Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variants of RANTES are associated with serum RANTES level and protection for type 1 diabetes

Abstract

RANTES (regulated on activation, normal T-cell expressed and secreted) is a T-helper type 1 (Th1) chemokine that promotes T-cell activation and proliferation. RANTES is genetically associated with asthma, sarcoidosis and multiple sclerosis. The concentration of RANTES is increased at inflammation sites in different autoimmune diseases. Type 1 diabetes (T1D) is a Th1-mediated disease with complex genetic predisposition. We tested RANTES as a candidate gene for association with T1D using three single-nucleotide polymorphism (SNP) variants (rs4251719, rs2306630 and rs2107538) to capture haplotype information. The minor alleles of all SNPs were transmitted less frequently to T1D offspring (transmission rates 37.3% (P=0.002), 38.7% (P=0.007) and 41.0% (P=0.01)) and were less frequently present in patients compared to controls (P=0.009, 0.03 and 0.04, respectively). A similar protective effect was observed for the haplotype carrying three minor alleles (transmission disequilibrium test (TDT): P=0.003; odds ratio (OR)=0.55; confidence interval (CI): 0.37–0.83; case/control: P=0.03; OR=0.74; CI: 0.55–0.98). Both patients and controls carrying the protective haplotype express significantly lower serum levels of RANTES compared to non-carriers. Subsequently, we tested a cohort of 310 celiac disease patients, but failed to detect association. RANTES SNPs are significantly associated with RANTES serum concentration and development of T1D. The rs4251719*A–rs2306630*A–rs2107538*A haplotype associated with low RANTES production confers protection from T1D. Our data imply that RANTES is associated with T1D both genetically and functionally, and contributes to diabetes-prone Th1 cytokine profile.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Atkinson MA, Eisenbarth GS . Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001; 358: 221–229.

    Article  CAS  Google Scholar 

  2. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.

    Article  CAS  Google Scholar 

  3. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338.

    Article  CAS  Google Scholar 

  4. Kelly MA, Rayner ML, Mijovic CH, Barnett AH . Molecular aspects of type 1 diabetes. Mol Pathol 2003; 56: 1–10.

    Article  CAS  Google Scholar 

  5. Hizawa N, Yamaguchi E, Konno S, Tanino Y, Jinushi E, Nishimura M . A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am J Respir Crit Care Med 2002; 166: 686–690.

    Article  Google Scholar 

  6. Al-Abdulhadi SA, Helms PJ, Main M, Smith O, Christie G . Preferential transmission and association of the −403 G → A promoter RANTES polymorphism with atopic asthma. Genes Immun 2005; 6: 24–30.

    Article  CAS  Google Scholar 

  7. Nickel RG, Casolaro V, Wahn U, Beyer K, Barnes KC, Plunkett BS et al. Atopic dermatitis is associated with a functional mutation in the promoter of the C–C chemokine RANTES. J Immunol 2000; 164: 1612–1616.

    Article  CAS  Google Scholar 

  8. Takada T, Suzuki E, Ishida T, Moriyama H, Ooi H, Hasegawa T et al. Polymorphism in RANTES chemokine promoter affects extent of sarcoidosis in a Japanese population. Tissue Antigens 2001; 58: 293–298.

    Article  CAS  Google Scholar 

  9. Leung TF, Tang NL, Lam CW, Li AM, Fung SL, Chan IH et al. RANTES G−401A polymorphism is associated with allergen sensitization and FEV1 in Chinese children. Respir Med 2005; 99: 216–219.

    Article  CAS  Google Scholar 

  10. Kozma GT, Falus A, Bojszko A, Krikovszky D, Szabo T, Nagy A et al. Lack of association between atopic eczema/dermatitis syndrome and polymorphisms in the promoter region of RANTES and regulatory region of MCP-1. Allergy 2002; 57: 160–163.

    Article  CAS  Google Scholar 

  11. Makki RF, al Sharif F, Gonzalez-Gay MA, Garcia-Porrua C, Ollier WE, Hajeer AH . RANTES gene polymorphism in polymyalgia rheumatica, giant cell arteritis and rheumatoid arthritis. Clin Exp Rheumatol 2000; 18: 391–393.

