatología, Hospital Provincial de Rosario, Rosario, Argentina; Marisa Jorfen, MD, Elisa J Romero, PhD Servicio de Reumatología Hospital Escuela Eva Perón, Granadero Baigorria, Rosario, Argentina; Juan C Marcos, MD, Ana I Marcos, MD Servicio de Reumatología, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina; Alicia Eimon, MD Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abelson, A., Johansson, C., Kozyrev, S. et al. No evidence of association between genetic variants of the PDCD1 ligands and SLE. Genes Immun 8, 69–74 (2007). https://doi.org/10.1038/sj.gene.6364360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364360

Keywords

This article is cited by

Search

Quick links