Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Complex genetic control of susceptibility to Mycobacterium bovis (Bacille Calmette-Guérin) infection in wild-derived Mus spretus mice

Abstract

Susceptibility to Mycobacterium bovis Bacille Calmette-Guérin (BCG) is genetically controlled by Nramp1 (Slc11a1). Inbred mouse strains harbor either the resistance (Nramp1G169) or the susceptibility (Nramp1D169) allele at Nramp1. Mus spretus (Nramp1G169; SPRET/EiJ) is shown to display an intermediate level of BCG replication in the spleen (log10 colony-forming units (CFU)5), compared to resistant A/J (log10CFU4.0) and susceptible C57BL/6J (log10CFU6.0) mice. The presence of genetic modifiers of Nramp1-dependent susceptibility to M. bovis (BCG) infection in Mus spretus was analyzed by whole-genome scanning in 175 mice of an informative (C57BL/6J × SPRET/EiJ) × C57BL/6J backcross. Nramp1 showed a major effect (D1Mcg4, P<1e−4), but additional single marker effects were identified on chromosomes 4 (D4Mit150) and × (DXMit249) in male mice, and on chromosome 9 (D9Mit77) and 17 (D17Mit81) in female mice. A strong interaction between Nramp1 and the major histocompatibility locus was also noted in female mice. The mapped loci may act as modifiers of Nramp1 action, and constitute novel entry points for the parallel search of loci regulating susceptibility to mycobacterial infections in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Jabado N, Gros P . Tuberculosis: the genetics of vulnerability. Nature 2005; 434: 709–711.

    Article  CAS  Google Scholar 

  2. WHO. World Health Organization. Tuberculosis. http://www.who.int/mediacentre/factsheets/fs104/en/index.html, 2006.

  3. Smith I . Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 2003; 16: 463–496.

    Article  CAS  Google Scholar 

  4. Pelletier M, Forget A, Bourassa D, Gros P, Skamene E . Immunopathology of BCG infection in genetically resistant and susceptible mouse strains. J Immunol 1982; 129: 2179–2185.

    CAS  PubMed  Google Scholar 

  5. Skamene E, Schurr E, Gros P . Infection genomics: Nramp1 as a major determinant of natural resistance to intracellular infections. Annu Rev Med 1998; 49: 275–287.

    Article  CAS  Google Scholar 

  6. Gruenheid S, Pinner E, Desjardins M, Gros P . Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 1997; 185: 717–730.

    Article  CAS  Google Scholar 

  7. Canonne-Hergaux F, Calafat J, Richer E, Cellier M, Grinstein S, Borregaard N et al. Expression and subcellular localization of NRAMP1 in human neutrophil granules. Blood 2002; 100: 268–275.

    Article  CAS  Google Scholar 

  8. Jabado N, Jankowsky A, Dougaparsad S, Picard V, Grinstein S, Gros P . Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 2000; 192: 1237–1248.

    Article  CAS  Google Scholar 

  9. Malo D, Vogan K, Vidal S, Hu J, Cellier M, Schurr E et al. Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 1994; 23: 51–61.

    Article  CAS  Google Scholar 

  10. Vidal SM, Pinner E, Lepage P, Gauthier S, Gros P . Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1D169) mouse strains. J Immunol 1996; 157: 3559–3568.

    CAS  PubMed  Google Scholar 

  11. Poon A, Schurr E . The NRAMP genes and human susceptibility to common diseases. In: Gros P, Cellier M (eds). The Nramp Family. Landes Bioscience: Georgetown, 2004, pp 29–43.

    Google Scholar 

  12. Malik S, Abel L, Tooker H, Poon A, Simkin L, Girard M et al. Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci USA 2005; 102: 12183–12188.

    Article  CAS  Google Scholar 

  13. Turcotte K, Gauthier S, Tuite A, Mullick A, Malo D, Gros P . A mutation in the Icsbp1 gene causes susceptibility to infection and a chronic myeloid leukemia-like syndrome in BXH-2 mice. J Exp Med 2005; 201: 881–890.

    Article  CAS  Google Scholar 

  14. The Jackson Laboratory. http://jaxmice.jax.org/strain/001146.html.

  15. Sebastiani G, Leveque G, Lariviere L, Laroche L, Skamene E, Gros P et al. Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics 2000; 64: 230–240.

    Article  CAS  Google Scholar 

  16. Bagot S, Campino S, Penha-Goncalves C, Pied S, Cazenave PA, Holmberg D . Identification of two cerebral malaria resistance loci using an inbred wild-derived mouse strain. Proc Natl Acad Sci USA 2002; 99: 9919–9923.

    Article  CAS  Google Scholar 

  17. Campino S, Bagot S, Bergman ML, Almeida P, Sepulveda N, Pied S et al. Genetic control of parasite clearance leads to resistance to Plasmodium berghei ANKA infection and confers immunity. Genes Immun 2005; 6: 416–421.

    Article  CAS  Google Scholar 

  18. Forget A, Skamene E, Gros P, Miailhe AC, Turcotte R . Differences in response among inbred mouse strains to infection with small doses of Mycobacterium bovis BCG. Infect Immun 1981; 32: 42–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitsos LM, Cardon LR, Fortin A, Ryan L, LaCourse R, North RJ et al. Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 2000; 1: 467–477.

    Article  CAS  Google Scholar 

  20. Broman KW, Wu H, Sen S, Churchill GA . R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003; 19: 889–890.

    Article  CAS  Google Scholar 

  21. CRAN. The Comprehensive R Archive Network. http://cran.r-project.org.

  22. Caron J, Loredo-Osti JC, Morgan K, Malo D . Mapping of interactions and mouse congenic strains identified novel epistatic QTLs controlling the persistence of Salmonella enteritidis in mice. Genes Immun 2005; 6: 500–508.

    Article  CAS  Google Scholar 

  23. Sanchez F, Radaeva TV, Nikonenko BV, Persson AS, Sengul S, Schalling M et al. Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect Immun 2003; 71: 126–131.

    Article  CAS  Google Scholar 

  24. Lavebratt C, Apt AS, Nikonenko BV, Schalling M, Schurr E . Severity of tuberculosis in mice is linked to distal chromosome 3 and proximal chromosome 9. J Infect Dis 1999; 180: 150–155.

    Article  CAS  Google Scholar 

  25. Kahler AK, Persson AS, Sanchez F, Kallstrom H, Apt AS, Schurr E et al. A new coding mutation in the Tnf-alpha leader sequence in tuberculosis-sensitive I/St mice causes higher secretion levels of soluble TNF-alpha. Genes Immun 2005; 6: 620–627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Gros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turcotte, K., Loredo-Osti, J., Fortin, P. et al. Complex genetic control of susceptibility to Mycobacterium bovis (Bacille Calmette-Guérin) infection in wild-derived Mus spretus mice. Genes Immun 7, 684–687 (2006). https://doi.org/10.1038/sj.gene.6364346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364346

Keywords

This article is cited by

Search

Quick links