    CAS  Google Scholar 

  12. Gade-Andavolu R, Comings DE, MacMurray J, Vuthoori RK, Tourtellotte WW, Nagra RM et al. RANTES: a genetic risk marker for multiple sclerosis. Mult Scler 2004; 10: 536–539.

    Article  CAS  Google Scholar 

  13. Luster AD . Chemokines – chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–445.

    Article  CAS  Google Scholar 

  14. Gerard C, Rollins BJ . Chemokines and disease. Nat Immunol 2001; 2: 108–115.

    Article  CAS  Google Scholar 

  15. Taub DD, Turcovski-Corrales SM, Key ML, Longo DL, Murphy WJ . Chemokines and T lymphocyte activation: I. Beta chemokines costimulate human T lymphocyte activation in vitro. J Immunol 1996; 156: 2095–2103.

    CAS  Google Scholar 

  16. Bacon KB, Premack BA, Gardner P, Schall TJ . Activation of dual T cell signaling pathways by the chemokine RANTES. Science 1995; 269: 1727–1730.

    Article  CAS  Google Scholar 

  17. Wong MM, Fish EN . Chemokines: attractive mediators of the immune response. Semin Immunol 2003; 15: 5–14.

    Article  CAS  Google Scholar 

  18. Zou W, Borvak J, Marches F, Wei S, Galanaud P, Emilie D et al. Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by beta-chemokines rather than IL-12. J Immunol 2000; 165: 4388–4396.

    Article  CAS  Google Scholar 

  19. Frauenschuh A, DeVico AL, Lim SP, Gallo RC, Garzino-Demo A . Differential polarization of immune responses by co-administration of antigens with chemokines. Vaccine 2004; 23: 546–554.

    Article  CAS  Google Scholar 

  20. Makino Y, Cook DN, Smithies O, Hwang OY, Neilson EG, Turka LA et al. Impaired T cell function in RANTES-deficient mice. Clin Immunol 2002; 102: 302–309.

    Article  CAS  Google Scholar 

  21. Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, Xin X et al. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci USA 1999; 96: 4581–4585.

    Article  CAS  Google Scholar 

  22. An P, Nelson GW, Wang L, Donfield S, Goedert JJ, Phair J et al. Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl Acad Sci USA 2002; 99: 10002–10007.

    Article  CAS  Google Scholar 

  23. The International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–796.

  24. Rodriguez-Frade JM, Vila-Coro AJ, Martin A, Nieto M, Sanchez-Madrid F, Proudfoot AE et al. Similarities and differences in RANTES- and (AOP)-RANTES-triggered signals: implications for chemotaxis. J Cell Biol 1999; 144: 755–765.

    Article  CAS  Google Scholar 

  25. Wong M, Uddin S, Majchrzak B, Huynh T, Proudfoot AE, Platanias LC et al. Rantes activates Jak2 and Jak3 to regulate engagement of multiple signaling pathways in T cells. J Biol Chem 2001; 276: 11427–11431.

    Article  CAS  Google Scholar 

  26. Cetkovic-Cvrlje M, Dragt AL, Vassilev A, Liu XP, Uckun FM . Targeting JAK3 with JANEX-1 for prevention of autoimmune type 1 diabetes in NOD mice. Clin Immunol 2003; 106: 213–225.

    Article  CAS  Google Scholar 

  27. Kondoh K, Torii S, Nishida E . Control of MAP kinase signaling to the nucleus. Chromosoma 2005; 114 (2): 86–91.

    Article  CAS  Google Scholar 

  28. Brill A, Hershkoviz R, Vaday GG, Chowers Y, Lider O . Augmentation of RANTES-induced extracellular signal-regulated kinase mediated signaling and T cell adhesion by elastase-treated fibronectin. J Immunol 2001; 166: 7121–7127.

    Article  CAS  Google Scholar 

  29. Ando H, Kurita S, Takamura T . The specific p38 mitogen-activated protein kinase pathway inhibitor FR167653 keeps insulitis benign in nonobese diabetic mice. Life Sci 2004; 74: 1817–1827.

    Article  CAS  Google Scholar 

  30. Eriksson C, Eneslatt K, Ivanoff J, Rantapaa-Dahlqvist S, Sundqvist KG . Abnormal expression of chemokine receptors on T-cells from patients with systemic lupus erythematosus. Lupus 2003; 12: 766–774.

    Article  CAS  Google Scholar 

  31. Pierer M, Rethage J, Seibl R, Lauener R, Brentano F, Wagner U et al. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol 2004; 172: 1256–1265.

    Article  CAS  Google Scholar 

  32. Oki M, Ohtani H, Kinouchi Y, Sato E, Nakamura S, Matsumoto T et al. Accumulation of CCR5+ T cells around RANTES+ granulomas in Crohn's disease: a pivotal site of Th1-shifted immune response? Lab Invest 2005; 85: 137–145.

    Article  CAS  Google Scholar 

  33. Yang B, Houlberg K, Millward A, Demaine A . Polymorphisms of chemokine and chemokine receptor genes in Type 1 diabetes mellitus and its complications. Cytokine 2004; 26: 114–121.

    Article  CAS  Google Scholar 

  34. Buhler MM, Craig M, Donaghue KC, Badhwar P, Willis J, Manolios N et al. CCR5 genotyping in an Australian and New Zealand type 1 diabetes cohort. Autoimmunity 2002; 35: 457–461.

    Article  CAS  Google Scholar 

  35. Masuko-Hongo K, Sato T, Nishioka K . Chemokines differentially induce matrix metalloproteinase-3 and prostaglandin E2 in human articular chondrocytes. Clin Exp Rheumatol 2005; 23: 57–62.

    CAS  PubMed  Google Scholar 

  36. Locati M, Deuschle U, Massardi ML, Martinez FO, Sironi M, Sozzani S et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Immunol 2002; 168: 3557–3562.

    Article  CAS  Google Scholar 

  37. Garcia-Vicuna R, Gomez-Gaviro MV, Dominguez-Luis MJ, Pec MK, Gonzalez-Alvaro I, Alvaro-Gracia JM et al. CC and CXC chemokine receptors mediate migration, proliferation, and matrix metalloproteinase production by fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Rheum 2004; 50: 3866–3877.

    Article  CAS  Google Scholar 

  38. Schipper RF, Koeleman BP, Bruining GJ, Schreuder GM, Verduijn W, De Vries RR et al. HLA class II associations with type 1 diabetes mellitus: a multivariate approach. Tissue Antigens 2001; 57: 144–150.

    Article  CAS  Google Scholar 

  39. Hanifi-Moghaddam P, Schloot NC, Kappler S, Seissler J, Kolb H . An association of autoantibody status and serum cytokine levels in type 1 diabetes. Diabetes 2003; 52: 1137–1142.

    Article  CAS  Google Scholar 

  40. Revised Criteria for Diagnosis of Coeliac Disease. Report of working group of European Society of Paediatric Gastroenterology and Nutrition. Arch Dis Child 1990; 65: 909–911.

  41. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P . A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

  42. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  43. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  Google Scholar 

  44. Haldane JB . The estimation and significance of the logarithm of a ratio of frequencies. Ann Hum Genet 1956; 20: 309–311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all the patients and their families and physicians for participating in the study. We thank Jackie Senior for improving the manuscript. The study was supported by grants from the Dutch Diabetes Research Foundation (97.137), The Dutch Digestive Disease Foundation (WS 03-06), The Netherlands Organization for Health Research and Development (ZonMW 912-02-028), The Juvenile Diabetes Research Foundation International (JDRF) (2001.10.004) and the Celiac Disease Consortium, an Innovative Cluster approved by the Netherlands Genomics Initiative and partially funded by the Dutch Government (BSIK03009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B P C Koeleman.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhernakova, A., Alizadeh, B., Eerligh, P. et al. Genetic variants of RANTES are associated with serum RANTES level and protection for type 1 diabetes. Genes Immun 7, 544–549 (2006). https://doi.org/10.1038/sj.gene.6364326

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364326

Keywords

This article is cited by

Search

Quick links